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We have studied oscillation of a pendulum in water using spherical bobs. By measuring the loss in potential
energy, we estimate the drag coefficient on the sphere and compare to data from liquid-helium experiments.
The drag coefficients compare very favorably illustrating the true scaling behavior of this phenomenon. We
also studied the decay of amplitude of the pendulum over time. As observed previously, at small amplitudes,
the drag on the bob is given by the linear Stokes drag and the decay is exponential. For larger amplitudes, the
pendulum bob sheds vortex rings as it reverses direction. The momentum imparted to these vortex rings results
in an additional discrete drag on the bob. We present experiments and a theoretical estimate of this vortex-
ring-induced drag. We analytically derive an estimate for a critical amplitude beyond which vortex ring
shedding will occur as well as an estimate of the radius of the ring as a function of amplitude.
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I. INTRODUCTION

The study of pendulum motion is a classical problem in
physics and understanding the influence of fluid drag on its
decay dates back to Stokes �1�. He derived a simple expres-
sion for drag on a sphere at low Reynolds numbers, which
was later expanded on to include the effects of added mass
and other phenomena �e.g., Landau and Lifshitz �2��.

At low Reynolds numbers, this drag, FD
s , can be expressed

as

FD
s = 6��RsV�1 +

Rs

�
� . �1�

At larger Reynolds numbers, it is observed that the drag has
an additional component, which is proportional to velocity of
the pendulum squared �2�. This drag, FD

l , can be expressed as

FD
l = CDV2 + FD

s . �2�

Here, � is the viscosity, � the density, and �=� /� is the
kinematic viscosity of the fluid surrounding the sphere
whose radius is Rs. V=�A is the velocity, A is the amplitude
of the oscillation at frequency f , �=2�f and �=�2� /� is the
thickness of the boundary layer surrounding the sphere. CD is
a drag coefficient, which is typically empirically fit �e.g.,
Gonzalez and Bol �3� and Alexander and Indelicato �4��.
More complex expressions for the drag on a sphere that in-
clude acceleration effects can be found �e.g., Mordant and
Pinton �5� and Lyotard et al. �6��.

We define the Reynolds number as

Re =
2RsV

�
, �3�

The influence of fluid drag has become a topic of great
interest to the quantum fluids community, where studies of
oscillating objects in superfluid environments have been con-
ducted �for a recent review, see Skrbek and Vinen �7��. In

many of these cases, a transition from a drag that is linearly
proportional to the velocity to quadratically proportional is
also observed. In many cases, the quadratic drag is associ-
ated with vortical and turbulent structures behind the sphere.
Additionally, this drag and the interaction of a body with
vortical structures plays a crucial role in swimming dynam-
ics where animals oscillate or flap their bodies in such a way
as to generate vortices that propel them �see Linden and
Turner �8�, Dabiri and Gharib �9�, von Ellenrieder et al. �10�,
Blondeaux et al. �11�, and Afanasyev �12��.

Over the past few decades, significant experimental and
theoretical researches have been performed on unsteady flow
past a sphere. The generation of a vortex ring during the
impulsive flow of a sphere at low to moderate Reynolds
number was observed experimentally by Taneda �13�. Later
Bentwich and Milow �14�, Sano �15�, and Felderhof �16�
provided a theoretical solution to show the birth of such a
vortex ring. Various numerical studies �e.g., Yun et al. �17�,
Blackburn �18�, and Constantinescu and Squires �19�� at
small and large Reynolds numbers have observed vortex
rings and other vortical structures behind a sphere. Specifi-
cally, Yun et al. �17� illustrated that a numerical model,
which does not capture the vortex rings, will underestimate
the actual drag on a body.

In this study, we show that, as expected, at sufficient am-
plitude, the drag on a spherical pendulum is greater than that
predicted by Stokes �1�. We demonstrate experimentally the
existence of a regime where a vortex ring is shed at the end
of each swing and show that the additional decay on ampli-
tude beyond Stokes �1� can be estimated analytically as the
impulse given to these rings. The pendulum system can be
characterized by two dimensionless numbers. These are

KC =
�A

RS
and St =

4fRS
2

�
, �4�

which are the Keulegan-Carpenter and Stokes numbers, re-
spectively.*rjd@uoregon.edu
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II. APPARATUS

We operated the pendulum in two ways: with a fixed sus-
pension and with a motor-driven suspension. The fixed sus-
pension was used to observe the decay of the pendulum’s
amplitude. The driven suspension permits observation of the
pendulum motion at constant amplitude near the resonant
frequency of the pendulum.

A glass aquarium tank is filled with the fluid in which the
pendulum bob oscillates. For the cases described here, the
working fluid is de-ionized water, with a small amount of
thymol blue dissolved therein. The pendulum is constructed
using various spherical metal balls suspended on either light-
weight magnet wire or fishing line. A brushless linear motor,
driven sinusoidally, was used for the driven suspension.

A digital video camera was used to measure the amplitude
of oscillation at any point in time. The ring radii were mea-
sured with a digital camera. The camera setups were cali-
brated by imaging a steel rule located on the focal plane.

In the decaying oscillation experiments, two pendulum
lengths were used �315 and 155 cm�. Assuming a maximum
amplitude of 10 cm, then the angle cosines would be cos 	
=0.9995 and 0.9979, thus preserving the small-angle ap-
proximation. For most of the observations, the camera loca-
tion was such to limit the parallax error to less than 0.15%.

The Baker electrolytic technique is used to visualize the
vortex rings from the spherical bobs. The electrochemistry
and other physical details are described in Mazo et al. �20�.
The pendulum and resultant rings are photographed in sil-
houette.

The oscillation amplitude is extracted from the recorded
images with the use of an in-house-written software. Vortex
ring sizes were measured using standard software packages
�such as PHOTOSHOP�.

III. DRAG COEFFICIENT IN WATER

For small amplitude motion of the driven pendulum, no
vortex rings are shed as illustrated in Fig. 1�a�. As the am-
plitude of oscillation increases, the pendulum bob begins to
shed vortex rings as it reverses direction at the top of each
swing. This is shown in Fig. 1�b�, where for a continuously
driven pendulum, vortex rings stack up as they migrate to-
ward the tank boundaries. Figure 2 shows a time sequence of
images depicting the shedding of the boundary layer from
the pendulum bob during a directional reversal.

A commonly measured parameter used to quantify the
drag force experienced by an object is the dimensionless
drag coefficient CD, defined as

CD =
F

1

2
�V2A

, �5�

where V=�A is taken as the characteristic velocity for a
given swing, A is the projected area of the sphere, �Rs

2, and
F is the average force over one period. Our photographs
allowed us to determine the height y of the sphere above the
lowest point at the center of the arc as well as the amplitude
A. The change in potential energy 
U can be easily related to

the work done if the change in height 
y is small, 
U
=Mg
y, where M is the physical mass corrected for buoy-
ancy and g is acceleration due to gravity. The distance trav-
eled during one period is approximately 4A, so the average
work done is 4AF and by conservation of energy

F =

U

4A
. �6�

The resulting drag coefficient is shown in Fig. 3. Pixel reso-
lution limits this technique below Re=300.

IV. DRAG COEFFICIENT IN LIQUID HELIUM

Schoepe’s group at Regensburg produced several pioneer-
ing papers on the motion of a small sphere of magnetic ma-
terial �100 �m in radius, suspended between the supercon-
ducting plates of a capacitor, and carrying an electric charge
�e.g., �21��. The velocity amplitude and resonance frequency
are measured as a function of driving force and temperature
in liquid helium at temperatures between 0.35 and 2.2 K.
Liquid helium is a Navier-Stokes fluid above 2.176 K and we
show their results at 2.2 K in Fig. 3. We also show results at
2.1 K, which can be considered a mixture of normal and
superfluid, with the normal-fluid density about 75% of the
total density and behaves not far from being a classical fluid.
The results are plotted in Fig. 3 and fit with our data remark-
ably well, especially at higher Reynolds numbers. The effec-
tive kinematic viscosity of liquid helium at 2.1 K is about
1.67�10−4 cm2 /s �Stalp et al. �22�� with a Stokes number
St=642. For our pendulum in water, St=653.

(b)

(a)

FIG. 1. Photographs of �a� laminar flow at small amplitude os-
cillation and �b� a street of vortex rings at larger amplitude
oscillation.
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V. DRAG COEFFICIENT FROM VORTEX RING
EMISSION

There is another interesting and useful way to look at the
decay data. Figure 4�a� shows a representative sample plot
for the amplitude against time for one of the pendulum de-
cays. The plots for the other experimental runs are similar. A

list of the experiments conducted is given in Table I. For
smaller amplitudes �approximately given by KC

�
2 � at later

times, the decay is largely exponential and is well approxi-
mated by the Stokes drag given in Eq. �1�.

At higher amplitudes �early times�, the decay exceeds this
purely exponential rate. This behavior has previously been
observed by many researchers �e.g., Gonzales and Bol �3��.
Often nonlinear damping functions are fit to the curve with-
out much physical insight into this additional drag. Figure
4�b� shows a typical log plot of the difference between the
Stokes decay and the measured decay of Fig. 4�a� �i.e., the
difference in amplitude between the solid and dashed
curves�. What is noteworthy here is that this difference also
appears to decay exponentially. At early times �large ampli-
tudes�, a vortex ring is shed from the bob each time it
changes direction �at the local position extremes�. At later
times, no ring is emitted and the boundary layer �largely the
inked region� remains attached to the sphere. The point at
which this ejection of vortex rings ceases coincides with the
point where the amplitude decay begins to follow the Stokes
drag law. Thus, we postulate that the excess loss in ampli-
tude, as illustrated in Fig. 4�b�, can be accounted for by the
impulse lost to each shed vortex ring.

We can estimate the excess drag owing to vortex ring
emission in an elementary way. The characteristic momen-
tum of the pendulum is M�A, where M is the hydrodynamic
mass of the bob. This means that the loss of momentum at
each half period is M�
A. A certain amount of momentum
is lost owing to Stokes drag. Assuming the excess beyond the

FIG. 2. Time sequence showing the shedding of a vortex ring.
Image �a� shows the bob accelerating toward the right.
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FIG. 4. �a� Amplitude decay of a 5.08 cm pendulum bob and �b�
its deviation from Stokes drag �case 6�.
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Stokes drag is imparted to the fluid with a characteristic ve-
locity equal to that of the pendulum �i.e., �A�, then the mo-
mentum imparted to the ejected fluid is given by M�
A
=m�A, where m is the mass of the fluid to which momentum
is imparted each half cycle. This conservation of momentum
principle also works very well for vortex ring guns �Sullivan
et al. �23�� This gives


A

A
= 2

m

M
, �7�

where the value of m is the mass of the boundary layer of
thickness � during oscillation. Using the flat plate analogy,
�=�2� /�, and

m = 4�Rs
2�� , �8�

the hydrodynamic mass of the bob is

M =
4

3
�Rs

3��s +
�

2
� . �9�

We investigated six different cases. The physical proper-
ties are contained in Table I and the corresponding decay
constants are contained in Table II.

For sufficiently large amplitudes, the excess drag beyond
the simple Stokes drag for classical fluids is due to a loss of
impulse to the shed vortex rings. This is a discrete, rather
than continuous, phenomenon. A good analogy would be that
of a bouncing inelastic ball. While the ball will continuously
lose momentum due to drag exerted by the surrounding fluid,
it will also lose momentum during each inelastic collision
with the surface on which it is bouncing.

This phenomenon also explains why for larger amplitude
decay models such as that presented by Digilov et al. �24�
the amplitude decay rate depends on the initial condition.
This is because the geometric decay rate per oscillation 
A is
proportional to A as given by Eq. �7�. Of course, at even
larger amplitudes one might expect the flow behind the
sphere to become more complex, requiring an empirical fit as
is done traditionally.

Referring to Fig. 4�b�, we see that


A/A = �sP , �10�

where P is the period, and we can compare the calculated
and observed values of �s from

�sP =
2�m

M
, �11�

where � is a constant of order unity to be derived from
experiment. The value � is needed to allow for such effects
as we see in Fig. 2, where the boundary layer is not actually
spherically symmetrical. Comparison to experiment �see
Table III� yields �=7.39�1.24.

The fact that � is considerably larger than expected sug-
gests that considerably more fluid is being shed into the ring
than is given by the boundary layer. Perhaps the roll-up of
the boundary layer entrains external fluid, just as the roll-up
from a piston gun entrains external fluid �Eq. 2.19 of �23��.
Clearly, this problem merits further investigation.

TABLE I. Properties of the spherical bob pendulums used in this investigation.

Case
Rs

�cm�
�s

�g /cm3�
m
�g�

M
�g�

�
�s−1�

�
�cm�

1 1.27 8.45 2.29 76.8 1.58 0.113

2 1.91 7.65 5.13 238 1.60 0.113

3 2.54 7.63 9.08 561 1.59 0.112

4 1.27 8.45 1.90 76.8 2.27 0.0939

5 1.91 7.65 4.33 238 2.24 0.0945

6 2.54 7.67 7.66 560 2.24 0.0945

TABLE II. Results from decay experiments for the six cases of Table I. CD comes from �l. Since �s

comes from a difference in amplitude, a drag coefficient has no simple meaning. KCc and Re are the
Keuligan-Carpenter and Reynolds numbers at critical amplitude.

Case
�l

�s−1�
�s

�s−1� KCc St Re CD

1 0.0240�0.0002 0.1153�0.0040 2.69 162 436 0.847

2 0.0136�0.0005 0.0665�0.0044 1.78 371 666 0.654

3 0.0115�0.0003 0.0630�0.0030 1.34 653 876 0.738

4 0.0225�0.0012 0.1020�0.0076 2.24 233 524 0.670

5 0.0176�0.0005 0.1001�0.0052 1.50 521 782 0.714

6 0.0135�0.004 0.0928�0.0037 1.13 919 1040 0.731

BOLSTER, HERSHBERGER, AND DONNELLY PHYSICAL REVIEW E 81, 046317 �2010�

046317-4



VI. VORTEX RING RADIUS AS A FUNCTION
OF AMPLITUDE

The radius of the ejected rings grows with the amplitude
of swing. We can account for this variation as follows. The
impulse of a ring of radius R is ��R2�. This must be equal to
the momentum in the boundary layer

m�A = ���R2. �12�

In the spirit of the slug model, we assume the circulation
must have the form ��Rs

2f , so the mass of fluid in the
boundary layer is given by Eq. �8�. Thus,

R2 = ��A� , �13�

where � is a constant of order unity to be derived from
experiment. The results are shown in Table IV.

VII. CRITICAL AMPLITUDE FOR VORTEX RING
EMISSION

The critical amplitude Ac must be sufficiently large to
support a viable vortex ring. The core size a of such a ring in
this experiment must be of order �. The smallest vortex ring
will be given by this largest value of the “slenderness ratio”
�=a /R. Direct numerical simulation by Archer et al. �25�
suggested �=0.37 is the largest value beyond which vorticity
from the core will begin to leak out of the bubble. Thus, we
estimate that the smallest value of R will be of order � /0.37.
Then,

Ac =
R2f

4��
=

R2

8��
. �14�

Since there are uncertainties in all these estimates, we
simply write

Ac 	 �� �15�

and determine � from experiment. We attempt to determine
Ac by using plots such as Fig. 4�b�. If we take the time at
which the amplitude difference falls to some arbitrary mini-
mum �10−2 cm in our analysis� and use that time to identify
Ac from the plots such as Fig. 4�a�, we find from Table V,
�=7.53�2.46 �26�. Thus,

Ac 	 7.53�2�

�
. �16�

Note that the critical velocities observed by Schoepe’s
group in helium II are not accounted for by Eq. �16�. The
results at 2.2 K are in helium I, where �=1.80
�10−4 cm2 /s and Ac=3.34�10−3 cm with corresponding
velocity 6.1 cm/s. According to Eq. �16�, the three highest
points in Reynolds number should start to show a break,
which they do. It is gratifying to find that Eq. �16� holds over
such a large range of scales. The ratio of the radius of our
2-inch bob to the radius of Schoepe’s microsphere is a factor
of 276 and the ratio of the masses of the spheres is 37 mil-
lion.

VIII. DISCUSSION AND CONCLUSION

We conducted a series of controlled experiments where
we measured the decay of a pendulum in water �subject to
fluid drag�. With these data, we measured the drag coefficient
over a range of Reynolds numbers. These measurements
compared very favorably to those of �21�, who measured the
drag on a 100 �m sphere in liquid helium. This illustrates
the true scaling behavior of such a system.

As expected, at smaller amplitudes, the classical Stokes
drag theory works well at describing the decay. For larger
amplitudes where this does not hold, we have identified a
discrete drag mechanism, where the pendulum loses momen-
tum by shedding vortex rings at the maximum amplitudes
while reversing its direction motion. We can estimate the
momentum lost to each of these rings by assuming that the
mass of fluid in the boundary layer surrounding the sphere,
of thickness �, has the same characteristic velocity as the
bob. To the best of our knowledge, this discrete mechanism
has not previously been identified and only complicated non-

TABLE III. Geometric decay of excess drag.

Case 
A / A 2�m / M

1 0.458 0.440

2 0.261 0.319

3 0.249 0.239

4 0.283 0.365

5 0.280 0.269

6 0.260 0.202

TABLE IV. Comparison of Eq. �2� to experiment. The value of
� is determined to be 2.96�0.44.

A 0.306�A Rexp �

0.945 0.297 0.660 2.22

1.219 0.338 0.805 2.38

1.440 0.367 0.985 2.68

1.619 0.389 1.09 2.80

1.787 0.409 1.32 3.23

2.115 0.445 1.41 3.17

2.392 0.473 1.69 3.57

2.607 0.494 1.67 3.38

2.638 2.58 1.65 3.20

TABLE V. Experimental determination of �
��=7.53�2.46�.

Case Ac �Ac /�

1 0.786 6.96

2 0.618 5.52

3 1.161 10.4

4 0.347 3.70

5 0.778 8.23

6 0.980 10.4
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linear fitting curves have been used to attempt to model it.
The relatively large scatter in the experimentally deter-

mined quantities �, �, and � is, in part, the consequence of
using such a simple apparatus. For example, when vortex
rings are ejected, the pendulum is buffeted and only the
2-inch pendulum was massive enough to persist in its path to
measure the drag coefficient in decay. We know from expe-
rience that even vortex rings generated in a careful experi-
ment by a piston have substantial scatter in velocity and
decay owing to the growth of bending waves on the core,
which are very difficult to control �see Fig. 12 in �25��.

There are other limitations to our analysis. The boundary
layer on the sphere is not uniform. The vortex rings are not
isolated. The rings are close enough to interact with each
other and the bob. Further, the errors in the critical amplitude
we measure come about because the amplitude at which ring
shedding stops in an experiment does not necessarily coin-

cide exactly with the critical amplitude. The amplitudes
reached by the pendulum are discrete rather than continuous
numbers �i.e., the amplitude at which ejection stops is the
first amplitude less than or equal to the critical one�. This
may also induce errors in the vortex ring radius predictions.
Nevertheless, we believe much insight is gained from this
simple experiment and we know of no results in the literature
for the onset of discrete vortex emission which have the pre-
dictive power of Eq. �15�.
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