Modeling Benthic Versus Hyporheic Nutrient Uptake in Unshaded Streams With Varying Substrates

Kevin R. Roche1, Arial J. Shogren2, Antoine Aubeneau3, Jennifer L. Tank2, and Diogo Bolster1

1Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, USA, 2Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA, 3Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA

Abstract Assessments of riverine ecosystem health and water quality require knowledge of how headwater streams transport and transform nutrients. Estimates of nutrient demand at the watershed scale are commonly inferred from reach-scale solute injections, which are typically reported as uptake velocities (v_f). Multiple interacting processes control v_f, making it challenging to predict how v_f responds to physical changes in the stream. In this study, we link v_f to a continuous time random walk model to quantify how v_f is controlled by in-stream (velocity, dispersion, and benthic reaction) and hyporheic processes (exchange rate, residence times, and hyporheic reaction). We fit the model to conservative (NaCl) and nitrate (NO$_3^{-}$-N) pulse tracer injections in unshaded replicate streams at the Notre Dame Linked Experimental Ecosystem Facility, which differed only in substrate size and distribution. Experiments were conducted over the first 25 days of biofilm colonization to examine how the interaction between substrate type and biofilm growth influenced modeled processes and v_f. Model fits of benthic reaction rates were \sim 8x greater than hyporheic reaction rates for all experiments and did not vary with substrate type or over time. High benthic reactivity was associated with filamentous green algae coverage on the streambed, which dominated total algal biomass. Finally, v_f was most sensitive to benthic reaction rate and stream velocity, and sensitivity varied with stream conditions due to its nonlinear dependence on all modeled processes. Together, these results demonstrate how reach-scale nutrient demand reflects the relative contributions of biotic and abiotic processes in the bentic layer and the hyporheic zone.

1. Introduction

Rivers and streams regularly receive excessive nutrient loads, leading to concentrations hazardous for both ecological health and human consumption (Jaynes et al., 2001; Vitousek et al., 1997). The number of nutrient-impaired watersheds continues to grow (Galloway et al., 2008; Howarth et al., 2002), which underscores the need to understand the key physical processes governing nutrient removal from inland waters. Particularly important is an improved understanding of how headwater streams process inorganic nitrate (NO$_3^{-}$-N) in intensively managed watersheds, such as those in the agricultural Midwest (USA; Alexander et al., 2007). Small headwater streams receive the majority of nonpoint-source NO$_3^{-}$-N (David et al., 1997, 2010), but they naturally remove a substantial portion of these inputs before they are exported downstream (Helton et al., 2018; Mulholland et al., 2008). The high removal rate of inorganic NO$_3^{-}$-N in small streams is closely linked to their underlying substrate (Peterson et al., 2001). Saturated sediments at, and just below, the sediment-water interface (SWI) provide increased surface area for microbial biofilms (Battin et al., 2016), which remove dissolved inorganic NO$_3^{-}$-N from the water column via assimilation into biomass and/or dissimilatory removal via denitrification. Overall, NO$_3^{-}$-N transformation is linked to biofilm biomass and metabolic activity on the stream benthos. However, knowledge of the quantity and distribution of biofilm biomass is insufficient for predicting whole-stream NO$_3^{-}$-N removal, since removal depends both on biofilm demand for NO$_3^{-}$-N and on its delivery to regions of the stream where demand is high (Zarnetske et al., 2015). Physical changes to the stream, such as increasing water velocity or decreasing permeability, due to biofilm clogging of stream sediments, elicit nonlinear responses in nutrient transformation rates due to covariation between nutrient transport and biofilm nutrient demand (Arnon et al., 2007; Caruso et al., 2017; Li et al., 2017; Tomasek et al., 2018). Therefore, accurate prediction of whole-stream
NO$_3^-\text{-N}$ removal requires a mechanistic understanding of how physical stream attributes controlling biofilm growth, nutrient transport, and biofilm nutrient demand covary in time.

A key driver of biofilm-mediated nutrient transformation in stream sediments is the continuous exchange of stream water and pore water, hereafter termed hyporheic exchange (Dahm et al., 1998; Valett et al., 1996). Water is driven across the SWI by natural hydraulic gradients and by turbulent velocity fluctuations (Cardenas & Wilson, 2007; Elliott & Brooks, 1997; Voermans et al., 2018). Exchange not only enhances dissolved nutrient delivery to the subsurface, but it also increases opportunities for biological uptake by greatly increasing nutrient residence times in the stream (Boano et al., 2014; Grant et al., 2018). As such, hyporheic exchange influences the rate of reach-scale nutrient transformation by setting the balance between retention and reaction timescales (Harvey et al., 2013). Natural variability of streamed elevation and sediment permeability creates spatially complex flow paths in the hyporheic zone, resulting in hyporheic residence time distributions (RTDs) that can span orders of magnitude (Berkowitz et al., 2006; Boano et al., 2007; Elliott & Brooks, 1997). The multiscale nature of hyporheic retention makes it challenging to quantify hyporheic RTDs, primarily because the full range of retention timescales typically cannot be inferred from local measurements (Fogg & Zhang, 2016). Nonetheless, the effect of multiscale retention on reach-scale transport are visible in integrated measurements, such as breakthrough curves (BTCs) measured downstream of a pulse tracer injection (Haggerty et al., 2002). Improved tracer sensitivities have revealed that BTCs commonly decay as a power law, providing a clear indication that solute residence times in the reach are similarly distributed at late times (Aubeneau et al., 2014; Haggerty et al., 2002; Stonedahl et al., 2012; Zarnetske et al., 2007). Physically based models for hyporheic exchange show that this tailing behavior is a direct consequence of solute RTDs in the hyporheic zone (Boano et al., 2014), although surface storage zones in geomorphically complex channels may retain solutes over similar timescales (Briggs et al., 2009; Jackson et al., 2013). Classical models for reach-scale transport, such as the transient storage model (Bencala & Walters, 1983), cannot capture this late-time behavior. Recent analytical models have improved the ability to predict the shape of BTCs at late times by either assuming a power law RTD in the reach (Haggerty et al., 2002; Schumer et al., 2003) or by explicitly using an RTD based on a physical description of the underlying retention processes (Boano et al., 2007).

It is critical that processes controlling hyporheic exchange and reaction are included in reach-scale models of nutrient uptake, as failure to include them can result in uncertain estimates of transport and reaction timescales compared with actual values (Bolster et al., 2017; O’Connor et al., 2010; Runkel, 2007). A popular model for describing reach-scale uptake is the nutrient spiraling model (Newbold et al., 1981; Webster & Patten, 1979). In its simplest form, this model represents nutrient uptake as an effective, first-order kinetic removal of mass as a function of downstream distance, $C(x) = C(0)e^{-x/S_w}$, where $C(x)$ is the water column concentration, x is downstream distance, and the uptake length, S_w, is the average downstream distance traveled by a solute prior to removal from the water column (Tank et al., 2017; Webster & Patten, 1979). For comparison of nutrient removal rates among streams, S_w is converted to an uptake velocity (v_f, mm/min) to account for differences in stream depths and/or velocities (Davis & Minshall, 1999; Stream Solute Workshop, 1990). As such, the spiraling model assumes that concentrations are controlled exclusively by downstream advection and first-order biological uptake (Boano et al., 2014; Webster & Patten, 1979). It therefore integrates all other processes controlling nutrient removal and transformation, such as in-stream dispersion, hyporheic exchange, and reaction rates that strongly vary across the SWI (Harvey et al., 2013; Inwood et al., 2007; Knapp et al., 2017). Integration over these additional processes masks their influence on v_f (Ensign & Doyle, 2006), particularly when they are the dominant control on nutrient removal or transformation (Hall et al., 2009).

In this study, we characterize substrate- and biofilm-driven variation in reach-scale nutrient demand (as v_f) using a continuous time random walk (CTRW) model. Use of the CTRW model is advantageous because model parameters are based on physical processes, such as stream velocity and dispersion, hyporheic exchange, and reaction rates specific to the benthic and hyporheic zones. The model is used to evaluate how these processes influence v_f in unshaded, groundwater-fed streams at the Notre Dame Linked Ecosystem Experimental Facility (ND-LEEF; Figure 1). Using sensor deployments for continuous real-time monitoring, we conducted simultaneous pulse addition experiments using NO$_3^-\text{-N}$ (as NaNO$_3$) and conservative (as NaCl) tracers. Streams were set to an initial condition with minimal biofilm growth so that they differed only in their underlying substrates, which have been previously shown to express distinct signatures of hyporheic exchange (Aubeneau et al., 2014). Five pulse additions were made in each stream over the first
25 days of biofilm colonization, allowing us to quantify how V_f was influenced by substrate type and biofilm growth. This combined experimental and modeling approach allowed us to evaluate the relative influence of in-stream and hyporheic processes on overall reach-scale NO$_3^-$-N removal.

2. Methods

2.1. Site Description

We conducted this study in four experimental streams at ND-LEEF, located at St. Patrick’s County Park, South Bend, IN, USA. Each stream is 50 m long and 0.6 m wide, with a slope of 0.0075. Streams are concrete lined so that they are isolated from groundwater gains and losses. Within each channel, the stream is lined with substrate to a depth of approximately 10 cm. As an experimental treatment, we varied substrate size and distribution among the four streams, which are pea gravel (pg, $D_{50} = 0.5$ cm), cobble (cob, $D_{50} = 5$ cm), 2-m alternating sections of pg and cob (alt), and one 50:50 mixture of pg and cob (mix; Figure 1). The ND-LEEF streams received water sourced from a groundwater-fed, constant-head reservoir with low background inorganic nutrients, where average summer concentrations are 5-μg/L ammonium, (NH$_4^+$-N), 4-μg/L nitrate (NO$_3^-$-N), and 8-μg/L soluble reactive phosphorus. Experiments were performed from 18 June 2016 to 12 July 2016.

We initiated flow to the streams 2 days prior to the beginning of the experiments. Stream discharge was constant throughout the 25-day experiment to mimic baseflow conditions during a typical summer growing season. We reset the streams by removing any terrestrial organic matter (leaves, roots, etc.) and benthic algae by hand. We physically disturbed the top layer of substrate (~2–5 cm) to mobilize most remaining organic detritus, and we waited 1 day for streams to naturally flush any loose organic matter. We flattened the streambed substrate to remove any topography apart from roughness features created by sediments, which minimized transient storage in the water column at Day 0. See Aubeneau et al. (2016) and Hanrahan et al. (2018) for additional example photographs of stream substrates with and without biofilm growth.

2.2. Measurements and Solute Injection Experiments

We measured several physiological variables to assess the relationship between stream attributes and NO$_3^-$-N removal. On each sampling date, we measured stream depth (d, m) as the average of 10 measurements taken along each stream reach. Before each coinjection, we collected benthic samples for estimation of algal biomass as chlorophyll a (chl a) and organic matter standing stocks (as ash-free dry mass, AFDM) every 10 m along each 50-m stream reach. We placed subsamples of substrate from a known benthic area into 160-mL specimen cups for subsequent processing in the lab. For chl a, we froze each subsample ($n = 5$ per stream per sampling date) and then used the methanol extraction approach in the laboratory to quantify chl a using a fluorometer (American Public Health Association, 2012). We then scaled each chl a measurement for surface area and expressed replicates in microgram chl a per square centimeter of streambed. We also estimated benthic organic matter by placing subsamples of each substrate type ($n = 5$ per stream per day) in ashing tins, dried for 48 hr at 60 °C and weighed after drying to obtain dry mass. We then ashed the samples at 550 °C for 1 hr and reweighed the samples. We calculated AFDM as the difference between the dry weight and ashed weight of each subsample and divided this value by the subsample surface area (38.4 cm2) to express organic matter in microgram AFDM per square centimeter of streambed surface (Hauer & Lamberti, 2017). We visually estimated the percent cover of larger particulate organic matter types including filamentous green algae, terrestrially derived organic matter, algal biofilm, and moss along 10 transects in each stream on each sampling date.

We released chloride (as NaCl) and nitrate (as NaNO$_3$) tracers simultaneously at the upstream end of each stream reach. Injection mass for chloride was $M_c = 100$ g for all experiments; NaNO$_3$ injection mass was $M_n = 792.5$ g for each stream on Days 3 and 6 and 1,094 g on Days 10, 14, and 25. We measured chloride concentrations and average water column temperature (T, °C) every 30 s using a calibrated Hydrolab Minisonde (Hach Company, Loveland, CO), located a distance $L = 48.5$ m downstream of the injection location. We measured NO$_3^-$-N concentration at the same location using a Sea-Bird Scientific SUNA Optical Nitrate Sensor (Bellevue, WA, USA), with an approximate sampling interval of 15 s.

2.3. Analysis of BTCs

We estimated stream discharge, Q, using standard dilution gauging, $Q = M_c / \int C_c(x, t)$, where C_c is the measured NaCl concentration and $x = L$ m was the downstream location where we measured concentrations. Uncertainty of Q was an estimated 3% (see supporting information). We calculated reactive mass recovery
as \(M_{nc} = \int C_r(x,t)\,dt \), where \(C_r \) is the measured concentration of NO\(_3^−\)-N. Both tracers were assumed to be transported identically, meaning any differences between normalized conservative and reactive mass recoveries were caused by biological uptake of NO\(_3^−\)-N. To facilitate comparison among experiments, \(C_c \) and \(C_r \) were normalized so that conservative mass recovery is unity. We used the nutrient spiraling model (Newbold et al., 1981; Webster & Patten, 1979), adapted for pulse coinjections of conservative and reactive tracers, to quantify the characteristic distance a molecule of NO\(_3^−\)-N travels downstream before it is removed from the water column, \(S_W \) (m). This model assumes an exponential decay of in-stream concentrations with downstream distance for short-term additions (i.e., steady state injections), \(C(x) = C_0 e^{-x/S_W} \), where \(C_0 \) is the initial concentration of tracer released at \(x = 0 \). For pulse coinjections, \(S_W \) is determined from the ratio of conservative to reactive mass recovery, measured at a distance \(x \) downstream (Chapra, 2008; Tank et al., 2008). We converted \(S_W \) to an uptake velocity, \(v_f \) (mm/min), to correct for differences in discharge among experiments, \(v_f = Q/(S_W \, w) \). Note that this equation is equivalent to \(v_f = Vd/(S_w) \) under the assumption of constant stream depth and stream width, where \(V \) is the mean longitudinal velocity in the water column. We estimated the uncertainty of \(v_f \), based on uncertainty of \(Q \) calculations, to be 4% (see supporting information).

2.4. CTRW Model for Transport and Biological Uptake

We modeled domain-specific transport and reactivity using a model based on the one-dimensional CTRW framework (Berkowitz et al., 2006; Boano et al., 2014). This model is capable of describing the wide distribution of travel times associated with solute exchange and retention in the hyporheic zone, and it has been successfully used to model conservative transport at ND-LEEF in previous studies (Aubeneau et al., 2014; 2016). The formulation used here is tailored for hyporheic exchange processes (Boano et al., 2007) and is extended to account for domain-specific (i.e., benthic and hyporheic) reaction rates (Aubeneau et al., 2015; see supporting information).
In brief, the CTRW model treats the water column and hyporheic zone as a single, one-dimensional domain (Figure 2). The solute tracer is conceptualized as an ensemble of infinitesimal particles, and each particle performs a unidirectional random walk consisting of independent and identically distributed jumps and waits. In the present formulation, jumps are governed solely by the in-stream flow field and waits are controlled by retention in the hyporheic zone. This model simplification is valid when (1) processes controlling downstream transport (i.e., in-stream advection and dispersion) are independent of processes controlling subsurface residence times, which is a reasonable assumption for sand and gravel beds that do not allow for substantial penetration of turbulence; and (2) there is a large separation of velocity scales between the stream and the hyporheic zone, in which case solute retained in this zone can be considered immobile (Boano et al., 2007).

2.4.1. Transport Processes

The CTRW framework is advantageous because model parameters can be directly linked to physical processes. The two parameters controlling in-stream transport are analogous (but not equal to) to the velocity V (m/s) and dispersion D (m2/s) in streams with impermeable beds (Boano et al., 2007). Here we conceptualize solute transfer to the hyporheic zone as a first-order exchange rate, λ (s$^{-1}$), which assumes that the solute is well mixed in the water column. This assumption is reasonable in the experimental streams at ND-LEEF, because of the shallow water column (≈ 3 cm) and stream Reynolds numbers indicating that flows are transitional-to-turbulent ($Re \approx 2000–3500$). Solute entering the hyporheic zone at a given time T remains immobile until it returns to the stream at time $T + t$. This retention time is a random variable sampled from an independent and identically distributed wait-time probability distribution, $\phi(t)$, which represents the solute RTD in the hyporheic zone (Boano et al., 2007; Margolin et al., 2003). The parameter $\phi(t)$ integrates the many mechanisms that determine hyporheic residence times into a single probability distribution (Figure 2). In streams at ND-LEEF, it is reasonable to attribute all immobilization events, and long-term retention, to storage in the hyporheic zone, since all streams are designed to minimize features that retain solutes in the water column, such as large topographic features and side cavities.

Previous experiments have shown that hyporheic residence times in ND-LEEF streams generally follow a power law distribution up to a tempering timescale, t_2, after which the distribution decays rapidly (Aubeneau et al., 2014, 2016). These dynamics can be captured by parameterizing $\phi(t)$ with a truncated power law distribution (Dentz et al., 2004):

$$
\phi(t) = \frac{\Gamma(-\beta, t_1/t_2)}{(1 + t_1/t_2)^{1+\beta}} e^{-t/t_2} (1 + t/t_1)^{\beta+1},
$$

where Γ is the upper incomplete Gamma function and β is a power law slope such that $\phi(t) \sim t^{-\beta}$ over the interval (t_1, t_2) (Figure 2). As such, t_1 does not influence model results provided it is sufficiently small compared to other timescales in the system; it is therefore set to $t_1 = 1$ s for this study. For reasons of equifinality, we set $t_2 = 14,000$ s to match the maximum truncation time expected in ND-LEEF streams,
Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Prior distribution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>m/s</td>
<td>0.05–0.25</td>
<td>Stream velocity</td>
</tr>
<tr>
<td>(D)</td>
<td>m(^2)/s</td>
<td>2E-3–0.080</td>
<td>Stream dispersion</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>s(^{-1})</td>
<td>1E-4–0.085</td>
<td>Immobilization rate</td>
</tr>
<tr>
<td>(\beta)</td>
<td>—</td>
<td>0.40–1.20</td>
<td>RTD power law slope</td>
</tr>
<tr>
<td>(t_1)</td>
<td>s</td>
<td>1</td>
<td>RTD power law onset time</td>
</tr>
<tr>
<td>(t_2)</td>
<td>s</td>
<td>1.4E4</td>
<td>RTD power law truncation time</td>
</tr>
<tr>
<td>(r_B)</td>
<td>s(^{-1})</td>
<td>1E-8–0.01</td>
<td>Benthic reaction rate</td>
</tr>
<tr>
<td>(r_H)</td>
<td>s(^{-1})</td>
<td>1E-8–0.01</td>
<td>Hyporheic reaction rate</td>
</tr>
</tbody>
</table>

Note. The column “Prior distribution” specifies the limits of the (uniform) distribution used to initialize the DREAM\(_{\text{ZS}}\) fitting algorithm. RTD = residence time distribution.

based on previous experiments in biofilm-covered streams (Aubeneau et al., 2016). Parameters \(V, D, \lambda, \) and \(\beta \) thus provide a complete description of conservative solute transport at the reach scale (Figure 2).

2.4.2. Biological Uptake

We treat biological uptake of NO\(_3^-\)–N as a first-order reaction, with independent reaction rates in the benthic zone (\(r_B, s^{-1} \)) and the hyporheic zone (\(r_H, s^{-1} \)). This parameterization of reaction rates results in mathematically tractable solutions of the CTRW model, and it also allows us to compare results to traditional calculations of \(\nu_f \) (Stream Solute Workshop, 1990). Reactions are assumed to be uniform in each zone, which is reasonable given shallow depths for both overlying water and hyporheic zone depth (\(\approx 10 \) cm) that is constrained by the lining underlaying the ND-LEEF streams. First-order reactions result in exponential tempering of the wait-time distributions of conservative solutes (Aubeneau et al., 2015; Sokolov et al., 2006), leading to reaction-modified distributions \(\phi_R(t) = \phi(t)e^{-rt}, \) where \(r \in B, H \). A list of all CTRW model parameters is provided in Table 1.

2.4.3. Model Solution and Fits

We solve the CTRW model by transforming the differential equations from the time domain to the Laplace domain, finding an algebraic solution for concentration, and then numerically transforming the solution back to the time domain (Cortis & Berkowitz, 2005; de Hoog et al., 1982). See supporting information for a full description of the reactive transport equations.

We fit model parameters using the Differential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt, 2016), which is a Bayesian estimation method based on Markov chain Monte Carlo (MCMC) simulation. The algorithm outputs a stationary posterior distribution (i.e., target distribution) of values for each model parameter. It has been previously employed in stream modeling analyses based on solute injection experiments (Knapp & Cirpka, 2017; Lemke et al., 2013). In brief, the DREAM algorithm executes a user-specified number \(N \) of parallel MCMC simulations. Parameter values for each simulation are determined from a random walk over the parameter space. A differential evolution genetic algorithm is used together with the \(N \)-chain ensemble to efficiently reach the target distribution. Here we employ the DREAM\(_{\text{ZS}}\) algorithm, which speeds up convergence to the target distribution by incorporating information from past states of the Markov chain (Laloy & Vrugt, 2012). The DREAM\(_{\text{ZS}}\) algorithm is publicly available as a Matlab toolbox and fully documented in Vrugt (2016).

We used a standard Bayesian formalism to condition the posterior distribution of parameters on the observed BTCs from each experiment:

\[
p(a|\hat{B}) \propto p(a)p(\hat{B}|a), \tag{2}
\]

where \(a = \{V, D, \lambda, \beta, r_B, r_H\} \) is the vector of free model parameters, \(\hat{B} \) is the vector of observations (i.e., the concentration time series), \(p(a|\hat{B}) \) is the posterior distribution of parameters, \(p(a) \) is the prior distribution of parameters, and \(p(\hat{B}|a) \) is the conditional probability of observing \(\hat{B} \) based on a model parameterized by \(a \). For conservative BTCs, parameters \(r_B \) and \(r_H \) were forced to 0.

We used \(p(\hat{B}|a) \) as the likelihood function, \(\mathcal{L}(a|\hat{B}) \equiv p(\hat{B}|a) \), which describes the difference between the modeled system behavior and the observed system behavior. We treated this distance as an error term, and we assumed the error associated with each model estimate was equal to...
algorithm (Chakraborty et al., 2009; Kelly et al., 2017), where errors are weighted by
the number of observations in the time series. Equation (3) represents a nonlinear least squares
objective function
\[\mathcal{L}(\mathbf{a} | \mathbf{B}) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{b_i - b_i(\mathbf{a})}{\tilde{b}_i} \right)^2, \]
(3)

where \(\tilde{b}_i \) is an observation from the concentration time series, \(b_i(\mathbf{a}) \) is a model prediction at the same time, and \(n \) is the number of observations in the time series. Equation (3) represents a nonlinear least squares algorithm (Chakraborty et al., 2009; Kelly et al., 2017), where errors are weighted by \(C(t)^{-1} \). This weighting scheme, described in detail by Kelly et al. (2017), ensured that transport parameters associated with late-time solute retention and low concentrations were given a similar emphasis as in-stream transport parameters that control BTC shape at high concentrations. As a result, best fit model BTCs qualitatively captured all features of the observed reactive BTCs—that is, peak arrival time, maximum peak concentration, peak width, and tail slope. We fit the conservative and reactive BTCs from each experiment simultaneously by using the objective function
\[\min \sum_j \mathcal{L}_j(\mathbf{a}_j | \mathbf{B}_j), j \in \text{conservative, reactive}. \]
(4)

We ran eight parallel MCMC simulations that each executed the forward CTRW model 25,000 times, for a total of 200,000 model runs per experiment. We chose a uniform prior distribution for each model parameter that spanned a wide range of initial values (Table 1), with the exception of \(\Delta \). The upper limit \(\Delta_{\text{high}} \) was constrained to avoid unrealistic model fits for 8 of the 20 experiments. The value of \(\Delta_{\text{high}} \) was set to 0.085 s\(^{-1}\), which is the median value of exchange rates observed in Aubeneau et al. (2016). Measured discharge in Aubeneau et al. (2016) was approximately 3× the discharge estimated for this study, which implies that our choice of \(\Delta_{\text{high}} \) was conservative (i.e., high) since exchange rates increase with water column velocity (O’Connor & Harvey, 2008). All calculations were performed in Matlab R2017b (Mathworks, Cambridge, MA).

Table 2

<table>
<thead>
<tr>
<th>Biological Parameters Measured From Stream Surveys (AFDM, Chl a.), Showing Mean ±1 Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Note. Measure discharge (\(Q \)), temperature (\(T \)), and calculated and modeled \(v_f \) values for each experiment. AFDM = ash-free dry mass.
Early states of the Markov chain were dependent upon the chosen prior distributions during an initial burn in period. To determine when all posterior distributions had converged to their target distributions, we used the standard measure $\hat{R} \leq 1.2$, where \hat{R} is a statistic that measures within-chain and between-chain variances (Gelman et al., 1992; Vrugt, 2016). We retained all N_c simulations performed after this convergence measure had been reached. The average N_c was 168,000, and $N_c \geq 112,000$ for all experiments. We report the median value of each posterior distribution as the best fit value, and we report confidence intervals as the standard deviation of each distribution.

2.4.4. Equivalence Between CTRW and Spiraling Models

Mathematically, the CTRW model solution represents the impulse response (i.e., Green's function) of a stream reach to an instantaneous tracer release. The principle of linear superposition is used with this solution to find an equivalent steady state concentration for a short-term addition experiment (see supporting information). Equivalent to the nutrient spiraling model (Newbold et al., 1981; Webster & Patten, 1979), the steady state solution for $C(x)$ is an exponentially decreasing function of downstream distance, $C_{\text{STA}}(x) = C_0 e^{-x/S_{\text{model}}}$, where S_{model} (m) is the spiraling distance predicted by the CTRW model,

$$S_{\text{model}} = \frac{2D}{-V + \sqrt{V^2 + 4D\Theta}},$$

(5)

and Θ is an expression that depends on all model parameters:

$$\Theta = r_B + \Lambda \left(1 - \frac{e^{\mu} \Gamma(-\beta, t_1) + r_H \Gamma(-\beta, t_1)}{\Gamma(-\beta, t_1/\tau)} \right).$$

This relation is similar to the equations presented in Runkel (2007) that link v_f to the transient storage model. The key difference between models is the underlying description of the hyporheic RTD. In Runkel (2007), the RTD is approximately exponential, while the RTD used here is based on the truncated power law distribution (equation (1)). As expected, $S_{\text{model}} \to \infty$ as $r_H, r_B \to 0$. We compare S_{model} to experimental estimates by converting to model-predicted uptake velocity, $v_f = Q(S_{\text{model}} w)^{-1}$.

2.5. Statistical Analysis

We used a mixed effects model to evaluate how biofilm metrics differed among streams and over time (Raudenbush & Bryk, 2002). We treated colonization time as a fixed effect, and we used random intercepts for substrate treatment representing each stream. We obtained p values from likelihood ratio tests of the full model with the effect in question against the model in question.

We used an identical approach to assess how best fit model parameters and v_f varied with colonization time and among the four streams. Metrics that did not show significant temporal variation were treated as replicates, and differences among streams were evaluated using a one-way analysis-of-variance (ANOVA) model. If the hypothesis that metrics were equal could be rejected, we performed a Tukey’s honest significant difference (HSD) test. All analyses were completed in R (R Core Team, 2017), and the lmer() function was used for mixed effects modeling (Bates et al., 2015). The script used for statistical analysis is provided with the accompanying data set (see Acknowledgments).
3. Results and Discussion

3.1. Biofilm Growth

Once biofilm established, biomass metrics did not change significantly over time (mixed effects model; $\chi^2(4) = 2.17, p = 0.34$ for AFDM; $\chi^2(4) = 3.21, p = 0.52$ for chl a; Figure 3 and Table 2). For biofilm AFDM, small but significant differences can be seen between cob and alt, as well as between cob and mix streams, but no other differences were significant (one-way ANOVA, $p < 0.001$, Tukey HSD $p < 0.05$ for both). For biofilm chl a, we only found differences between pg and all other streams (one-way ANOVA, $p < 0.001$, Tukey HSD $p < 0.01$ for both). These results are similar to those reported by Hanrahan et al. (2018), which showed that large differences in biomass metrics did not emerge among stream substrate treatments until after 4–6 weeks of biofilm colonization. In contrast to biofilm metrics, mixed model results showed that relative coverage of filamentous green algae varied significantly over time ($\chi^2(2) = 16.32, p < 0.001$), with as much as half the stream bed covered in pg and mix streams between Days 10 and 14. Filamentous algae coverage then declined rapidly to <10% by Day 25 (Figure 3), as a result of a heat wave that increased water column temperature from 23.5 $^\circ$C on day 15 to 30.5 $^\circ$C on Day 25. Filamentous green algae primarily grew into the water column as long strands tethered both to the substrate and to channel sidewalls. As such, biomass metrics of AFDM and chl a did not parallel the trends in filamentous green algae growth because they measured biofilm biomass at and below the SWI.

3.2. CTRW Model Fits

We present example BTCs and corresponding CTRW model fits in Figure 4. Both conservative (NaCl) and nutrient (NO$_3^-$-N) tracer concentrations decayed to near-background levels 2,600–3,900 s after each pulse release, with the onset of power law tailing occurring after approximately

Figure 4. Example breakthrough curves and model fits for conservative (NaCl) and nutrient (NO$_3^-$-N) tracers (black and blue lines, respectively). Concentrations are normalized so that conservative mass recovery is unity. Result is from experiment with pea gravel (pg) substrate and 3 days of biofilm growth. Model fits closely match observed NaCl and NO$_3^-$-N concentrations (black and blue dashed-dotted lines, respectively). Reactive model BTCs parameterized with r_B only (i.e., $r_H = 0$, gray line) capture observed nutrient concentrations at early times ($t < \sim 800$ s) but cannot capture the more rapid concentration decrease during power law tailing (blue line). Model BTCs parameterized with r_H only (i.e., $r_B = 0$, gray dash-dotted line) do not capture the rapid concentration decrease at early times compared with the conservative BTC, but they better describe the late-time decay of observed concentrations, indicated by the identical slopes of this modeled BTC and the observed BTC (blue line).

Figure 5. Best fit model values for benthic (r_B) and hyporheic (r_H) reaction rates. Stream abbreviations are pg (pea gravel), cob (cobble), mix (mixed substrate), and alt (alternating 2-m sections of pg and cob).
Continuous Time Random Walk Model Fits For All Experiments

<table>
<thead>
<tr>
<th>#</th>
<th>Day</th>
<th>Sub</th>
<th>V (x10^{-2} m/s)</th>
<th>D (x10^{-2} m^2/s)</th>
<th>A (x10^{-2} s^{-1})</th>
<th>β</th>
<th>r_B (x10^{-4} s^{-1})</th>
<th>r_H (x10^{-4} s^{-1})</th>
<th>r_B/r_H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>alt</td>
<td>0.739 ± 0.00</td>
<td>1.84 ± 0.01</td>
<td>8.50*</td>
<td>0.87 ± 0.00</td>
<td>27.78 ± 0.04</td>
<td>0.15 ± 0.05</td>
<td>8.8E0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>pg</td>
<td>11.34 ± 0.03</td>
<td>3.78 ± 0.03</td>
<td>4.67 ± 0.06</td>
<td>0.75 ± 0.00</td>
<td>39.22 ± 0.09</td>
<td>0.17 ± 0.06</td>
<td>1.2E1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>mix</td>
<td>08.98 ± 0.01</td>
<td>2.63 ± 0.01</td>
<td>3.22 ± 0.03</td>
<td>0.57 ± 0.00</td>
<td>32.24 ± 0.05</td>
<td>0.48 ± 0.06</td>
<td>6.5E0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>cob</td>
<td>08.28 ± 0.03</td>
<td>2.66 ± 0.02</td>
<td>4.83 ± 0.09</td>
<td>0.76 ± 0.00</td>
<td>27.84 ± 0.07</td>
<td>0.06 ± 0.06</td>
<td>3.9E0</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>alt</td>
<td>06.70 ± 0.00</td>
<td>1.23 ± 0.01</td>
<td>8.50*</td>
<td>0.88 ± 0.00</td>
<td>23.94 ± 0.05</td>
<td>0.07 ± 0.05</td>
<td>3.9E0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>pg</td>
<td>11.21 ± 0.00</td>
<td>0.85 ± 0.01</td>
<td>8.50*</td>
<td>0.87 ± 0.00</td>
<td>42.27 ± 0.06</td>
<td>0.25 ± 0.06</td>
<td>1.6E1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>mix</td>
<td>07.27 ± 0.01</td>
<td>0.58 ± 0.01</td>
<td>3.88 ± 0.04</td>
<td>0.73 ± 0.00</td>
<td>30.79 ± 0.06</td>
<td>0.36 ± 0.05</td>
<td>8.4E0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>cob</td>
<td>09.21 ± 0.00</td>
<td>2.06 ± 0.01</td>
<td>8.50*</td>
<td>0.85 ± 0.00</td>
<td>37.96 ± 0.05</td>
<td>0.35 ± 0.06</td>
<td>1.1E2</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>alt</td>
<td>06.51 ± 0.03</td>
<td>1.55 ± 0.01</td>
<td>5.60 ± 0.13</td>
<td>0.80 ± 0.00</td>
<td>29.04 ± 0.12</td>
<td>0.20 ± 0.05</td>
<td>2.4E1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>pg</td>
<td>08.05 ± 0.02</td>
<td>0.27 ± 0.01</td>
<td>7.31 ± 0.08</td>
<td>0.89 ± 0.00</td>
<td>41.89 ± 0.09</td>
<td>0.74 ± 0.07</td>
<td>5.7E1</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>mix</td>
<td>07.08 ± 0.01</td>
<td>1.40 ± 0.01</td>
<td>1.74 ± 0.02</td>
<td>0.57 ± 0.00</td>
<td>25.24 ± 0.04</td>
<td>1.05 ± 0.10</td>
<td>2.5E0</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>cob</td>
<td>08.53 ± 0.00</td>
<td>2.39 ± 0.01</td>
<td>8.50*</td>
<td>0.86 ± 0.00</td>
<td>35.85 ± 0.06</td>
<td>0.57 ± 0.07</td>
<td>6.4E0</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>alt</td>
<td>06.86 ± 0.00</td>
<td>1.38 ± 0.01</td>
<td>8.50*</td>
<td>0.92 ± 0.00</td>
<td>29.50 ± 0.05</td>
<td>0.96 ± 0.07</td>
<td>7.4E0</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>pg</td>
<td>11.52 ± 0.02</td>
<td>2.46 ± 0.02</td>
<td>4.70 ± 0.05</td>
<td>0.72 ± 0.00</td>
<td>47.10 ± 0.09</td>
<td>0.21 ± 0.10</td>
<td>5.1E0</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>mix</td>
<td>07.42 ± 0.01</td>
<td>1.74 ± 0.01</td>
<td>1.85 ± 0.03</td>
<td>0.62 ± 0.00</td>
<td>31.46 ± 0.04</td>
<td>1.16 ± 0.13</td>
<td>2.7E0</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>cob</td>
<td>09.07 ± 0.00</td>
<td>3.61 ± 0.01</td>
<td>8.50*</td>
<td>0.84 ± 0.00</td>
<td>36.11 ± 0.07</td>
<td>0.86 ± 0.09</td>
<td>4.1E0</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>alt</td>
<td>06.85 ± 0.00</td>
<td>1.41 ± 0.01</td>
<td>8.50*</td>
<td>0.92 ± 0.00</td>
<td>29.99 ± 0.03</td>
<td>0.00 ± 0.00</td>
<td>5.2E4</td>
</tr>
<tr>
<td>18</td>
<td>25</td>
<td>pg</td>
<td>10.54 ± 0.02</td>
<td>2.00 ± 0.01</td>
<td>4.07 ± 0.05</td>
<td>0.78 ± 0.00</td>
<td>44.84 ± 0.08</td>
<td>0.82 ± 0.08</td>
<td>5.5E1</td>
</tr>
<tr>
<td>19</td>
<td>25</td>
<td>mix</td>
<td>07.68 ± 0.01</td>
<td>1.84 ± 0.01</td>
<td>2.17 ± 0.03</td>
<td>0.68 ± 0.00</td>
<td>33.05 ± 0.05</td>
<td>0.20 ± 0.08</td>
<td>1.7E1</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>cob</td>
<td>07.01 ± 0.03</td>
<td>1.26 ± 0.01</td>
<td>8.39 ± 0.15</td>
<td>0.89 ± 0.00</td>
<td>25.09 ± 0.07</td>
<td>1.24 ± 0.12</td>
<td>2.0E0</td>
</tr>
</tbody>
</table>

Note. Variables are defined in Table 1. Reported values are the median of posterior parameter distributions, with uncertainty values showing one standard deviation. Best fit values that are constrained by the prior distribution are marked with an asterisk (*).

1,000–1,200 s. Model fits to nutrient BTCs required independent estimates of benthic and hyporheic reaction rates (r_B and r_H, respectively), indicating that both the benthic and hyporheic zones made measurable contributions to reach-scale NO$_2$–N removal in ND-LEEF streams. Further, the omission of either parameter resulted in systematic differences between the modeled and observed BTCs (Figure 4). We also found that r_H controlled the shape of modeled BTCs at early times ($t \sim 800$ s), while a nonzero value for r_B was needed to capture the steeper power law slope observed in the nutrient BTC at late times ($t > \sim 1,000$ s), compared with the slope of the conservative BTC (Figure 4).

Best fit model parameters showed no significant correlations over time or with biofilm metrics (mixed effects model, $p > 0.05$ for all; Table 3). In general, there were no significant differences among streams (one-way ANOVA, $p > 0.05$), with the exception of higher V in the pg stream (Tukey HSD, $p < 0.05$), lower A and β in the mix stream ($p < 0.01$), and higher r_B in the pg stream (Tukey HSD, $p < 0.001$). These results differed slightly from those reported in Aubeneau et al. (2016), who found qualitative differences in BTCs among streams over the first 3 weeks of the biofilm colonization sequence. We suggest that the contrasting results were most likely due to differences in initial conditions; experiments in Aubeneau et al. (2016) began immediately after new rock substrate was installed in the ND-LEEF streams. Although the same substrate types were used in the present study, they had in-filled with some organic detritus following a full growing season from the previous year, which likely tempered differences among substrate treatments. Additionally, temporal changes to BTCs reported in Aubeneau et al. (2016) were most pronounced in the truncation time (t_f) and the power law slope (β). The lower signal-to-noise ratio of NaCl tracer used here, compared with Rhodamine-WT tracer used in Aubeneau et al. (2016), limited the late-time resolution of BTCs in this study, meaning small changes to β were not detectable. Nonetheless, CTRW model fits accurately described conservative concentrations across all observation times (e.g., Figure 4). Estimates of r_B/r_H were greater than 1 for all experiments, with a median value of $r_B/r_H \sim 8$ and a range of $2.0-52.000$ (Table 3 and Figure 5).

Posterior distributions of model parameters were narrow and symmetric, indicating that the fitting algorithm had achieved a global minimum of the objective function (see Table 3 and supporting information).
Figure 6. (left) Measured and modeled uptake velocities v_f for all experiments. Hollow symbols represent the predicted estimate $v_{f, model}$ (equation (5)). (right) v_f correlated with streambed filamentous green algae coverage (linear mixed model, $\chi^2(2) = 16.32, p < 0.001$). The y-axis shows v_f values corrected by the mixed model's predicted intercept, which is equal to the mean v_f observed for all experiments with zero filamentous green algae coverage.

Estimates for A were forced to the upper constraint $A_{\text{high}} = 0.085 \text{ s}^{-1}$ in eight experiments (Table 3), and increases to A_{high} increased the model fits to values that were considered unphysical based on findings from previous studies (Aubeneau et al., 2014, 2016). Although constrained parameters showed a weak, positive correlation with r_B, model fits to a distribution with larger A_{high} did not substantially alter the relative magnitudes of r_B and r_H. This result supports our conclusion that benthic reaction rates were higher in all experiments (see supporting information).

3.3. Reach-Scale Nutrient Uptake: Measured Values

The integrated effects of transport and reaction were reflected in measures of uptake velocity, v_f (Figure 6). Calculated v_f values ranged from 1.7–3.1 mm/min, with an estimated uncertainty of ± 0.1 mm/min based on uncertainty of Q calculations (see supporting information). This v_f range was higher than the range of 1.2–2.0 mm/min reported for NO$_3^-$-N in Hanrahan et al. (2018), who conducted short-term nutrient additions over 16 weeks of biofilm colonization. The difference is most likely due to benthic substrate in Hanrahan et al. (2018) being initially free of organic matter or biofilms, while as mentioned above, the benthic substrate in this study had some infilling from legacy detritus from the previous growing season, which likely contributed to the microbial demand for NO$_3^-$-N.

We found that v_f differed significantly across sampling dates ($\chi^2(2) = 22.71, p < 0.001$), with highest nutrient demand peaking between Days 10 and 15 and falling sharply by Day 25. Additionally, v_f correlated significantly with relative coverage of filamentous green algae ($\chi^2(1) = 6.46, p = 0.011$, Figure 6), which dominated algal biomass (see supporting information), suggesting that filamentous algae dominated NO$_3^-$-N demand in ND-LEEF streams. These results are consistent with previous studies demonstrating the role of filamentous algae for NO$_3^-$-N uptake in open-canopy streams (Kemp & Dodds, 2002). We also suggest that the lack of relationship between v_f and biofilm AFDM or chl a was likely because biofilms represent a relatively small proportion of biomass relative to filamentous green algae in these systems.

3.4. Reach-Scale Nutrient Uptake: Model Results

Modeled estimates of uptake velocity, $v_{f, model}$, were within 5% of measured values, demonstrating that the CTRW model reasonably described the integrated effects of transport and reaction in ND-LEEF streams.
Figure 7. Parameter $v_{f,\text{model}}$ exhibits nonlinear sensitivity to all CTRW model parameters over the range of best fit values observed from experiments, with the exception of r_B. Analysis is based on mean values of all model fits from the mixed sediment (mix) stream. Bold lines represent the range of best fit values for all experiments. Note the difference in the y-axis between top and bottom plots.

(Figure 6). The relative influence of each model parameter is illustrated in Figure 7. This figure shows calculations of $v_{f,\text{model}}$ using the average parameter values from releases in mix streams as a representative sample. Plots show the response of $v_{f,\text{model}}$ to changes in one free parameter, with all other free parameters held constant. Over the range of values determined from model fits (Figure 7, thick lines), $v_{f,\text{model}}$ exhibits the greatest range of values in response to changes in-stream advection (V) and benthic reactivity (r_B). The range of $v_{f,\text{model}}$ values resulting from changes in r_B was $3.4 \times$ greater than the range resulting from changes in r_H. Although this outcome is reasonable given that benthic reactivity is much higher than hyporheic reactivity, codependence of $v_{f,\text{model}}$ on all parameters (equation (5)) suggests that a balance of transport- and reaction-related processes determines the relative sensitivity of v_f to any specific process. A common metric for evaluating this balance is the nondimensional Damköhler number, $Da = \tau_T/\tau_R$, which provides a direct comparison between transport and reaction timescales (τ_T and τ_R, respectively). In a stream with relatively fast reaction rates, $Da \gg 1$, nutrient removal is limited by the characteristic time spent in the water column (i.e., transport-limited conditions), and $v_{f,\text{model}}$ sensitivity to changes in reactivity is low. In contrast, $Da \ll 1$ when uptake is limited by reaction rates, and changes in reactivity are expected to produce a relatively large response in $v_{f,\text{model}}$. A transition from transport-limited to reaction-limited conditions occurs near $Da \sim 1$, which can result in a nonlinear sensitivity of v_f to changes in a specific process. Here τ_T is set to the characteristic travel time through the reach, $\tau_T = L/V$, and τ_R is set to the e-folding time for benthic reaction, $\tau_R = r_B^{-1}$. In Figures 7a and 7b, Da values are slightly greater than 1 over the range of best fit parameters (thick black lines). As a result, $v_{f,\text{model}}$ is sensitive to both transport- and reaction-related parameters in the water column, and $v_{f,\text{model}}$ responds nonlinearly over the range of velocities inferred from model fits.
We do not calculate a Damköhler number associated with hyporheic processes, since the principal model assumption that solute residing in the hyporheic zone is immobile precludes the existence of a transport timescale. Nonetheless, \(v_{f,\text{model}} \) sensitivity to hyporheic exchange-related parameters can be interpreted by evaluating how these parameters increase the cumulative opportunity for hyporheic uptake in the reach. Uptake velocity is sensitive to \(r_H \) until the mean hyporheic zone residence time, \(\bar{t}_H \), exceeds the characteristic reaction time in the zone, that is, \(\bar{t}_H / r_H > 1 \). Beyond this value, reactions occur within the hyporheic zone over shorter timescales than the mean residence time, and \(v_{f,\text{model}} \) sensitivity to \(r_H \) decreases with increasing \(r_H \). In Figures 7a, 7c, and 7d, \(v_{f,\text{model}} \) increases nonlinearly from a value of 2.56 mm/min, which is equal to the uptake velocity in an equivalent stream with no hyporheic exchange and/or hyporheic reactions. This uptake velocity is reached in Figure 7c when the mean residence time in the water column (\(\bar{t}_L = \Lambda^{-1} \)) is approximately equal to \(\tau_r \), that is, \(V(AL)^{-1} = 1 \), signifying that immobilization events are too seldom to result in substantial uptake in the hyporheic zone. Similarly, increasing \(\beta \) reduces hyporheic residence times until they are too short for reactions to progress before solute is remobilized. (In Figure 7d, \(v_{f,\text{model}} \) falls within 5% of 2.56 mm/min when the mean hyporheic residence time is within 1% of \(r_H \).)

Linkage of \(v_f \) to the CTRW model may potentially improve analysis of cross-stream studies since CTRW model parameters are often directly related to measurable stream processes (Aubeneau et al., 2015; Boano et al., 2007; Drummond et al., 2018). Model-based estimates of these processes may aid interpretation of the factors that control them via a direct comparison with stream measurements. For example, using \(^{15}\text{N} \) tracer additions, biomass metrics, and compartment-specific estimates of N storage, Tank et al. (2018) showed that canopy cover strongly drives reach-scale inorganic N uptake by influencing the abundance and activity of primary producers. Our results show that pulse addition tracer experiments, together with CTRW model fits, can provide an additional estimate of primary producer activity (as \(r_B \)) when they control benthic \(\text{NO}_3^- - \text{N} \) demand. Not only can model results be compared with local estimates of benthic uptake in open-canopy and shaded reaches (Tank et al., 2018), but they can also be used to effectively quantify how the relative influence of \(r_B \) on \(v_f \) varies with differences in overall cover, compared to the other modeled processes.

3.5. Limitations

Very narrow posterior distributions indicate that the DREAM\(_{ZS}\) algorithm had reached a global optimum set of parameters for each experiment. Nonetheless, best fit model parameters associated with solute transport (\(V, D, \Lambda, \beta \)) varied widely among experiments. For instance, although CTRW model fits described conservative BTCs well in streams with pea gravel, fits of \(V, D, \) and \(\Lambda \) varied by 25–85% for consecutive experiments between Days 3 and 10 (see Table 3 and supporting information). It is unlikely that such high variability is due to physical variation in the stream since stream discharge was well controlled. Fits to the Day 3 pg experiment yielded best fit values closer to their true values since BTCs from this experiment exhibited a pronounced interval of power law tailing, compared to other experiments in the same stream (Table 3 and Figure 4). High variability of transport model parameters is hypothesized to be a consequence of limited observation of long-term retention processes. Model fits of \(V, D, \Lambda, \) and \(\beta \) likely had not converged to values independent of BTC length since BTCs lacked a sufficiently long interval of power law tailing to properly constrain \(\beta \). This point is further evidenced by strong correlations between transport model parameters (see supporting information), meaning fits to these parameters remained correlated if BTCs were too short to capture a pronounced interval of power law tailing. Data limitation is therefore a source of model equifinality for the present experiments, creating unphysical variability of best fit transport model parameters and masking any correlations that may exist between these parameters and biofilm growth metrics. In contrast, fits to reactive model parameters showed lower covariation with transport parameters and varied less than transport parameters across time (see supporting information), which supports our conclusion that \(r_B > r_H \) in ND-LEEF streams (Figure 5).

The nonlinear dependence of \(v_f \) on all model parameters suggests that changes to any specific process can alter its influence relative to others (equation (5)), particularly for changes resulting in a transition from reaction-dominant to transport-dominant conditions (or vice versa, see Figure 7). Our results demonstrate how fits to a CTRW model with reactions can be used to quantify the range of stream conditions where this transition will occur. Nonetheless, we expect further covariation between transport and reaction processes that are not described by the current CTRW model formulation. Increases in discharge, for example, simultaneously alter the water column velocity profile, enhance exchange rates, and modify the distribu-
tion of hyporheic residence times (Grant et al., 2012; Manes et al., 2009; Nissan & Berkowitz, 2018). These changes can subsequently alter subsurface redox conditions and assimilatory versus respiratory demand for NO$_3^-$-N (Briggs et al., 2015; Kaufman et al., 2017; Tomasek et al., 2018). Experimental results from a single flow rate or substrate treatment therefore cannot be generalized without an improved understanding of how specific processes are coupled. Future studies are needed in order to identify the mechanistic controls on process coupling and whether these additional controls satisfy or violate the assumptions underlying the mobile-immobile CTRW model (e.g., Aubeneau et al., 2015).

4. Conclusions and Implications

The approach and results presented here demonstrate the relative importance of in-stream and hyporheic processes in determining overall NO$_3^-$-N demand by explicitly quantifying their influence on v_f (equation (5)). Results from controlled experiments in replicated experimental streams at ND-LEEF show that v_f was over 3× more sensitive to changes in benthic reaction rates than to changes in hyporheic zone reaction rates (based on modeled v_f over the range of best fit reaction rates). Coverage of filamentous algae was significantly correlated with experimentally measured v_f, which suggests that high NO$_3^-$-N removal from the water column was attributable to algal demand for inorganic N. Together, these results support previous findings that NO$_3^-$-N uptake in low-nutrient streams is closely linked to primary production (Hall & Tank, 2003; Kemp & Dodds, 2002; Mulholland et al., 2008) and that processes associated with hyporheic transformation, such as assimilation by hyporheic biofilms and microbially mediated denitrification, played a minor role in removing NO$_3^-$-N from the water column over hourly timescales. Future studies can build on these results through the use of 15N tracer additions that would allow short-term inorganic N removal to be partitioned into its contributing processes, such as assimilatory uptake into biomass, remineralization, denitrification, and longer-term hyporheic storage (Findlay et al., 2011; Hall et al., 2009; Mulholland et al., 2000; Tank et al., 2018).

A strength of the combined experimental and modeling approach used here is that it provides domain-specific insights into the general processes influencing solute uptake, while using similar methods to those established previously for experimental field studies (Tank et al., 2017). Model results can be used to identify where costly or time-intensive experimental efforts should be directed, such as local assays of benthic NO$_3^-$-N demand (Reisinger et al., 2016) versus detailed measures of NO$_3^-$-N transformation in the hyporheic zone (Harvey et al., 2013; Zarnetske et al., 2011). Insights gleaned from local measurements can also be linked directly to model parameters (Boano et al., 2007; Drummond et al., 2014; Roche et al., 2017), making the CTRW framework a valuable tool for assessing how local processes will impact nutrient removal and transformation at the reach scale.

Acknowledgments

Brett Peters and Nicole Gorman are gratefully acknowledged for assisting with field experiments and biofilm analysis in the lab. We also thank Marc Müller for assistance with the statistical analysis. This work was supported in part by the Biotechnology Risk Assessment Grants (BRAG) program from the U.S. Department of Agriculture, under award number (USDA 2016-33522-25629). K. R. R. and D. B. also gratefully acknowledge funding support from NSF via grants EAR-1351625 and CBET-1705770. We acknowledge two anonymous reviewers for helping us substantially improve the quality of this manuscript. See supporting information for a detailed description of the CTRW model derivation, plots of all experimental BTCs, and uncertainty analysis. Data and R scripts used for statistical analysis are accessible at https://doi.org/10.7274/R0XW4GW9.

References

ROCHE ET AL.

