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Abstract We propose a spatial Markov model to simulate transport in three-dimensional complex
porous media flows. Our methodology is inspired by the concept of training images from geostatistics.
Instead of using a training image we use highly resolved training trajectories obtained by high-resolution
particle tracking, from which we sample increments in our random walk model. To reflect higher-order
processes, subsequent increments are correlated. The approach can be split into three steps. First, we
subdivide (cut) the training trajectories to form an archive of trajectory segments. Next, we recursively
sample segments, where subsequent samples are chosen conditioned to the previous one to ensure
continuity and smoothness of velocity (conditional copy). Finally, we merge (paste) consecutive segments
together to generate simulated trajectories of arbitrary length. This training trajectory approach aims to
overcome three common shortcomings of spatial Markov models: (1) We simulate finite-Péclet transport
in three dimensions without commonly made simplifications (e.g., dimensionality reduction, and
neglecting diffusion). (2) We do not parameterize dependence via a high-dimensional transition matrix. (3)
We simulate transport at the resolution of the (highly resolved) training trajectories, which can be
important for processes such as mixing and reaction. To validate our methodology, we apply it to simulate
transport within a three-dimensional sandstone sample and compare predictions of a broad range of
benchmark metrics against measurements from direct numerical simulations. We demonstrate that the
training trajectories approach accurately represents three-dimensional particle motion, suggesting that
this method can capture the governing dependence structure and simulate transport processes in full
complexity.

1. Introduction
Non-Fickian or anomalous transport is very common in (fractured) porous media (e.g., Berkowitz et al.,
2002, 2006; Bijeljic et al., 2004, 2013; Bolster & Dentz, 2012; Bolster et al., 2014; Dentz & Berkowitz, 2003;
Dentz et al., 2016; Lester et al., 2013, 2016). Typically, it manifests itself as the nonlinear scaling of the second
centered spatial moment of a plume and the associated anomalously early and late arrival times of solute that
cannot be described by an independent normal (Gaussian) process with drift. Capturing such anomalous
arrival times is important, for instance, for technical applications to ensure secure groundwater supply (e.g.,
Harvey et al., 2002) or in the field of water and health risk assessment (e.g., de Barros et al., 2013).

In advectively dominated transport settings, spatial velocity contrasts control the spreading of a particle
plume (Le Borgne et al., 2008a) and local velocities control particle residence times within slow or fast zones
(Dentz et al., 2016). Within these zones, a Lagrangian particle's velocity fluctuation is small compared to the
total velocity variation of the entire velocity field (Bolster et al., 2014; De Anna et al., 2013; Dentz et al., 2016;
Le Borgne et al., 2008b). We can interpret this piecewise constant velocity v as memory of speed that persists
over some characteristic correlation length 𝜆v. Likewise, the direction 𝛼 of a particle's motion persists (mem-
ory of direction) over a characteristic correlation length 𝜆

𝜶
. Both these correlation lengths are specific to a

given medium, reflecting details of the pore-scale geometry, which ultimately controls particle flow paths.
Such memory effects prohibit the assumption that particle motion is a stochastically independent process,
an assumption inherent to classical Fickian transport laws, as well as many state-of-the-art non-Fickian
ones. Ideally, upscaled models should account for the influence of memory of speed and direction (Most et al.,
2016; Meyer et al., 2013; Meyer & Bijeljic, 2016).
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In Meyer et al. (2013) and Meyer and Bijeljic (2016) the effect of memory of speed and direction is captured
without explicitly mimicking process memory. Transport is simulated by generating an ensemble of parti-
cle trajectories.The trajectories are generated by separating particle motion into a velocity and two angle
processes (spherical coordinates), where the latter follows an Ornstein-Uhlenbeck process that controls the
smoothness of the trajectory. The processes and their interplay are parameterized with a set of parameters
that can be understood as the transport fingerprint. The mentioned studies are successfully applied to a vari-
ety of artificial and natural porous media. In this study we also propose a trajectory-based method but follow
a different approach in merging them to preserve memory of speed and direction. Lester et al. (2013, 2016)
highlight the importance of process memory, which results from advective-diffusive particle motion in com-
plex porous media. Chaotic advection is strongly linked with memory of speed (i.e., the trapping of particles
in stagnation points) and controls non-Fickian dilution and mixing processes. Our approach reflects chaotic
advection up to the extent to which it is represented by the reference simulation. However, our approach
here is fundamentally different from that of Lester et al. (2016), who proposed a stretching continuous time
random walk.

To this end, we propose a data-driven Lagrangian approach to simulate non-Fickian transport in realistic
porous media. We apply the method to the pore scale.

Spatial Markov models (SMMs; Bolster & Dentz, 2012; Kang et al., 2014; Sund et al., 2016) are a family of
models that represent memory of speed and direction through the use of a transition matrix. While these
models have been applied to a broad range of systems (e.g., Bolster et al., 2014; Kang et al., 2014, 2015a,
2016; Le Borgne et al., 2008b, 2008a; Sund et al., 2015b, 2015a, 2017b, 2017a), they typically rely on param-
eterizing a transition matrix, which can be difficult to do, although approaches applicable to real data have
emerged recently (Kang et al., 2015a; Sherman et al., 2017). Another approach has involved sampling of
particle trajectories (Sund et al., 2017b), which in turn can be used for mixed upscaling and downscaling
models. These models can estimate nonlinear measures such as the dilution index or scalar dissipation and
even predict mixing-driven reactions (Sund et al., 2017a). However, such applications are to date limited to
synthetic and idealized periodic systems.

Translating such approaches to more realistic and complex geologies and geometries will be key to their
future success. Here we propose a trajectory-based method to model transport and mixing in a realistic com-
plex porous medium. Our method is largely inspired by ideas relating to training images, considered state
of the art in the field of geostatistics (Hu et al., 2016). Training images extend the classical representation
of spatial dependence beyond (linear) correlation and are capable of reflecting highly complex structures
(Wen & Gómez-Hernández, 1996). Training images are chosen such that they contain all relevant informa-
tion about the spatial dependence one wishes to impose. Then they are cut, copied, and pasted in a suitable
random fashion to simulate realizations of random space functions.

In this study, instead of using an actual image, we replace the idea of a training image with an archive of
fine-scale particle trajectories that contain all information about memory of speed and direction. These tra-
jectories are obtained from highly resolved direct numerical simulations in a small sample of the medium of
interest. The key idea to this approach is to randomly sample, cut, and then suitably rearrange segments of
these trajectories to construct larger-scale random trajectories that naturally reflect the required dependence
structure. We assume that all aspects of dependence are contained in the trajectories, and an appropriate
rearrangement of trajectory segments reveals trajectories that resemble the original dependence structure.
The ensemble of such trajectories represents the transport process. Unlike other SMM approaches, we no
longer require a transition matrix. The manner in which we cut, copy, and paste the trajectories is concep-
tually similar to how training images are used to generate spatial random fields, and therefore, we call our
method the training trajectory approach (TTA).

Continuous time random walk (CTRW) models are widely and often implemented to model anomalous
transport processes in porous media (e.g., Berkowitz & Scher, 1998; Berkowitz, 2002; Bijeljic & Blunt,
2006; Dentz et al., 2004; Lester et al., 2016; Nœtinger & Estebenet, 2000). As most often classically imple-
mented, a particle adopts a random transit time for a random particle displacement in each simulation
step, where both—the transit times and the displacements—are modeled as an independent stochastic pro-
cess (Berkowitz et al., 2006; Sokolov, 2012). For this to be representative of heterogeneous systems, each
spatial displacement must be larger than the length scales over which velocities or transit times are statisti-
cally dependent (e.g., correlated). However, for the independence assumption to hold, the spatial resolution
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of CTRW-based transport simulations is limited (from below) by a spatial scale defined by a correlation
length 𝜆ind (Berkowitz et al., 2006; Bolster & Dentz, 2012; Bolster et al., 2014; Le Borgne et al., 2011; Schumer
et al., 2001; Sund et al., 2017b). It is important to note that the representation of transport as a CTRW does
not mean at all that correlation is neglected. CTRWs reflect process dependence below the scales defined
as 𝜆ind in the appropriate choice of the transit time functions for a particle to leave a state. Yet, in many
instances, the scale 𝜆ind exceeds scales we are interested in, so that we cannot meaningfully use an uncor-
related model (Cushman & O'Malley, 2015; Schumer et al., 2001). One can overcome such restrictions by
incorporating dependence, for example, a SMM in which the subsequent transit time depends on the current
one (Bolster & Dentz, 2012; Kang et al., 2014; Sund et al., 2016). Even though SMMs refine spatial reso-
lution, there are still limitations on the smallest possible scale of which they are valid. Advective-diffusive
transport in porous media follows as a Gauss-Markov process (with drift), which is characterized by an
autocorrelation that decays exponentially (Doob, 1942; Sund et al., 2016; Wang & Stock, 1992) and hence
the resolution of an SMM cannot be finer than one over which this holds. Another challenge with SMMs is
parameterization of the transition matrix that describes dependence. To thoroughly describe the governing
statistics of a three-dimensional transport problem, one must parameterize a nine-dimensional transition
matrix to represent transitions in all Cartesian directions (e.g., x-x, x-y, x-z, y-x … ; Most et al., 2016). This
is not trivial and, in most applications, the transport process is simplified, for example, by reduced dimen-
sions (e.g., Le Borgne et al., 2008b) or diffusion is neglected (e.g., De Anna et al., 2013). While pure diffusion
or pure advection simplifies modeling, the interplay between advection, diffusion and the complex pore
space induces a dependence into particle that goes beyond plain linear correlation. The complex param-
eterization of this transition matrix might be why, to date, spatial Markov models are seldom applied to
build effective three-dimensional models of finite-Péclet transport. As such, most applications to date are
of reduced dimensional order, typically one dimension aligned with the principle direction of flow. In this
case, parameterization of the transition matrix is substantially easier (while not trivial). However, we argue
that the ultimate goal should be the simulation of three-dimensional particle motion. For this we propose
an alternative parametrization of a SMM.

Our proposed training trajectories approach extends state-of-the-art SMMs as follows: (a) It is a model that
can simulate upscaled three-dimensional finite-Péclet transport, incorporating high-order process memory
of speed and direction. Upscaling usually refers to much larger averaging volumes (e.g., at the meter or even
at the kilometer scale) than used in this study, where the averaging length is 8 · 10−4m. In its current form,
the proposed method is not applicable to the simulation of transport problems at the aquifer scale. The
generalization of this proposed method to such large scales of practical interest requires further work. (b)
Training trajectories do not require a high-dimensional transition matrix and (c) we can represent particle
motion at scales below the validity scale of spatial Markov models as we use a segment of a real trajec-
tory to describe the particle path between states instead of a linear interpolation (the average location) as
used in other SMMs. This last point is relevant for phenomena that are driven by details at small scales,
such as dilution (Kitanidis, 1994), mixing (Le Borgne et al., 2010), and mixing-limited reaction kinetics
(Sund et al., 2017a). An accurate representation of such small-scale processes requires more than just the
average location of a particle as they are nonlinear quantities and must be able to resolve subscale variability
in concentrations accurately. (see Figure 2).

Therefore, we will test the performance of our approach not only against metrics that depend on mean
concentrations or one-particle statistics such as arrival time distributions (e.g., breakthrough curves) but
also against higher-order nonlinear metrics such as the dilution index (Kitanidis, 1994). We also ana-
lyze particle-pair statistics, for example, the temporal evolution of the separation distance of particle-pairs
conditioned on their initial separation.

In the next section we give a detailed description of the proposed training trajectories approach. Then, we
briefly describe the direct numerical simulation (DNS) at the pore scale from which we obtain the training
trajectories and which we use as the reference simulation for testing of our proposed approach. We proceed
with the results and discuss comparisons of the one-particle and particle-pair statistics. Finally, we draw
conclusions.

MOST ET AL. 3467



Water Resources Research 10.1029/2018WR023552

Figure 1. Resampled trajectory: The red diamonds subdivide the full trajectory into trajectory segments of length 𝜆v.
The magnified area focuses on the intersection between two segments which is smooth in speed and direction. The red
dotted lines on the ground indicate spatial intervals of length 𝜆v.

2. The Training Trajectory Approach
Advances in digital rock physics together with DNS of pore-scale flow and transport in porous media can
simulate highly realistic particle trajectories (Bijeljic et al., 2011; Mostaghimi et al., 2012; Pereira Nunes
et al., 2015). The details of the DNS are outlined in section 3 but, to summarize, we have to conduct thee
major steps to produce trajectories: (i) discretize the pore geometry obtained from micro CT-imaging, (ii)
solve the Navier-Stokes equations to obtain the flow field, and (iii) run a particle tracking random walk
simulation. By tracking particle positions over time, we build what we refer to as our training trajectories. Full
trajectories can then be divided into smaller trajectory segments of length 𝜆v (Figure 1). These segments are
then used to build a database (or archive) from which the increments within our SMM model are sampled.
The full training trajectories inherently contain the processes that form a “larger-scale” perspective. To take
advantage of this information, we propose an SMM that cuts, copies, and pastes segments of the training
trajectories in a manner that imposes continuity of velocity and direction, so that the resulting simulated
trajectories inherit relevant properties and statistics from the full DNS-based trajectories, resulting in an
effective model true to the small-scale physics.

A critical part of this model is the resampling approach (cut, conditional copy, and randomized paste) that
we propose. To avoid unphysical features at the intersections of trajectory segments (e.g., sharp edges and
infinite accelerations; see Figure 2, top) subsequent segments should be sampled conditional to the previ-
ous one, typically based on correlating consecutive velocities. This results in smoother transitions between
simulation steps (Figure 2, bottom). Doing this with average velocities per segment, however, would not yet
ensure total smoothness because the average velocity need not align with the velocity at the end of a spe-
cific segment. It is this final part of the segment that is important if we want to ensure physically realistic
continuity of trajectory segments that are pasted together. Here we propose a methodology that reflects this.

We can subdivide our simulation scheme in three major steps: cut, conditional copy, and paste. First, from
the full-length trajectories we cut out trajectory segments so that the series of appropriately merged seg-
ments can reflect the original process dependence (Figure 1 and more details given in section 2.1). Second,
we choose (conditional copy) the upcoming trajectory segment such that we avoid sharp transitions in speed
and direction between two segments (details in section 2.2). We ensure smooth transitions (i.e., smooth tran-
sitions in velocity and direction) by randomly selecting the upcoming segment (from the training trajectory
archive) conditioned on the Cartesian velocity triplet of the current segment end. Third, we append (paste)
the selected trajectory segment (details in section 2.3). We sequentially repeat this procedure many times
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Figure 2. (top) Unconditioned transition between trajectory segments results in a sharp transition in speed and
direction at the intersection (red dotted line). (bottom) Smooth transitions between trajectory segments generated by
the TTA.

to generate long trajectories. For the generation of an ensemble of full trajectories, we repeat the procedure
multiple times.

These three steps require us to identify two characteristic lengths to form a valid Markov process that gen-
erates physically reasonable trajectories: (a) the segment length 𝜆v and (b) the length of the segment end 𝜆

𝜶

that is relevant for the conditional random selection of the next segment (Figure 3).

2.1. Step 1. Cutting: Identifying the Relevant Scales
For a valid spatial Markov process two assumptions must hold: (1) The spatial correlation structure must
be statistically stationary and (2) the particles next to the velocity state depends solely on the current state
(Renner et al., 2001a, 2001b; Strumik & Macek, 2008; Sund et al., 2017b). In this study we follow the method-
ology of Sund et al. (2016) and define the scale over which these two assumptions are valid by making use
of a less commonly used metric—the autocorrelation K of the particles' velocity along the trajectory,

K( 𝑗, i) =
Cov

(
vi(𝜆), v𝑗(𝜆)

)√
Cov

(
vi(𝜆), vi(𝜆)

)
· Cov

(
v𝑗(𝜆), v𝑗(𝜆)

) (1)

where Cov
(

vi(𝜆), v𝑗(𝜆)
)

is the covariance of vi(𝜆) and vj(𝜆). vi(𝜆), and vj(𝜆) are the velocities averaged along
trajectory segments i and j with the length 𝜆. As we assume statistical stationarity, K( 𝑗, i) = K (|𝑗 − i|), all
possible pairs of segments separated by |j − i| · 𝜆 for |𝑗 − i| ∈ N along the full-length trajectories have the
same correlation. The velocity vi =

𝜆

𝜏i
with the transit time 𝜏 comes from the DNSs.

To make use of the autocorrelation as an indicator, we exploit that particle motion is a normal process con-
trolled by the local velocity and diffusivity. The spatial coordination of the velocity field defines the number
of simulation steps a particle stays within a certain velocity class. The autocorrelation of a particle's velocity
v(𝜆) is a function of the averaging length 𝜆. For very small 𝜆, we can observe an independent process (K ≈ 0)
for all i, 𝑗 ∈ N as particle motion on very small scales if dominated by diffusion. From there, the autocorre-
lation K increases with increasing 𝜆 as advection takes over process control and introduces memory into the
velocity process. For even larger 𝜆, the particle loses its memory and the particle motion can be considered
again as independent (K converges back to zero; Sund et al., 2016). For a certain intermediate 𝜆v, however,
advective-diffusive particle motion can be described as a Gauss-Markov process, if the autocorrelation K(𝜆)
decays exponentially (Doob, 1942; Sund et al., 2016; Wang & Stock, 1992), and hence, the resolution of a

MOST ET AL. 3469



Water Resources Research 10.1029/2018WR023552

Figure 3. (top) Trajectory segment of length 𝜆v over which the velocity process forms a spatial Markov process.
Subsegment length 𝜆

𝜶
is the scale over which the component-wise velocity correlation is maximal. (middle) Sketch of

the merging procedure between trajectory segments. At the juncture of two segments, we always exchange the first part
(𝜆𝛼) of the next segment with the last part (𝜆𝛼) of the current segment. This ensures smoothness. The merging of all
other trajectory segments (e.g., the gray trajectories) occurs in the same spatial intervals (I = [n · (𝜆v − 𝜆

𝜶
)n · 𝜆v]).

(bottom) Three trajectories evolving from the very same initial trajectory segment to show that the TTA does not simply
copy the original trajectory based on the chosen initial segment.

spatial Markov process cannot be finer than one over which this holds. A Gauss-Markov process can be
expressed as an autoregressive model with a one-step memory (AR(1)) in which the noise term is Gaus-
sian. Hence, to express the velocity process as an AR(1), we require the autocorrelation function K between
velocities averaged over a distance 𝜆 and separated by a distance |j − i| · 𝜆 to be exponential, such that

K( 𝑗, i)|𝜆 = K (|𝑗 − i|) |𝜆 = exp
(

a𝜆|𝑗 − i|) (2)

where a𝜆 ∈ R− can be related to the second largest eigenvalue of the (doubly stochastic) transition matrix
T (|𝑗 − i|). This eigenvalue describes the convergence of T toward the uniform stationary matrix (Kang
et al., 2015a, 2015b). Parameter a𝜆 therefore uniquely parameterizes the transition matrix of the underlying
Gauss-Markov process.

Now we need to relate K(i, j)|𝜆 to K
(
𝜆v
) |1,2 in order to define the scale 𝜆v over which we obtain the valid

spatial Markov process. While K(i, j)|𝜆 is the velocity autocorrelation in the proper sense, K(𝜆)|1,2 is simply
the velocity correlation between two adjacent trajectory segments of averaging length 𝜆, but it is calculated
the same way (see (1)). Sund et al. (2016) provide this link by analyzing K

(
𝜆v
) |1,2 as a function of multi-

ples of (a small) 𝜆. They found that a𝜆 is in R− and therefore parameterizes the transition matrix T only if
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Figure 4. Evolution of the autocorrelation over space in longitudinal direction. The blue dashed line indicates the
highest correlation and hence defines 𝜆

𝜶
. The red dashed line lies in the range in which K(𝜆)|1,2 decays monotonically

with a positive second derivative and indicates our choice of 𝜆v. The full length of the trajectories is 2.69 mm and the
𝜆v lies between 1 and 2 typical grain sizes.

K
(
𝜆v
) |1,2 decreases monotonically and with a positive second derivative. Hence, a valid 𝜆v must be chosen

from the range over which the shape of the correlation function K
(
𝜆v
) |1,2 is concave, as here the correla-

tion function decreases monotonically and with a positive second derivative (see Figure 4). These are the
fundamental requirements that we are subject to when selecting the averaging length 𝜆v. The choice of 𝜆v is
not unique and the model accuracy, predominately regarding the late time behavior of the particle plume,
appears to improve with larger 𝜆v. This effect of an increasing averaging length 𝜆v is shown in the support-
ing information and a more detailed discussion of how the choice of 𝜆v affects the overall simulation results
is given in section 4.1.

2.2. Step 2. Conditional Copy: Identifying the Transition Probabilities Between Segments
A second characteristic length 𝜆𝛼 is essential to determine the transition probabilities between consecutive
trajectory segments in our SMM approach. Under advective influence, particle trajectories become smooth
in direction and velocity after a scale smaller than 𝜆v. This is the scale, 𝜆

𝜶
, at which the Péclet number

indicates that advection dominates over diffusion, but well before larger-scale dispersion becomes relevant.
We identify this scale by determining the peak of the autocorrelation function in (1) (Sund et al., 2017b).
We ensure smooth transitions in direction and velocity by merging trajectory segments only if the Cartesian
velocities at the contact faces are similar in velocity and direction over that scale. Therefore, we average the
velocities v̄𝛂 ∈ Rd×1 component wise (x, y, and z directions; d = 3) over each segment end and beginning
over length 𝜆𝛼 . Note, the averaging length 𝜆𝛼 in the main flow direction is a constant, and as a result the
respective time (𝜏

𝜶
) over which we average varies for each subsegment we analyze.

Process memory is induced by advection, as diffusion is a fully memoryless process. Therefore, we store
only the advective components sl

A of the trajectory start segments (averaged over length 𝜆
𝜶

) in an archive
with l = 1…narc entries. As mentioned before, we ensure smoothness by merging segments with similar
Cartesian velocities v̄𝛂 (s).

Hence, the transition probability p(sl
A|sAD) of appending trajectory segments with start ss

A must be propor-
tional to the similarity between the velocity triplet of the current advective-diffusive subsegment sAD and
all candidate subsegments sl

A. Here, similarity will be defined based on the tolerance introduced by diffu-
sion within the time it takes advection to cover the distance 𝜆𝛼 . An example for a low-transition probability
p(sl

A|sAD) can be found in Figure 2 (top). The velocities averaged over 𝜆𝛼 at the left (sAD) and the right (sl
A) of
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the red-dotted line results in two vectors that point in very different directions. The same averaging applied
to another potential upcoming trajectory segment shown in Figure 2 (bottom) results in two vectors that
point much more in the same direction which indicates a much higher transition probability p(sl

A|sAD).

To define the transition probability p(sl
A|sAD) based on the physics of our system, we must quantify the

likelihood that the discrepancy between purely advective velocities in sa and advective-diffusive velocities
sAD comes from diffusion alone which acts for a certain amount of time 𝜏𝛂 = 𝜆𝛂

v̄𝛂
a particle needs to pass

𝜆
𝜶

. We quantify this likelihood by exploiting that molecular diffusion follows a Gaussian process. Hence,
we can quantify the likelihood of diffusion being the cause for the velocity discrepancies via the expression
of the Gaussain likelihood:

p
(

sAD|sl
A
)
=
(
2𝜋𝜎2)− d

2 · exp

(
− 1

2𝜎2

d∑
i=1

(
sAD,i − sl

A,i

)2
)

(3)

where 𝜎(𝜏𝛂) = d
2

Dm𝜏𝛂 describes the standard deviation of diffusive particle displacement in three
dimensions (d = 3) over a time 𝜏

𝜶
(Einstein, 1905).

We derive the transition probabilities p
(

sl
A|sAD

)
between the current segment sAD and all candidate

segments sl
A by applying Bayes rule

p
(

sl
A|sAD

)
∝ p

(
sAD|sl

A
)
· p

(
sl

A
)

(4)

where p
(

sl
A

)
is the prior probability of sl

A being the best-fitting upcoming trajectory segment. Here, sl
A is

the candidate segment (of length 𝜆v) defined by the lth purely advective (subscript A) velocity triplet in the
archive where l ∈ (1,narc). sAD is the start of the current segment that contains advection and diffusion
indicated by the subscripted AD. With this expression, we condition all potential upcoming segments on the
last part (of length 𝜆𝛼) of segment sAD. The prior probability p

(
sl

A

)
is uniformly distributed over the archive

as, before relating sAD to sl
A, all candidate subsegments from the training trajectory archive are equally likely.

As a consequence and without loss of generality, we can erase p
(

sl
A

)
from equation (4).

Altogether, we determine the transition probabilities of our spatial Markov process by applying Bayes rule
together with the likelihood of a normal process. The transition procedure between consecutive trajectory
segments can be understood as a classical conditional sampling in which the upcoming segment is drawn
conditional to the velocity observed in the end part of the current trajectory segment (i.e., one-step memory).
This random conditional sampling ensures that we do not simply copy trajectories starting from the initial
trajectory segment as we show in Figure 3 (bottom).

2.3. Step 3. Paste: Generating the Simulated Trajectories
In the remaining step, we merge the trajectory segments. Here, we exchange the first part (𝜆𝛼) of the next
segment with the last part (𝜆𝛼) of the current segment (Figure 3). By doing so, we generate smooth trajec-
tories that inherently encode the full memory of speed and direction of the underlying pore-scale transport
process.

3. Obtaining the Training Trajectories by Direct Numerical Simulation
To demonstrate our approach, a DNS of flow and transport through a sample of Doddington sandstone
provides the necessary archive of training trajectories and also acts as a benchmark. The DNS incorporates
detailed information about pore geometry obtained from high-resolution X-ray tomography (Bijeljic et al.,
2013). The resulting 3-D image of the sample comprises 1,000 spatial voxels along each Cartesian coordinate.
The voxel length of dvoxel = 2.6929 · 10−6 m results in a total of 109 voxels, and in a total image length of
2.6929 ·10−3m in each direction. The porosity of the sample is 𝜙 = 0.195 (Alhashmi et al., 2016). Each voxel
becomes a grid block in the flow simulation, where we solve the Navier-Stokes equations for incompressible
flow as described in Raeini et al. (2012) and Bijeljic et al. (2013).

Next, we simulate transport with a random walk method (Bijeljic et al., 2011), tracking advective and dif-
fusive particle displacements with constant time steps Δt = 1 · 10−4s. Particle positions are updated as

X(t + Δt) = X(t) + ΔXadv + ΔXdiff. (5)
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In each time step, particles are moved advectively by displacementΔXadv along streamlines using a modified
Pollock algorithm (Pereira Nunes et al., 2015). This is followed by a diffusive step ΔXdiff =

√
24DmΔt(R −

0.5) with Dm = 2.2 · 10−9 m2

s
as the molecular diffusion coefficient and R a uniformly distributed random

number. We assume that this is sufficiently accurate to neglect discretization error, which has been validated
in previous studies (Bijeljic et al., 2004; Mostaghimi et al., 2012).

The transport regime we work with is characterized by the Péclet number Pe = uav ·L
Dm

with characteristic
length L = 200.18 · 10−6m given by the grain size (Alhashmi et al., 2016; Mostaghimi et al., 2012). For the
reference transport simulation at Pe = 100, we set the volume averaged velocity to uav = 1.09896·10−3 m

s
. We

simulate 1,000 particles, following them until they exit the downstream image face. We inject the particles
flux-weighted into the 30th image voxel layer to avoid backward directed diffusion across the upstream
image face. A more detailed description of the flow and transport simulation is given in Most et al. (2016).

4. Results and Discussion
4.1. Velocity Autocorrelation
First, we determine the characteristic length 𝜆v, the length (in the main flow direction) over which we have
to average the velocities along the trajectories so that the autocorrelation K( 𝑗, i)|𝜆v

decays exponentially. The
measured correlation as a function of increasing averaging lengths 𝜆 for Pe = 100 is shown in Figure 4. For
K( 𝑗, i)|𝜆v

to decay exponentially, the velocity correlation K(𝜆)|1,2 between two adjacent trajectory segments
averaged over 𝜆 at least has to decay monotonically with a positive second derivative (see section 2.1 or Sund
et al., 2016). The correlation function K(𝜆) appears to start being convex (K′ ′ (𝜆) > 0) at 𝜆 ≥ 6 · 10−5m and
is clearly convex at 𝜆v = 8 · 10−5m which represents 3% of the total sample length. We keep 𝜆v as small as
possible in order to merge as many trajectory segments as possible (roughly 34).

Second, we determine the characteristic length 𝜆
𝜶

, required to ensure smooth transitions (see 2.2) by identi-
fying the interval over which the autocorrelation is maximum; here 𝜆𝛼 = 1.6 · 10−5m. This represents 0.6%
of the total sample length. Given these values we can now run our proposed training trajectory model.

In our advectively dominated scenario (Pe = 100), diffusion is the reason why we have a peak in the auto-
correlation function at 𝜆𝛼 . The location of the peak 𝜆𝛼 and of the inflection point 𝜆v (of K′ ′ (𝜆)|1,2) move in
positive direction with increasing influence of diffusion. Therefore, the characteristic lengths 𝜆𝛼 and 𝜆v are
shorter when derived from an in-average faster trajectory than when derived from a slow trajectory where
diffusion has more time to act. Note, we derive 𝜆𝛼 and 𝜆v by averaging over all trajectories, and for this
reason we potentially underestimate characteristic lengths for “slow” trajectories. In the supporting infor-
mation, we show that a larger 𝜆v improves the accuracy of the late time arrivals. A larger 𝜆v better captures
the influence of the diffusively dominated slow trajectories, while the influence of advectively dominated
fast trajectories is already captured within the smaller 𝜆v.

Next we describe and compare several benchmark metrics to test and validate our proposed modeling
approach.

4.2. Breakthrough Curves
We simulate the arrival time statistics at three control planes for a Péclet = 100 transport process. Break-
through curves (BTCs) are measured at downstream distances corresponding to 30%, 60%, and 100% of the
total simulation domain. For testing, we use 5,000 trajectories generated by the proposed training trajec-
tory approach. For comparison, we produce 5,000 trajectories for which we select the consecutive trajectory
segments randomly (unconditional sampling) from the archive of trajectory segments. The BTCs predicted
by the training trajectories and by the DNS-based reference solution (1,000 trajectories) show good agree-
ment at all three control planes (Figure 5). There are no major deviations between model and benchmark in
either early or late arrivals, which are typically the aspects where strong non-Fickian transport signatures
emerge, which are often the hardest to capture. The predicted BTCs deviate, as might be expected, from the
benchmark when we select consecutive trajectory segments unconditionally.

To accurately predict arrival times at control planes in the longitudinal direction, our model has to reflect
typical residence times in low-velocity (leads to tailing) and high-velocity zones (leads to early arrivals).
Memory of speed is nothing other than these typical residence times that we aim to mimic. Hence, our BTC
results indicate that we are realistically representing memory of speed with our training trajectory approach.
The comparison between the conditional and unconditional TTA predictions versus the benchmark clearly
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Figure 5. Comparison of the arrival time densities between the reference simulation (DNS, direct numerical
simulation) and our training trajectories approach (TTA) at three control planes at 30%, 60%, and 100% of the
simulation domain (≈2.7 mm).

suggest that the spatial Markov approach (i.e., conditional sampling) is the key step that introduces the
required process memory to reflect the characteristic residence times in low- or high-velocity zones.

Even if the agreement of the arrival times is very good, we slightly underestimate the late-time arrivals. This
is presumably an effect of underestimating 𝜆𝛼 , but especially 𝜆v, for the “slow” trajectories (see section 4.1)
which control the late time behavior of the particle plume. To test this hypothesis we increase 𝜆v by a factor
of 3 and 6 (constant 𝜆𝛼), which clearly improves the match, particularly in the late time behaviors (see the
supporting information). This suggests that perhaps 𝜆𝛼 and 𝜆v should not be derived from averaging over
all trajectories but rather accounting for the slow ones in particular.

4.3. The Dilution Index
Matching BTCs indicate that the model does a good job of representing particle motion in direction of mean
flow. Yet it tells us nothing about the ability of the model to upscale more complex nonlinear behaviors that
depend on the full three-dimensional nature of the particle plume. We will now further test the TTA's ability
to accurately model such behaviors.

To this end, we will compare the evolution of the dilution index (Kitanidis, 1994) over time as measured
from the DNS and predicted by the TTA. The dilution index is a metric that describes how dilute a plume is,
or in other words measures the total volume occupied. It is based on the concept of entropy that classically
describes the disorder in a system. Dilution is controlled by spreading and mixing, both of which are tightly
coupled (Le Borgne et al., 2010). We estimate the dilution index in discrete form. That means, we perform
a histogram-type analysis where we count the number of particles in each cubic bin of 103 voxels which
relates to a typical pore size. For the histogram-type estimation, the dilution index is defined as

E = ΔV · exp

(
−

r∑
k=1

Pk · ln
(

Pk
))

(6)

where ΔV is the volume of a voxel and Pk is the fraction of particles in histogram bin k divided by the total
number of particles. The dilution index is an excellent metric for testing the veracity of effective modeling
approaches as it is highly sensitive to the full-dimensional nature of the plume and subtly reflects the com-
plex interplays between spreading and mixing (Kitanidis, 1994), which most effective modeling approaches
fail to capture.
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Figure 6. Temporal evolution of the dilution index derived by the reference simulation (DNS, direct numerical
simulation) and our training trajectories approach (TTA).

In Figure 6 we plot the temporal evolution of the dilution index based on the TTA predictions, on its uncon-
ditioned counterpart, and on the DNS reference. In general, again, the agreement between the TTA and the
DNS reference is close while we see clear a deviation when we merge trajectory segments unconditionally.

However, the agreement between TTA and DNS for this benchmark is less good than for the BTCs. The
reason is that, in contrast to the DNS, the TTA does not account for reflection at no-flow boundaries and
the accessible space (number of bins) for particles is therefore unconstrained. Also, the dilution index is a
nonlinear measure that is very sensitive to low concentrations (Pk enters equation (6) with ln(Pk)). Therefore,
minor deviations between TTA- and DNS-based particle motion already lead to visible deviations in the
dilution index. Again, as for the BTCs, the agreement is better for larger 𝜆v.

In Figure 6, the dilution index decreases after approximately 0.7 s. This seemingly unphysical behavior (reap-
pearance of order) comes from particles that exit the simulation domain and are thus removed from the
system. However, the fact that DNS and TTA, especially for larger 𝜆v where the Gauss-Markov assumption
also holds for slow particles, show this behavior in a very similar way. This fact still demonstrates the verac-
ity of the TTA approach and suggests that we capture the desired memory processes also in three dimensions
where particle motion is controlled by memory of speed and direction plus diffusion. Again, our results
indicate that conditional sampling is significant to correctly incorporate memory of speed and memory of
direction, necessary to accurately predict full three-dimensional transport processes.

4.4. Particle Pair Statistics
Both BTCs and the dilution index are measures derived from the evolution of an ensemble of individual
particles. Next, we look at the interaction between particles by analyzing the separation distance of two
particles (i.e., particle pairs). This particle pair perspective of transport is important because it provides
insights on how particles diverge and converge, which can play an important role in understanding mixing
and reaction processes. Additionally, it is a further and robust test of our approach to capture nontrivial
dynamics that go beyond just predicting mean behaviors.

Our key analysis metric is the probability density function p(st|s0) of the Euclidean separation distance st

(at discrete time steps t) conditioned on the initial separation distances s0. In the following, we will refer to
p(st|s0) as the fingerprint of dilution. In Figure 7a, we plot an example of this metric for an individual particle
separation of 1.0 mm < s0 < 1.1 mm. Each cross section orthogonal to the time axis (e.g., white dashed
lines at t = 0.05, t = 0.1, and t = 0.7 s) represents a separation density p(st|s0) of particle pairs at these
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Figure 7. In general, the filled symbols represent the results for the training trajectories approach and the outlined
symbol represent the results from the DNS. (a) Fingerprint of mixing: This figure shows the temporal evolution of
separation distance density function p(st|s0) of particle pairs conditioned on an initial separation of s0 ≈1.1 mm.
(b) Pair-wise separation-distance density p(st|s0) with initial separation s0 ≈ 1.1 mm at three different points in time.
(c) Entropy over time as a measure for similarity between reference separation-distance density and the according pdf
derived from the training trajectories. (d) Reaction potential over time given an initial pair-wise separation distance.

points in time. The horizontal line indicates the distance (sreac) below which we assume potential reaction
of particles, chosen as half of a typical pore size (0.13 mm) for our sample (Edery et al., 2014).

Figures 7b–7d highlights three important measures related to the fingerprint of dilution, comparing results
measured from DNS to predictions made by the TTA. These three metrics are as follows:

1. The separation distance densities p(st|s0) shown at three different times for an initial separation distance
1 mm < s0 < 1.1 mm, which as noted correspond to the white vertical lines in Figure 7a.

2. The evolution of entropy H(s) = −
∑d

i=1 p(st|s0) · log2p(st|s0) over time for three initial separation distances
s0 ≈ 0.1, s0 ≈ 1.1, and s0 ≈ 2.2 mm. We choose these relatively small and large separations to span a broad
range of relevant separation distances.
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3. The reaction probability defined here as the waiting time distribution of initially separated particles to
fall below a fixed distance (here sreac = 0.13 mm, as discussed above. Results are shown for three initial
separation distances s0 ≈ 0.5, s0 ≈ 1.1, and s0 ≈ 1.6 mm.

Across all three metrics, the agreement between measurements from DNS simulations and predictions with
the TTA are excellent, further solidifying the veracity of our proposed TTA, and suggesting that the TTA is
capable of accurately simulating the rich dynamics of 3-D particle motion in a complex porous medium flow.

Specifically, the agreement with the separation distance density suggests that the TTA captures charac-
teristic convergence and divergence (i.e., interaction) mechanisms of particles. The agreement on entropy
suggests that characteristic diverging and converging mechanisms of particle pairs are not only well cap-
tured but also associated with mixing dynamics. The results here also suggest that the TTA captures the
complex interaction of particles independent of the initial condition, given the broad range of initial sepa-
ration distances. Reactions are strongly dictated by how close reacting particles can get, and the probability
of reaction increases dramatically when particle distances fall below a given threshold (Edery et al., 2010;
Paster et al., 2014). The agreement here between DNS and TTA suggests that the TTA may be well suited to
modeling not only conservative transport but also reactive transport processes as well. This it may be cou-
pled with reactive random walk approaches (e.g., Benson & Meerschaert, 2008; Bolster et al., 2016; Edery
et al., 2010; Engdahl et al., 2017).

4.5. Challenges and Opportunities
All of the tests that we performed against our benchmarks demonstrate good agreement between TTA pre-
dictions and reference DNS measurements, suggesting promise for the TTA approach. However, the way
we parameterize the proposed spatial Markov process, while novel, is certainly not comprehensive and still
necessitates further work. In our view, remaining research questions for TTA are as follows:

Data Requirements. The approach as we have implemented it has been quite a demanding computational
expense. It requires high-resolution simulation of flow and transport for the DNS simulation from which
the trajectories are extracted. While the ultimate goal is to expend this computational cost to simulate
transport in a single representative elementary volume to achieve upscaling over scales much larger than
this, any ability to reduce computational demands at the representative elementary volume scale will be
essential. In the context of previous SMM advances, such gains have been made by more efficient numerical
models of small-scale processes (e.g., Sund et al., 2017b) or by using simplified analytical models (e.g.,
Dentz et al., 2016; Kang et al., 2016). At this stage we do not have a clear vision of what such approaches
might be for our TTA approach. However, we are hopeful that similar advances are possible here and
should be pursued in future research efforts.

Parameterization. We defined the scale over which we describe transport as a Gauss-Markov process by
the correlation between the velocities averaged over consecutive trajectory segments. As we do that for all
trajectories, the correlation function K(𝜆)1|2 we obtain reveals the peak location 𝜆𝛼 for an “average” trajec-
tory. The characteristic length scales 𝜆𝛼 and 𝜆v obtain like this, however, underestimate the lengths that
are required to obtain optimal simulation results, presumably due to the slowest trajectories in the sys-
tem. As shown, tripling this length scale leads to much better results. Thus, while our approach yields
a decent first estimate, an improved and rigorous approach for obtaining these length scales should
be sought.

Optimization. The conditional sampling procedure that finds the upcoming trajectory segment is cur-
rently computationally intensive and increases with the number of archive entries. Thus, it can become
a computational bottleneck in effectively implementing the method. This step, however, can be accel-
erated by implementing more efficient search algorithms, for example, a k–d tree supported search
algorithm that acts on equation (4). Currently, all trajectories have the same prior probability of being
the upcoming segment. This is inefficient as the velocity triplet of many candidates deviates strongly
from the current reference so that we could exclude them immediately before the conditional sampling
through a nonnaive efficient search. This could improve the search on average from being an O(n) to an
O(log n) operation.

Validation. In this study, we have used the same sample to generate the trajectories for TTA parameter-
ization and for the DNS validation. Admittedly, this makes the validation somewhat circular in nature,
although this is not uncommon for many transport models, particularly in their first implementation. We
openly admit that this is not ideal, but computational limitations restrict our efforts to go further. For now,
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we accept this compromise, but future efforts must go further. Ideally, if staying at small scales, we would
have two distinct sandstone samples (which are statistically similar) and use one to infer the trajectories
and the other to validate our simulation, for example, via tracer tests or another DNS. Similarly, to test the
true upscaling potential of this approach, it will be essential to use it to compare to larger-scale transport
experiments through larger sandstone samples of such column experiments (e.g., Sherman et al., 2018)
and ultimately field-scale data (e.g., Kang et al., 2016). For this purpose, however, we require a DNS refer-
ence performed on a sufficiently large rock sample to fill an archive that reflects the statistics of particle
motion thoroughly. Limited storage capacities, however, do not currently allow for this.

Sufficient Statistics. Similar to the previous comments, it will also be important to analyze what properties
(e.g., number, length, initial condition) characterize an ideal set of training trajectories? In the ergodic
limit, one very long trajectory should be sufficient to fill the archive. Most likely, the number of trajectories
is less important than their initial condition, especially when the domain is limited. It seems that, in our
case, 1,000 trajectories are sufficient. But a thorough convergence study will be necessary to better validate
this and identify potential error sources and uncertainties.

Generalization. Here, we have applied the TTA only to one 2.6 mm3 Doddington sandstone, and the result-
ing velocity field is subject to the real pore geometry. While we see no obvious reasons why the TTA cannot
be applied to other porous media than sandstones, for example, carbonates or unconsolidated media, this
remains to be truly validated.

Practical Use. If we can overcome some of the identified hurdles and validate the TTA across a diverse
range of complex flows, we believe that this approach holds great success in effectively and efficiently
predicting large-scale transport in complex porous media flows. In particular, the fact that the TTA can
provide a three-dimensional upscaled picture of transport is key to as many effective models of transport
are of reduced dimensionality, which can limit their ability to predict nonlinear processes without fur-
ther complex closures. This is relevant to better represent dilution or reaction process that occur at such
fine scales.

Conclusions
In this study we have proposed a trajectory-based spatial Markov approach to simulate three-dimensional
transport in porous media through a Doddington sandstone sample at Pe = 100. The proposed method
borrows ideas from state-of-the-art non-Fickian spatial Markov transport models and blends them with ideas
from the concepts of training images. Training images are commonly used in geostatistics and are known for
their ability to model highly complex spatial dependence structures that go well beyond linear correlation.
This feature is highly desirable in the context of upscaling pore-scale non-Fickian transport as this is often
tied to process dependence beyond linear correlation (De Anna et al., 2013).

Instead of a training image, for our proposed method we use highly resolved particle trajectories, obtained
from DNS of pore-scale transport. These trajectories inherently contain all relevant information about the
dependence structure of the velocity process at pore scales. The key idea is to subdivide particle trajectories
into trajectory segments (cut) and then sample these to build simulated trajectories. Key to our approach is
that we only allow subsequent segments to add to the previous ones in a way that ensures smooth transi-
tions of direction and speed at the intersections (conditional copy). By recursively merging (paste) trajectory
segments, we can generate trajectories of arbitrary length. This way, we can generate trajectories that reflect
the same dependence structure as the original trajectories. We use the trajectories to represent the depen-
dence structure of the velocity process in a similar manner that training images are used to represent spatial
dependence. Therefore, we call our method TTA.

With the TTA we aim to overcome three frequent drawbacks of other spatial Markov models:

1. We do not require simplifications that have often been invoked in other studies such as dimensionality
reduction or neglecting of diffusion.

2. We do not require an explicit parameterization of process dependence, that is, a high-dimensional transi-
tion matrix. We incorporate process dependence directly by a merging procedure that ensures transitions
are smooth in speed and direction.

3. We represent particle motion at the resolution of the training trajectory and hence can accurately make
inferences at scales smaller than other spatial Markov models.
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These benefits do come at a price as discussed in section 4.5, including in particular computational costs
both in parameterizing and implementing the models. However, as advances in the SMM from the original
work of Le Borgne et al. (2008a) have shown, we are hopeful that similar advances can be made to our TTA.

To test the TTA, we compared DNS measurements of a broad range of benchmark metrics against predic-
tions made with our proposed TTA. First, we analyzed statistics of a particle plume including arrival time
distributions and the temporal evolution of the dilution index. Additionally, we analyze a slew of particle
pair statistics based on the evolution of separation distances of particle pairs over time. In all cases, the
agreement between measurements and predictions was good, demonstrating the veracity of our TTA and
demonstrating that the TTA can accurately capture the fully dimensional nature of transport along with
the complex interplays between spreading and mixing dynamics. Based on our outcomes, we are confident
that our method can accurately model the complex three-dimensional dynamics of a particle plume and the
interaction between the particles within the plume. Given this, in future efforts it would be interesting to
extend the TTA beyond the milimeter scale, to other kinds of porous media and especially to simulate reac-
tive transport where it is known that upscaling efforts must be able to account for these complex dynamics
and interactions.
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