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Cation exchange in groundwater is one of the dominant surface reactions that occurs in nature and it car-
ries with it many important environmental implications. The mass transfer of cation exchanging pollu-
tants in groundwater can be described by a series of coupled partial differential equations, involving
both aqueous and adsorbed species. The resulting system is mathematically challenging due to the com-
plex nonlinearities that arise, which in turn complicates analytical approaches. While some analytical
solutions for simplified problems exist, these typically lack the mechanisms that allow the waters to
change their global chemical signature (in terms of total cations present in aqueous form) over time.
We propose a methodology to solve the problem of exchanging two homovalent cations by deriving
the driving equation for one of the aqueous species. This equation incorporates explicitly a retardation
factor and a decay term, both with parameters that can vary in space and time. While the full solution
can only be obtained numerically, we provide a solution in terms of a perturbative approach, where
the leading terms can be obtained explicitly. The resulting solution provides physical explanations for
the possible existence of non-monotonic concentrations for a range of parameters governing cation
exchange processes.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Many natural and artificial substances are characterized as being
electrically unbalanced. Thus, free charges (often negative) are sur-
rounded by cations in order to achieve neutrality. The links formed
between cations and minerals are relatively weak such that if other
cations exist the process of exchange can take place. The result is a
surface reaction. Cation binding and exchange plays a fundamental
role in a number of environmental and industrial applications,
including bacterial growth (Maurya and Subramaniam, 2007;
Shephard et al., 2008), refinement of fuel products (Bhattacharyya
et al., 2006), development of superconducting materials (Xing
et al., 2006), and elaboration of food products (protein separation),
among others. The cation-exchange capacity of different natural
and artificial materials can be used to remove undesired molecules
from water, such as dyes (Wu et al., 2008), enzymes (Turmanova
et al., 2005), etc. Applications of cation exchange to daily life
problems include household water softeners, where hard water
flows through a resin that exchanges ions Ca2þ and Mg2þ with Naþ.

Cation exchange processes occur naturally in groundwater
systems. Due to the presence of clay minerals aquifers can often
be regarded as weak cation exchangers. These minerals can act as
sorbants to major cations, which can then be exchanged with other
ll rights reserved.

r).
cations when water with a given chemical signature reaches the
aquifer. This has important implications in solute transport applica-
tions, including freshening of marine sediments (Walraevens et al.,
2007; Lambrakis, 2006), landfill leaching (Bjerg and Christensen,
1993), industrial pollution problems (Appelo et al., 1993), saltwater
intrusion problems (Carlyle et al., 2004; Bolster et al., 2007), or
artificial recharge and recovery (Bouwer, 2002; McNab et al., 2009).

A given aquifer may contain materials which have a strong nat-
ural tendency to exchange one ion for another. Naturally occurring
exchangers display different cation selectivities (Appelo, 1994b).
As a consequence, different cations have different retardation coef-
ficients, an effect that is used for chromatographic separation of
compounds in a given mixture (Cernik et al., 1994; Appelo,
1994a). When a number of cations are present in the solution,
transport of those cations is frequently observed as a series of re-
tarded fronts, each one clearly separable from the others (Timms
and Hendry, 2007). The conditions necessary for such fronts to de-
velop are analyzed in Appelo et al. (1993), among others. In prac-
tice, the values of actual retardation coefficients can be quite
large (e.g., Bjerg and Christensen (1993) observed fronts that trav-
eled 20 times slower than the flow speed).

To date, the governing equations for cation transport are usually
written as an extension of the advection–dispersion equation with
additional sink/source terms to account for the ion exchange pro-
cesses. This is then combined with a one-site cation-exchange
equation, which is derived independently from batch tests. While
this model often reproduces observed breakthrough curves (e.g.
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Schulin et al., 1989), it is also true that a better reproduction of ob-
served data can be obtained by using a multiple-site model (Vulava
et al., 2000, 2002). This is the case for certain cations such as Cs,
where one-site models never appear to faithfully reproduce data
(Steefel et al., 2003). One of the drawbacks of multi-site models
is that the resulting distributions of cation-exchange selectivities
are strictly empirical (Vulava et al., 2000).

In any case, the equations governing cation exchange in ground-
water are highly non-linear. Thus, solutions are usually sought by
numerical means, and a wide range of codes that include multi-
cation exchange processes are available. Conversely, a limited
number of published analytical solutions exist for such a complex
problem (and always introducing some restrictive simplifications).
An initial analytical solution was obtained for the purely advective
case (Harmsen and Bolt, 1982). Combined analytical–numerical
solutions exist and are based on the fact that all governing equa-
tions can be combined in terms of a single highly non-linear partial
differential equation (Valocchi et al., 1981; Lewis et al., 1987). Fol-
lowing Valocchi’s approach (Valocchi et al., 1981), Dou and Jin
(1996) used the method of characteristics with a special treatment
of shock waves to derive a closed-form solution for binary homo-
valent ion exchange and transport in a 1D infinite domain. Jin
and Ye, 1999 used a similar approach to derive an approximate
analytical solution for monovalent–divalent ion exchange trans-
port. In these last two works it is assumed that the displacing
and the displaced water have different chemical composition in
terms of aqueous concentrations of the two cations, but that the
sum of the two concentrations must be equal. While the solutions
provided in Dou and Jin (1996) and Jin and Ye (1999) are elegant
and useful, they lack the capacity to capture cases where an invad-
ing water has a different total sum of concentrations, which is not
unrealistic in practice. Thus in most cases the solution must be
sought numerically, in particular when the water entering in the
system changes in chemical composition with time.

In this work we use the component method to rederive the non-
linear governing equation for a homovalent problem where total
concentration of the aqueous species is allowed to vary in time.
This variation in time introduces an additional term in the driving
equation with respect to existing approaches, which renders the
system highly non-linear. In spite of that, under some simplifying
assumptions we present an approximate analytical solution that
can be obtained by means of a perturbation approach, which illus-
trates potential mass accumulation/decrease at the edge of a mov-
ing wave.
Table 1
Parameters considered for the sample case.

Parameter Value

K 0.2
CEC 1� 10�2 mmol=g
qb 1:8 g=cm3

/ 0.2
c 90 mmol/L
�u 10 mmol/L
C1i 0.02
C1f 0.01
C2i 0.73
C2f 1.24
z1 1
Binary problem formulation

Defining the problem in terms of a coupled system of equations

The problem we consider looks at the evolution of the concen-
tration of two cations in aqueous or adsorbed phases that can be
exchanged. We consider a groundwater system initially in chemi-
cal equilibrium between the rock matrix and the resident water.
The system is then invaded by another water containing a different
concentration of the exchanging cations. Thus, cation exchange
takes place locally to reequilibrate the system with the mixture
of existing and invading waters. Additionally, the invading water
can change its composition with time, to account for water coming
from a landfill or an industrial site, so that a final constant concen-
tration might not be reached at any point in space. The dominant
transport processes considered in this work are advection, disper-
sion and cation exchange, but additional processes could be in-
cluded in the formulation.

The problem may be expressed as a set of coupled equations
satisfied by the four dependent variables (two aqueous concentra-
tions and two adsorbed ones). The first two equations account for
mass balance of each dissolved cation.

@c1

@t
þ c

z1

@b1

@t
¼ �vrc1 þrðDrc1Þ; ð1Þ

@c2

@t
þ c

z2

@b2

@t
¼ �vrc2 þrðDrc2Þ; ð2Þ

where cj ðj ¼ 1;2Þ is the aqueous concentration of the jth dissolved
cation ½mmol L�3�; bj the (normalized) equivalent fraction of the jth
exchange cation ½��; zj the corresponding valence; v water velocity;
and D is the dispersion tensor. The second term on the left hand side
of (1) and (2) accounts for the exchange between the aqueous and
the adsorbed phase. The constant c is calculated from the cation-ex-
change capacity (CEC) ½mmol=M�, bulk density ðqb½ML�3�Þ, and
porosity ð/½��Þ, as

c ¼ CEC
qb

/
: ð3Þ

From these definitions, we can introduce the continuity
equation

b1 þ b2 ¼ 1: ð4Þ

In order to close the system we need a fourth equation relating
the aqueous and adsorbed concentrations. Here we adopt the
Gaines–Thomas model (Gaines and Thomas, 1953). Though con-
tested in some works (e.g., Carlyle et al., 2004), the Gaines–Thomas
convention is perhaps the most widely used in practical applica-
tions. Vulava et al. (2000) compare different cation exchange mod-
els and find that the Gaines–Thomas provides the best fit to
experimental data. The Gaines–Thomas equilibrium equation is gi-
ven by

K12 ¼
b1

c1

� �1=z1 c2

b2

� �1=z2

; ð5Þ

where K12 is an experimentally determined constant.

Decoupling the system of equations for the homovalent problem

The system of Eqs. (1)–(5) can be rewritten as a sequence of
decoupled equations. We start by defining a new quantity which
corresponds to the total amount of positive charges of exchange-
able cations present in aqueous form,

u ¼
X2

j¼1

zjcj: ð6Þ
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Combining (1), (2), and (4), this quantity (which in general var-
ies in space and time) is seen to be driven by a conservative ADE
equation
@u
@t
¼ �vruþrðDruÞ: ð7Þ

Using (5), (6) and (4) it is possible to write an explicit expres-
sion for b1 in terms of c1 and u. The actual expression, denoted het-
erovalent isotherm, depends on the values of zj (see e.g. Valocchi et
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Fig. 1. Spatial dependence of concentrations C1 and U for U0 ¼ 0:25 for the case in Table
T = 50. (–) Full numerical solution for C1. ð�Þ Perturbative solution (up to first order) for
al. (1981) and Jin and Ye (1999) for the monovalent–divalent case).
In the particular case of z1 ¼ z2; u is most conveniently defined as
u ¼ c1 þ c2. Further defining K ¼ Kz1

12 the homovalent isotherm
becomes

b1 ¼
Kc1

u� c1 þ Kc1
: ð8Þ

From (8) it follows that

@b1

@t
¼ @b1

@c1

@c1

@t
þ @b1

@u
@u
@t
; ð9aÞ
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1 at a series of fixed times. (a) T = 0.1, (b) T = 0.5, (c) T = 1, (d) T = 5, (e) T = 10, and (f)
C1ð��Þ zeroth order solution for C1 and (- - for U).
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Fig. 3. Breakthrough curves for case in Table 1 for U0 ¼ 0:25 at two distances X ¼ 1
(curves on the left) and X ¼ 10 (right). (–) Numerical solution, (- -) zeroth order
solution and (- -) perturbation solution.
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@b1

@c1
¼ Ku

ðu� c1 þ Kc1Þ2
; ð9bÞ

@b1

@u
¼ �Kc1

ðu� c1 þ Kc1Þ2
: ð9cÞ

Introducing (9a) into (1), we can write the governing PDE for c1

as

1þ c
z1

Ku

ðu� c1 þ Kc1Þ2

 !
@c1

@t
� c

z1

Kc1

ðu� c1 þ Kc1Þ2
@u
@t

¼ �vrc1 þrðDrc1Þ: ð10Þ

This is a highly non-linear equation, which is difficult to solve
analytically. In the particular case when the absolute value of
c1ðK � 1Þ is small compared to u we can perform the following
approximation ðu� c1 þ Kc1Þ2 ’ u2. This approximation occurs
either when c1 � c2 � u, which depends on the specific problem
being considered or if K � 1, which can occur for example in the
Lithium–Sodium case (Appelo and Postma, 2005). Under this
approximation (10) becomes

R
@c1

@t
¼ �vrc1 þrðDrc1Þ þ kc1; ð11Þ

where

R ¼ 1þ c
z1

K
u
; ð12aÞ

k ¼ c
z1

K
u2

@u
@t
: ð12bÞ

Now (11) is linear in c1, while Rðx; tÞ and kðx; tÞ can still be func-
tions of space and time via changes in u. This same equation for-
mally incorporates that c may vary in space, opening the road to
explore the impact upon transport of spatially variable values of
CEC and thus a spatially variable retardation coefficient, which
has been shown to play a significant role in breakthrough curve
tailing (Dentz and Castro, 2009) and uncertainty (Dentz et al.,
2009; Riva et al., 2009). The value of the retardation presented in
(12a) is slightly different from other expressions available in the
literature (e.g. Valocchi et al., 1981; Samper-Calvete and Yang,
2007).

Thus (11) can be read as an advection–dispersion equation with
variable retardation plus a (variable) degradation term. The latter
term accounts for a reduction of c1 whenever @u

@t is negative, while
a positive k value implies a source term. Notice that if u were con-
stant, the degradation term would not be included; this is the case
considered in most existing analytical solutions (e.g. Kool et al.,
1989; Dou and Jin, 1996; Jin and Ye, 1999).
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Fig. 2. Plots of dU
dT and S1 at two times for the U0 ¼ 0:25 case. The top row is for

T ¼ 0:1 and the bottom row for T ¼ 5.
The solution of the full problem consists of the following six
steps:

	 Solve (7) by means of an analytical solution for some particular
case (simple geometry and boundary conditions), or numerically
in general; any available code for conservative transport could
be used in this step.

	 Compute the retardation factor R and the degradation coefficient
k by means of (12a) and (12b).

	 Solve the non-linear Eq. (11), which in general needs an ad-hoc
code, since both R and k vary in space and time.

	 Obtain c2 from (6).
	 Obtain b1 from the explicit expression (8).
	 Find b2 from the continuity Eq. (4).
Dimensionless approach

Without loss of generality, we choose the coordinate axis such
that v ¼ ðv; 0; 0Þ, and D11 ¼ DL; D22 ¼ D33 ¼ DT . Using the follow-
ing dimensionless variables

U ¼ u
�u

C1 ¼
c1

�u
X ¼ v

DL
x Y ¼ v

DL
y

Z ¼ v
DL

z T ¼ v2

DL
t ð13Þ

and the dimensionless quantities D0 ¼ DT=DL, the governing equa-
tions can be written in dimensionless form as

@U
@T
¼ � @U

@X
þ @

2U

@X2 þ D0
@2U

@Y2 þ D0
@2U

@Z2 ; ð14Þ

R
@C1

@T
¼ � @C1

@X
þ @

2C1

@X2 þ D0
@2C1

@Y2 þ D0
@2C1

@Z2 þ kC1; ð15Þ

where

R ¼ 1þ c
z1

K
�u

1
U
; ð16aÞ

k ¼ c
z1

K
�u

1
U2

@U
@T

ð16bÞ

and �u is a characteristic concentration (e.g., some mean
concentration).

A perturbative solution to the binary homovalent problem

As stated before, most existing solutions are based on assuming
that U does not change in time. In our formulation this is
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equivalent to assuming that k ¼ 0. As our model allows for non-
zero k, if variations in U are small, we can adopt a perturbative
solution approach. We start by writing the solution in terms of
an expansion

C1 ¼
X1
n¼0

C1;n: ð17Þ

Assuming that k and variations in R are small, in the 1D case, the
governing equation for C1;0 is

R
@C1;0

@T
þ @C1;0

@X
� @

2C1;0

@X2 ¼ 0; ð18Þ
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Fig. 4. Spatial dependence of concentrations C1 and U for U0 ¼ 0:75 for the case in Table
T = 50. (–) Full numerical solution for C1. ð�Þ Perturbative solution for C1: ð��Þ Zeroth or
where

R ¼ 1þ Kc
z1

u�1; ð19Þ

is a mean value of the spatially variable R, which in this problem
here only varies due to changes in u. At first order

@C1;1

@T
þ 1

R
@C1;1

@X
� 1

R
@2C1;1

@X2 ¼ S1; ð20Þ

where
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S1 ¼
kC1;0

R
� ðR� RÞ

R
@C1;0

@T
: ð21Þ

Therefore

C1;1 ¼
Z T

0

Z 1

�1
S1ðn; sÞGðX; n; T � sÞdnds; ð22Þ

where G is the Greens function associated with the advection–diffu-
sion–retardation equation, given by (Leij et al., 2000).
GðX; n; sÞ ¼

ffiffiffiffiffiffiffiffiffi
R

4ps

s
exp

�RðX � n� 1
R
sÞ2

4s

 !
: ð23Þ
While we restrict our analyses to first order corrections, if deemed
necessary, higher order corrections could easily be implemented
and are given by

C1;i ¼
Z T

0

Z 1

�1
Siðn; sÞGðX; n; T � sÞdnds; ð24Þ

where

Si ¼
kC1;i�1

R
� ðR� RÞ

R

@C1;i�1

@T
: ð25Þ
Illustrative example

General solution

We consider a 1D infinite column which is initially filled with a
water of a chemical composition in equilibrium with the existing
rock. The various initial concentrations are c1;i; c2;i; b1;i; b2;i. Equilib-
rium means that these values satisfy Eqs. (4) and (5). The initial va-
lue of u is then ui ¼ c1;i þ c2;i. At time t ¼ 0 a water with different
composition c1;f ; c2;f , still satisfying (4) and (5), reaches the system
at point x ¼ 0, and flows in continuously from this time on.

Since uf ¼ c1;f þ c2;f , we define �u ¼ ðui þ uf Þ=2 and
u0 ¼ ðui � uf Þ=2 ðand U0 ¼ u0=�uÞ. Working in dimensionless vari-
ables, the solution for U is

U ¼ 1þ U0erf
X � Tffiffiffiffiffiffi

4T
p

� �
: ð26Þ

From (18), the solution for C1;0 is

C1;0 ¼
C1i þ C1f

2
þ C1i � C1f

2
erf

X � aTffiffiffiffiffiffiffiffiffi
4aT
p

� �
: ð27Þ
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Fig. 5. Plots of dU
dT and S1 at two times for the U0 ¼ 0:75 case. The top row is for

T ¼ 0:1 and the bottom row for T ¼ 5.
where a ¼ R�1. The solution for C1;1 is sought by integration of (22).
The quadrature is done numerically using standard numerical inte-
gration methods.

Here, we present two cases for the conditions considered in Ta-
ble 1. The first is for U0 ¼ 0:25 and the second for U0 ¼ 0:75. As U0

becomes larger (approaches 1 which is its maximum possible
physical value) one expects the perturbation approach to become
less and less valid. Note that the selected values of C1i and C1f

are small so as to satisfy our assumption that c1 � u. The influence
of this assumption will be presented in more detail further on.

For comparison purposes we also solve the full problem numer-
ically – i.e. we solve (10), which is free of any simplifying assump-
tions. This is done with an in house finite difference code. The
numerical scheme uses central differences in space and forward
differences in time (e.g. Pozrikidis, 1998).

Fig. 1 shows the concentration distributions for C1, calculated
numerically and analytically at various dimensionless times. The
analytical solutions presented are for the zeroth order perturbation
from Eq. (27), which neglects the influence of k and spatial variabil-
ity in the retardation coefficient, as well as the solution that in-
cludes a first order correction from (22). The plots also show the
temporal evolution of the spatial distribution of U in order to
explicitly illustrate both the retardation and the temporal change
of the source term k, which depends both on U and on dU

dT .
For the early time snapshots in Fig. 1 it is difficult to distinguish

between the three concentration curves, indicating that the zeroth
order term is capable of approximately capturing the shape of the
numerical (concentration) curve. When time increases, the first or-
der corrected term still captures the system behavior, while the
zeroth order term does not. Notice that both the numerical and
first order corrected curves display a small upwards bump in the
concentration on the left side of the traveling wave. This feature
is not, nor can it ever be (due to monotonicity), present in the zer-
oth order case. It arises due to a positive source, reflecting a local
positive value of dU

dT . In order to illustrate this a plot of dU
dT and the

source term S1 (provided by (21)) at two times are shown in Fig. 2.
At later times the bump on the left side of the wave is still pres-

ent, but its value is very close to zero, so in practical terms it dis-
appears. Equivalently, a downwards bump is always present at
the front part of the wave. This undershoot is given by two compli-
mentary superposing effects, corresponding to the two source
terms in (22). The first effect reflects negative values of dU

dT , which
leads to negative values of k. Note that at these late times dU

dT is
either negative or very close to zero. This is illustrated nicely in
the late time plot in Fig. 2. The influence of this source tends to
be at the front edges of influence as the wave associated with U
travels fastest at the full flow speed. A close inspection of Fig. 1
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Fig. 6. Breakthrough curves for the example corresponding to U0 ¼ 0:75 at two
distances X ¼ 1 and X ¼ 10. (–) Numerical solution, (- -) zeroth order solution and
(- -) perturbation solution.
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reveals that the leading edge of the downward bump coincides
with the leading edge of the U wave.

The second effect stems from the fact that spatial variations in U
lead to spatial changes in the retardation coefficient with greater
retardation on the left hand side of the U wave (corresponding to
smaller values of U). In a similar manner that the first contribution
from (22) depends on temporal variations in U, the second terms
depends on temporal changes in C1. As C1 is traveling at a retarded
speed relative to U its region of influence is on the rearward side
and leads to negative contributions here. This is reflected by the
fact that the numerical and perturbation solution appear to be
traveling slower than the zeroth order case and that the trough
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of the downwards bump is to the left of the zeroth order solution.
These features are particularly evident at later times. Once again,
due to the monotonic nature of the zeroth order solution for con-
centration such features can never be captured. However, with
our proposed first order correction, the full numerical solution
seems to be well captured both qualitatively and quantitatively.

In order to further illustrate these features breakthrough curves
of C1 for the three solutions at two points ðX ¼ 1 and X ¼ 10Þ are
shown in Fig. 3. For the early breakthrough curve at X ¼ 1 the dif-
ferences between the three cases are subtle, reflecting the small
differences observed at early times in Fig. 1. None the less there
are differences and the curve corresponding to the first order
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solution agrees more favourably with the full numerical case than
the zeroth order solution. The differences between the solutions is
far more evident for the later breakthrough curve at X ¼ 10. This is
particularly evident for the decrease in concentration at a dimension-
less time close to one predicted in the numerical and corrected concen-
tration values.

A similar set of concentration profiles and breakthrough curves
for the U0 ¼ 0:75 case are shown in Figs. 4–6. This time, due to the
larger value of U0 the upwards bump on the left hand side of the
traveling wave is far more evident, which the zeroth order analyt-
ical solution can never reproduce. However, despite the quite large
value of U0 (physically it must be less than 1 so a value of 0.75 can
be regarded as relatively large), the first order correction does a
reasonable job, both qualitatively and quantitatively of capturing
this effect. Once again, at later times the undershoot on the right
hand side of the wave appears. This time the corrected analytical
solution can only qualitatively reproduce this feature. This is
unsurprising as perturbative approaches to advection–diffusion
equations are known to suffer from problems when the perturba-
tions are no longer small (e.g. Jarman and Tartakovsky, 2008). It
is possible to go to higher orders in the perturbation and out of aca-
demic interest we did so. We found that the undershoot is indeed
well captured by going to higher order corrections (third or fourth
order is required). However, as this requires the numerical quadra-
ture of already numerically calculated corrections it raises the
question of its utility as most of the fundamental physical pro-
cesses can be captured qualitatively with only a correction at first
order. The breakthrough curves in Fig. 6 illustrate the quantitative
differences more clearly. However, they also clearly display the
qualitative agreement between the numerical and first order ana-
lytical solutions, which both display multiple common features
that do not exist in the zeroth order solution.

One of the significant benefits of the perturbative solution pre-
sented here is that it allows for a clear separation of the underlying
physical processes. This allows us to identify which specific pro-
cess leads to the specific structures observed in the solution curves
that cause a deviation from the zeroth order traveling wave case.
Differentiating such processes can in practice be difficult by
numerical procedures only. Additionally, such solution approaches
can provide essential tools in the field of probabilistic risk assess-
ment (e.g. Tartakovsky, 2007; Bolster et al., 2009), where simplified
models are systematically linked together as building blocks to
study coupled larger scale problems and asses risks.

Influence of small c1 approximation

In the previous section we illustrated that our analytical solu-
tion does a reasonable job of reproducing a full numerical solution
of the problem presented. However in going from (10) to (11) we
made a strong approximation in assuming that u
 j1� Kjc1 and
here we illustrate by an example what occurs when this approxi-
mation is not valid. The case considered is identical to that de-
scribed in Table 1 with the exception that now C1i ¼ 0:7 and
C1f ¼ 0:5, clearly violating our approximation. The U0 ¼ 0:25 case,
where our analytical solution worked well before, is considered.
Concentration profiles at various times are shown in Fig. 7. While
many of the features that were present before (bumps on the front
and back of the waves) are still present both in the full solution and
our corrected analytical solution, any agreement can really only be
said to be qualitative. In particular it is very evident that our model
does not capture the enhanced retardation of the traveling wave
(best seen in Fig. 7f). While the retardation is better than for the
case that completely neglects spatial variations in U it simply does
not diminish sufficiently as the influence of C1 on it (which we ne-
glect) clearly plays an important role. This motivates the need to
find solutions where no such approximation is necessary. How-
ever, at this point, none are currently obvious to us and thus we
can only present further food for thought. Note that in this partic-
ular case, had we chosen K � 1, our linearisation approximation
would have been valid, leading to good agreement between the
perturbation and numerical solutions (as was seen in Fig. 1).
Conclusions

We present a formulation for decoupling the transport equa-
tions that govern homovalent cation exchange. Contrary to previ-
ously existing solutions, our methodology allows for the presence
of an injected water whose total concentration of cations (or
charges) of the aqueous species varies over time (i.e. in our nota-
tion u does not have to be constant). The inclusion of such a vari-
ation introduces further non-linearity into the governing
equations for the individual species, but most notably, incorporates
a degradation/production term in the equation which is written in
terms of the time derivative of the total cation concentration of the
input water.

The solution to the problem is sought in a step-by-step fully
decoupled methodology. There is still a major drawback as one
needs to solve a highly non-linear equation for the aqueous species
concentration. In order to circumvent this we propose an approxi-
mation that is valid when the concentrations of one of the species
is much larger than the other or when K, the Gaines–Thomas equi-
librium constant, is close to unity. The resulting equation is a linear
advection-reaction-diffusion equation with spatio-temporally var-
iable retardation and degradation coefficients. If changes in the to-
tal concentration are not large, then the system can be solved with
a perturbative approach, which assumes a retarded traveling wave
solution at zeroth order that is perturbed by changes in the retar-
dation coefficient as well as the temporally varying degradation
term, which is driven by the non retarded total concentration
wave.

The physical mechanisms of what occurs can be understood by
looking at Eqs. (9–11). The exchange between the aqueous and the
adsorbed phase has two principle effects. The first is on the retar-
dation of the cation concentration such as is quantified by the
retardation coefficient R. The second influence appears as a tran-
sient ”reactive” term quantified by k. The larger the total concen-
tration of cations in the system is (i.e. U) the less the retardation
R. Intuitively this makes sense as less cation concentration in the
water leads in proportional terms to more cations being immobi-
lized (since we consider the full CEC to be used). In other terms,
retardation defined as the fraction of time the solute stays immo-
bilized with respect to the time in which the solute is mobile, in-
creases, causing a decrease in effective velocity. Thus, when
water with a different U is introduced into the system as is the case
in the examples here there are two distinct travel speeds. In these
particular case U is decreased, which means that the effective
velocity entering is less than that which was initially there. Conse-
quently the two traveling waves tend to separate more and more,
causing a physical ”hole”/dip in the distribution of C1 in space.
Physically, the fact that this effective velocity varies in space means
that it is not incompressible and that therefore regions of accumu-
lation and decumulation can occur such as observed by the bumps
and valleys depicted here.

The k term reflects regions of non-uniform total concentration U
and accounts for the transient adjustment of the system from one
state to another. The terms can be positive or negative depending
whether the total concentration is increasing or decreasing. Phys-
ically this term is equivalent a having a sucking out or injection
of concentration from the adsorbed phase to the aqueous phase.
In our particular case water with a lower U value enters the sys-
tem. This is equivalent a having a term sucking out concentration
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at the front of the wave and injecting in behind it. This mechanism
can be self compensating depending on the choice of boundary
conditions.

In order to illustrate the methodology we have presented a one-
dimensional example of an infinite column that is then invaded by
a water of different chemical composition. We also solve the prob-
lem numerically in order to compare results. For the case where
the existing and the injected water have similar (but not equal) to-
tal cation concentration, the perturbation approach produced
excellent qualitative and quantitative agreement with the full
numerical simulation, particularly compared with the zeroth order
traveling wave solution at late times. In particular the perturbation
approach is able to faithfully capture certain features (bumps and
valleys), which are not possible in the monotonic traveling wave
case. For larger variations of the total concentration, where one
might expect the perturbative approach to no longer be valid, the
perturbation approach still outperforms the traveling wave case
significantly, qualitatively reproducing many of the features in
the numerical solution. Unfortunately, due the invalidity of the
perturbation assumption, the quantitative agreement at late times
is not great. At early times it still seems to work very well.

Finally, in order to illustrate the influence of our linearisation of
the problem we present a case where the assumption leading to
the linearisation is clearly not valid. In this case our solution ap-
proach can not accurately reproduce the real retardation in the sys-
tem resulting in a front that travels at the wrong speed. The result
is still better than the zeroth order traveling wave case, but quan-
titative agreement is poor. None the less, despite the restriction
imposed by this linearisation, our solution works well within its re-
gime of validity and so can provide a basis for future experiments
as well as a fundamental base for attempts at future analytical
solutions that circumvent our approximations.

It is also clear that our approach can qualitatively reproduce re-
sults, even when this assumption is not valid. The benefit of the
perturbation approach is that it allows for a clear separation of
the underlying physical processes which can allow one to identify
specific cause and effects. This can provide a useful basis for the
interpretation of experimental and field scale results, the assess-
ment of risk and also provides a solid foundation for the design
of future experiments.
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