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We investigate anomalous reaction kinetics related to segregation in the one-dimensional reaction-
diffusion system A + B → C. It is well known that spatial fluctuations in the species concentrations
cause a breakdown of the mean-field behavior at low concentration values. The scaling of the average
concentration with time changes from the mean-field t−1 to the anomalous t−1/4 behavior. Using a
stochastic modeling approach, the reaction-diffusion system can be fully characterized by the multi-
point probability distribution function (PDF) of the species concentrations. Its evolution is governed
by a Fokker-Planck equation with moving boundaries, which are determined by the positivity of the
species concentrations. The concentration PDF is in general non-Gaussian. As long as the concen-
tration fluctuations are small compared to the mean, the PDF can be approximated by a Gaussian
distribution. This behavior breaks down in the fluctuation dominated regime, for which anomalous
reaction kinetics are observed. We show that the transition from mean field to anomalous reaction ki-
netics is intimately linked to the evolution of the concentration PDF from a Gaussian to non-Gaussian
shape. This establishes a direct relationship between anomalous reaction kinetics, incomplete mix-
ing and the non-Gaussian nature of the concentration PDF. © 2011 American Institute of Physics.
[doi:10.1063/1.3655895]

I. INTRODUCTION

Reaction kinetics in heterogeneous reaction-diffusion
systems are in general different from the ones observed in
well-mixed reactors. Spatial fluctuations in species concen-
trations in conjunction with diffusion and chemical reactions
can have a dramatic impact on the global reaction kinetics.1–8

Mass transfer limitations can lead to reduced reactivity of the
reaction system and slow down the global reaction kinetics.9

The systematic quantification of the dynamics leading to this
behavior is of scientific1–3, 10–12 as well of practical interest
for all applications that involve chemical reactions in hetero-
geneous environments. In natural systems the spatial distri-
bution of reactant concentrations is in general heterogeneous
due to fluctuations of the host media that can be represented
by porous media,9, 13–15 living cells,16, 17 and turbulent and
chaotic flows,18, 19 for example. We focus here on the bimolec-
ular irreversible reaction,

A + B → C, (1)

between species A and B which diffuse in one-dimensional
space. The host medium is assumed to be homogeneous and
transport is limited to molecular diffusion. The classical ap-
proach to describe such a reaction-diffusion system is by the
combination of mass transfer for each species concentration
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φi(x, t) (i = A, B) and a reaction term such that

∂φi(x, t))

∂t
− D

∂2φi(x, t)

∂x2
= −kφA(x, t)φB(x, t), (2)

with D is the diffusion coefficient and k is the reaction rate
constant. This description is valid in the mean-field limit of an
infinite system size, that is, for an infinite number of particles
of A and B. For a uniform initial distribution of both species
in a closed reactor, φi(x, t = 0) = ci, (2) reduces to the rate
equation,

dφi(t)

dt
= −kφA(t)φB(t). (3)

At long times, the species concentrations decrease as t−1.
This behavior can be observed if (i) both species are well-
mixed and (ii) the number of particles is infinite. In the pres-
ence of spatial heterogeneities (which can lead to incom-
plete mixing on a local scale) and for finite numbers of par-
ticles of A and B, this behavior can change. In natural sys-
tems, the number of constituents is finite. Therefore, stochas-
tic deviations from the thermodynamic limit arise and the
species concentrations are subject to random fluctuations.20

The thermodynamic limit effectively prevents the formation
of zones where only one reactant is present, and where reac-
tions stop, because neither species A nor species B can com-
pletely deplete. Due to the creation of such a zones, or is-
lands of non-reactive particles, the system is no longer well-
mixed and diffusion effects start to play an important role and
will dominate the kinetics of the system. While diffusion at-
tenuates initial concentration contrasts, chemical reaction can
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amplify them by depleting the species concentrations wher-
ever they are in contact. This leads to segregation, the forma-
tion of islands of the respective species. In this regime, the be-
havior of the species concentrations shows the characteristic
t−1/4 scaling.1–3 Kang and Redner3 used a scaling approach
to characterize the anomalous evolution of the species con-
centrations caused by mass transfer limitations in conjunction
with reaction. An analogous scaling has been shown to occur
in super-diffusive Levy-flight reaction system.12, 21, 22 In this
case, the mean concentration scales asymptotically as t−1/2γ ,
where 1 < γ < 2 characterizes the Levy-enhanced diffusion
operator. Furthermore, the breakdown of the mean-field de-
scription has been studied for variety of reaction diffusion
systems using lattice gas automata approaches.11

In this paper, we study this fluctuation phenomenon from
a different perspective. We focus on the description of the
reaction diffusion system in terms of the joint concentra-
tion PDF of the chemical species and study its evolution as
the reaction behavior changes from the mean field to the
anomalous scaling. The concentration PDF encodes the full
statistical information of the fluctuations of the species con-
centrations about the mean-field limit. Thus, it quantifies the
uncertainty of the concentration values predicted by the mean
field. At the same time, it allows for the systematic quantifica-
tion of the impact of concentration fluctuations on the average
behavior.

We employ a stochastic approach based on population
dynamics,23, 24, 27–29 which can be used for deriving the mas-
ter equation for the concentration pdf. This framework has
been used for the analysis of complex systems that show spon-
taneous deviations from the average behavior such as pro-
teins and molecules in living cells27, 28, 30 and predator-prey
systems.23, 31, 32 The system state is fully characterized by the
joint PDF of the species concentrations at any point in space
and time. Its evolution is governed by a reaction-diffusion
master equation (RDME).29, 30, 33–35 Using the van Kampen
system size expansion, we derive at the first order a set of
differential equations for the behavior of the system in the
mean-field limit. Expanding the RDME up to the second or-
der, we derive a Fokker-Plank equation for concentration fluc-
tuations that quantifies the evolution of the joint concentra-
tion PDF through advective and diffusive probability fluxes in
the multi-dimensional space of the concentration fluctuations.
When the concentration fluctuations are small compared to
the average, the PDF can be approximated by a multi-variate
Gaussian distribution. This approximation, however, breaks
down in the regime in which fluctuations dominate, that is,
when the reaction kinetics show anomalous scaling. We study
the evolution of the concentration PDF from a Gaussian to
non-Gaussian shape due to the impact of mass transfer limi-
tations on the reaction system. The analytical results are com-
plemented by numerical simulations of the reaction-diffusion
system based on the Gillespie algorithm.34–37

II. REACTION-DIFFUSION MASTER EQUATION
AND CONCENTRATION PDF

We adopt here the population dynamics approach as pro-
posed by Lugo and McKane.32 The one-dimensional spatial

domain is discretized into � cells of length h, each of which
is assumed to be well-mixed.24 For the well mixed condition
to hold, the characteristic diffusion time over h is required to
be less than the characteristic reaction time,24 this means, τD

= h2/(2D) ≤ τ k = 1/(φ0k) with φ0 is a characteristic species
concentration. Notice that more precise criteria can be defined
depending on the chemical reaction under consideration.25, 26

We impose periodic boundary conditions at the domain
boundaries. In the adopted model, only particles that are in
the same cell can react, and diffusion is modeled as a reaction
between a particle in one cell and an empty space in a neigh-
boring cell. Considering empty spaces, or holes, as virtual
particles, diffusion processes are modeled as the exchange be-
tween a real particle in a cell and a hole in a nearest neighbor
cell.32

The maximum occupation number of a cell N is equal
to the sum of particles and holes. The number of particles of
species s in cell j is denoted by ns(j), the number of holes,
or empty spaces by nE(j). The local concentration of species
s is defined as ρs(j) = ns(j)/N. It denotes the probability to
find a particle of species s in cell j. The system size is given
by �N, that is, the maximum number of chemical species that
can be in the system. Only a single event can occur per step of
the reaction-diffusion process. To each possible event (chem-
ical and physical transitions of any of the particles) a waiting
time is associated, which is exponentially distributed.36, 37 The
event with the shortest waiting time occurs during a step. The
exponential waiting time distribution reflects the fact that
the system is locally (within a cell) well mixed and thus a
Markov system.

The evolution of the reaction-diffusion system is stochas-
tic. The system state at a given time t is characterized by the
random vector,

ρ(t) = [ρA(1, t), ρB (1, t), ρC(1, t), . . . , ρA(�, t), ρB (�, t),

× ρC(�, t)]T , (4)

of species concentrations in each cell. The superscript T
denotes the transpose. The process ρ(t) is by definition a
Markov process. Its realizations are characterized by series of
reaction and diffusion waiting times and initial distributions
of species concentrations. The joint concentration PDF is ob-
tained by sampling concentration values in each cell from this
process,

P (ρ, t) = lim
R→∞

1

R

R∑
r=1

NδNρ,Nρ(r)(t) ≡ δN [ρ − ρ(t)], (5)

in which R is the number of realizations, ρ(r)(t) denotes the
concentration vector in realization r. The Kronecker delta
δNρ,Nρ(t) is 1 if ρ = ρ(t) and 0 otherwise. The distribution
δN [ρ − ρ(t)] = NδNρ,Nρ(t) converges to the Dirac delta in the
thermodynamic limit of N → ∞. The overbar denotes the
ensemble average. Note that we use the same letter for the
stochastic process ρ(t) and the associated sampling vector
ρ = [ρA(1), . . . , ρ(�)]T . The probability distribution func-
tion P (ρ, t) denotes the joint probability of the particle num-
bers of all species in all cells and thus encodes the full sta-
tistical information about the reaction-diffusion system. The
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probability that the concentrations of all reacting species in
all cells is in [ρ, ρ + dρ] is given by P (ρ, t)dρ.

The evolution of the joint concentration PDF P (ρ, t) can
be described by the reaction-diffusion master equation,34, 35

∂P (ρ, t)

∂t
=

∑
j

[ε+
A (j )ε+

B (j )ε−
C (j ) − 1]TAB(j )P (ρ, t)

+
∑
s[jj ′]

[ε+
s (j )ε−

s (j ′) − 1]Ts(j |j ′)P (ρ, t). (6)

The step operators are defined through their action on P (ρ, t)
as

ε±
s (j )P [ρA(1), . . . , ρs(j ), . . . , ρC(�), t]

= P [ρA(1), . . . , ρs(j ) ± N−1, . . . , ρC(ω), t]. (7)

The notation
∑

j indicates summation over all cells j and∑
s[jj ′] denotes summation over all species s and over all near-

est neighbor pairs j and j′.
Following Refs. 27 and 32, we determine the transition

probabilities per unit time from the mass action law, according
to which the probability per time of a transition is proportional
to the product of the concentrations of the two species that are
involved in the chemical reaction or in the position exchange.
The probability per time for a transition due to a reaction event
in cell j, TAB(j), is given by

TAB(j ) = NkρA(j )ρB(j ). (8)

The rate constant k is assumed to be the same in all cells.
The transition probability Ts(j|j′) for diffusion of a reactant
particle of species s from cell j to the nearest neighbor cell j′

is given by

Ts(j |j ′) = NDs

2h2
ρs(j )

[
1 −

∑
m

ρm(j ′)

]
. (9)

The proportionality constant Ds (s = A, B, C) is assumed to
be the same in all cells, but can vary between species. The
system dynamics are fully defined by these transition prob-
ability rates. Note that the definition of the transition proba-
bility rates used here differs from the one employed in Lugo
and McKane32 by a factor of N�. Using the definition of the
transition rates given there,27, 32 requires rescaling of the rates
a posteriori. For clarity, we did it a priori.

In the following, we will focus on the mean species con-
centrations defined by

ρ(t) = lim
R→∞

1

R

R∑
r=1

ρ(r)(t) =
∫

dρ ρP (ρ, t). (10)

Furthermore, we will illustrate the evolution of the concen-
tration PDF by studying the PDF of concentration values of
species s averaged over the whole domain, that is,

Ps(ρ, t) = 1

�

�∑
j=1

δN [ρ − ρs(j, t)]. (11)

The RDME (6) is solved numerically using the Gillespie
algorithm,36, 37 which is modified to account for transitions
between cells27, 32 as outlined above. The numerical simula-
tions are performed in R = 104 realizations of the stochas-
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FIG. 1. Temporal behavior of the mean concentration of the A species. For
early times the system follows the thermodynamic law, but for large times it
deviates from t−1 to scale as t−1/4. The blue solid line represents the slope
t−1 and the black line t−1/4. The red circles corresponds to results measured
in simulations with the adopted model.

tic process. The maximum occupation number per cell is
set to N = 106. The cell length is h = 1. The num-
ber of cells and thus the length of the spatial domain is
� = 103. In each realization, the initial concentrations
ρA(j, t0) and ρB(j, t0) are chosen from independent Gaussian
distributions with mean values ρA(j, t0) = ρB(j, t0) = ρ0

= 10−3 and variances σ 2
ρs

= ρs(j, t0)/N = 10−9 for s = A, B.
The concentration of species C is initially set to zero. The to-
tal number of particles at time t0 is 105. Note that the Gaussian
initial distribution of concentration values could, in principle,
have unphysical negative values. For the setup used here, we
did not record any negative concentrations. The diffusion rate
constant is Ds = 0.5 for all species s = A, B, C and the reac-
tion rate constant is k = D/ρ0 = 5 × 102. As outlined above,
the assumption that the cell is well-mixed requires that the
characteristic diffusion time τD = h2/(2D) is of the order of
or smaller than the characteristic reaction time τ k = 1/(kρ0).
Figure 1 illustrates the behavior of the spatial average of the
mean concentration of species A, ‖ρ(t)A‖ defined as

‖ρ(t)A‖ = 1

�

�∑
j=1

[
1

R

R∑
r=1

ρ
(r)
A (j, t)

]
. (12)

At early times, the mean-field behavior t−1 is observed, as ex-
pected for the solution of a diffusive-reactive system under
well-mixed conditions.3 For larger times, when ‖ρ(t)A‖ is of
the order of the fluctuations, the spatial average of the mean
concentration scales as t−1/4, as observed by.1–3 The crossover
time can be obtained by equating the mean field behavior
1/(kρ0t) and the anomalous

√
ρ0(Dt)−1/4 behavior derived by

Ref. 3. Using k = D/ρ0 as indicated above, one obtains for the
crossover time tc the scaling tc ∝ ρ

−2/3
0 . When one of the two

reactants is locally consumed, the reaction stops until diffu-
sion mixes the reactants again and allow for further reactions
to take place. Figure 2 shows the evolution of the concentra-
tion PDF with time. For small times, the concentration PDF
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FIG. 2. Spatial distribution of particles in a single realization, (a), (c), and (e), and the ensemble probability density function PA(ρ, t) of concentration of species
A averaged over the domain, see Eq. (11), (b), (d) and (f) at three times: t1 = 0, t2 = 55.7, and t3 = 178.7 in arbitrary time units. On the right, the dashed vertical
black line represents the mean field φA(t), and the red dashed vertical line represents the mean ‖ρ(t)A‖ of the distribution PA(ρ, t). For PA(ρ, t) symmetric, the
two values coincide. When PA(ρ, t) starts to become skewed the ensemble average of the concentration becomes larger than the mean-field value. The blue and
red solid lines in (a), (c), and (e) correspond to the number of A and B particles, respectively. The top, middle, and bottom rows correspond to the times t1, t2,
and t3, respectively. The late times t2 and t3 correspond to the situation where islands are formed.

maintains the Gaussian shape of the initial distribution. As the
mean concentration decreases and changes its scaling to the
anomalous t−1/4 behavior, the PDF becomes asymmetric. This
change towards an asymmetric shape is due to the emerging
segregation regime described in the literature.1–3 On physical
grounds concentration must be positive. Thus, as the mean
concentration decreases, negative deviations are more limited
than positive fluctuations.

To quantify the evolution of this PDF, and subsequently
the first moment of the fluctuation distribution as well as the
mean concentration, we apply the van Kampen system size
expansion20, 38 to the RDME (6).

III. VAN KAMPEN EXPANSION AND FOKKER-PLANK
EQUATION WITH MOVING BOUNDARIES

The RDME (6) encodes both deterministic dynamics and
fluctuations due to the intrinsic stochasticity of the system.
In order to systematically analyze these two phenomena we
proceed as proposed by van Kampen.20, 38 We decompose the
system state ρs(j, t) into its mean field φs(j, t) and stochastic

fluctuations ξ s(j, t),

ρs(j, t) = φs(j, t) + ξs(j, t)√
N

. (13)

The deterministic mean-field concentration φs(j, t) is obtained
in the thermodynamic limit of infinite system size, φs(j, t)
= limN → ∞ρs(j, t). The ensemble average over the fluctua-
tions ξs(j, t)/

√
N goes to zero in the limit of infinite system

size N. In the following we focus on the PDF of the fluc-
tuations ξ (t), which is defined by 
(ξ , t) = δξ ,ξ (t). In terms
of the concentration PDF P (ρ, t), it is obtained by variable
transform as


(ξ , t) = N−1/2P [φs(j, t) + N−1/2ξs(j, t)]. (14)

The evolution equation for 
(ξ , t) is obtained from a van
Kampen expansion of the RDME (6). In Appendix A
we obtain, at first order, the classical reaction-diffusion
equations (A8) for the mean field and the following Fokker-
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Planck equation for the fluctuations, at second order

∂
(ξ , t)

∂t
= −∇ξ · [A(t) · ξ 
(ξ , τ )]

+∇ξ · [B(t) · ∇ξ 
(ξ , τ )]. (15)

Matrices A(t) and B(t) are defined in Appendix A.
For changing system size N, numerical simulations show

that the deviation from the t−1 law is an effect of order of
N−1/2. This implies that higher order terms in the van Kam-
pen expansion are not needed to describe this phenomenon.
Notice that this is different for well-mixed chemical systems
in which higher order terms of the van Kampen expansion are
generally needed.8, 39 Thus, for incompletely mixed systems
for which diffusion is the limiting factor, anomalous kinetics
effects may arise already as a second-order effect.

The solution of Eq. (15) with natural boundary conditions
is a multi-variate Gaussian distribution. However, the concen-
tration ρs(j ) = φs(j ) + ξs(j )/

√
N is positive; thus the sup-

port of ξ is bounded. This implies that the fluctuations ξ s(j)
are within the subdomains

�sj = {ξs(j )| −
√

Nφs(j ) ≤ ξs(j ) ≤
√

N [1 − φs(j )]},
(16)

in which � = ∏
sj �sj is the full domain of the fluctuations,

see Appendix C. Here, we focus on dilute systems charac-
terized by small particle numbers, for which the anomalous
scaling of reaction kinetics arises. Therefore, the upper bound
of Eq. (15) is never reached and the lower bound is shown
here to be responsible for anomalous kinetics. The domain
of fluctuations ξ is a hypercube and each component ξ s(j) is
confined within a segment whose size varies over time. Thus,
the fluctuation PDF 
(ξ , t) evolves according to the Fokker-
Plank equation (15) with moving boundaries.39 Fluctuations
about the mean field can be characterized by the moments,

�n
i=1ξsi

(ji) =
∫

�

dξ �n
i=1ξsi

(ji)
(ξ , t). (17)

An evolution equation for the first moment is obtained using
Eqs. (15) and (17). In Appendix B, we derive

dξ s(j )

dt
= (A · ξ )s + Ss(j, t). (18)

We identify the volume term (A · ξ )s and the surface term Ss(j,
t), which is defined by

Ss(j, t) =
∫

∂�

dns(j ) · [A(t) · ξ 
(ξ , τ )]

+∇ξ · [B(t) · ∇ξ 
(ξ , τ )]ξs(j ), (19)

where ∂� denotes the surface of the domain � and dns(j ) is
the vector normal to the boundary surface. Physically, ∂� rep-
resents all possible states of the system given that at least one
island is created, i.e., somewhere in the system at least one of
the two species is absent and the chemical reaction stops lo-
cally. Note that for natural boundary conditions the surface
terms are zero. As shown in Sec. II, at early times, when
boundary effects play no role (i.e., no islands have formed),

(ξ , t) can be approximated by a Gaussian with zero mean.
With increasing time, the fluctuation PDF is growing more

and more skewed because the left boundary is approaching
zero, see Eq. (16). Also note that the mean fluctuation is non-
zero, see Figure 2, and the system behavior deviates from the
mean field.

We now consider the mean concentration ‖ρs‖
= 1

�

∑
j ρs(j, t), averaged over the spatial domain,

‖ρs(t)‖ = ‖φs(t)‖ + ‖ξs(t)‖√
N

. (20)

At late times, ‖φs(t)‖ decreases as t−1. Therefore, the scal-
ing behavior ‖ρs(t)‖ ∝ t−1/4 is governed by the mean fluc-
tuation ‖ξ s(t)‖. The scaling behavior of the latter can be ob-
tained from the spatial average of Eq. (18). As outlined in
Appendix A, to leading order, the space average of the vol-
ume term is zero. Thus, we obtain

d‖ξ s‖
dt

= ‖Ss(t)‖. (21)

The surface term ‖Ss(t)‖ controls the behavior of the mean
fluctuation. Note that the surface of the fluctuation domain,
∂�, corresponds to all possible fluctuation values when at
least one island is formed, that is, when at least one species
disappears locally. Mathematically this means that at least one
of the lower subdomain boundaries, see Eq. (16), is reached,
that is, ξs(j ) = −√

Nφs(j ).
In order to identify the scaling behavior of ‖ξ s(t)‖, we

need to determine the surface term ‖Ss(t)‖. The leading order
contribution to ‖Ss(t)‖ is given by

‖Ss(t)‖= 1

�

∑
j

∑
s ′j ′

∫
∂�sj ′

ξs(j )Ds ′h2ξs ′ (j ′)
(ξ , t)d(∂�sj ′),

(22)

see Appendix A. Note that Eq. (22) represents a closure prob-
lem because the right side depends on the local values of
ξ s(j). Here, we close the equation by evaluating the surface
term numerically. We find that ‖Ss(t)‖ scales as t−5/4, see
Figure 3. Direct integration of Eq. (21) shows that the mean
fluctuation ‖ξ s(t)‖ scales as t−1/4, which explains the scaling
of the average concentration as t−1/4, see Eq. (20).

FIG. 3. The temporal behavior of the leading surface integral in Eq. (22)
that describes the fluctuations. As expected it scales as t−5/4. The red dots
correspond to the numerical evaluation of this term with the adopted model.
The magenta dashed line depicts a power law of t−5/4.
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IV. SUMMARY AND CONCLUSIONS

We study anomalous reaction kinetics that arise from the
segregation of reactants in diffusion reaction systems. In the
diffusion limited regime, islands containing a single reactant
are created by self organization of the system. We adopt a
stochastic approach based on the population dynamics and
a numerical method based on a suitably modified Gillespie
algorithm to study these dynamics. It is found that the break-
down of the mean field behavior and the transition to anoma-
lous reaction scaling is related to the transition of the concen-
tration PDF from a Gaussian to non-Gaussian shape.

At large time, the behavior of the reaction-diffusion sys-
tem is dominated by the concentration fluctuations, whose im-
pact on the reaction behavior can be quantified by its first mo-
ment, which, for finite system size, is different from zero. We
apply the van Kampen system size expansion to the RDME.
The first order of the expansion provides equations for the
mean field. The second order provides a Fokker-Plank equa-
tion with moving boundaries for the PDF of the concentra-
tion fluctuations. The fluctuation domain is bounded because
the concentration has non-negative values by definition. The
lower limit is given in terms of the mean-field concentration,
which decreases to zero as t−1. At large mean concentrations,
the lower boundary is negligible and the fluctuation PDF is
close to a Gaussian with zero mean. As the mean-field con-
centration goes to zero, the fluctuation PDF deviates signif-
icantly from the Gaussian shape. In this regime, the mean
concentration is dominated by the mean fluctuation, which is
completely determined by the surface terms, Eq. (22), at the
lower concentration boundary. These terms reflect the forma-
tion of islands. This result establishes a link between anoma-
lous reaction kinetics and non-Gaussian concentration PDF.
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APPENDIX A: THE VAN KAMPEN EXPANSION

Using relation (14) in Eq. (6), we obtain the following
governing equation for 
(ξ , t):

∂
(ξ , t)

∂t
−

√
N

dφ

dt
· ∇ξ
(ξ , t)

=
∑

j

[ε+
A (j )ε+

B (j )ε−
C (j ) − 1)TAB(j )
(ξ , t)

+
∑
s[jj ′]

(ε+
s (j )ε−

s (j ′) − 1)Ts(j |j ′)
(ξ , t). (A1)

For large N, the step operator (7) can be expanded in powers
of N−1/2 and expressed in differential form as20, 38

ε±
s (j )
[ξA(1), . . . , ξs(j ), . . . ξC(�), t]

=
[

1 +
∞∑

k=1

(±1)k

k!
N−k/2 ∂k

∂ξs(j )k

]

(ξ , t). (A2)

Inserting Eqs. (13) and (A2) into the right side of Eq. (A1)
yields an expansion of the RDME in powers of N−1/2 . It has
to be noticed that the transition probabilities are proportional
to N.

The governing equations for the mean field φs(j, t) can
be obtained from the leading order term of the van Kampen
expansion. Expanding the right side of Eq. (A1) up to order√

N , we obtain in leading order

dφ

dt
· ∇ξ
(ξ , t) = (r + D) · ∇ξ
(ξ , t), (A3)

where the vector r is defined by

rs(j, t) = −kφA(j, t)φB(j, t), rC(j, t) = kφA(j, t)φB(j, t)

(A4)

for s = A, B. The vector D is given by

Ds(j, t) = Ds

{
�φs(j, t)

[
1 −

∑
m

φm(j, t)

]

+φs(j, t)
∑
m

�φm(j, t)

}
, (A5)

in which we defined the discrete Laplacian �φs(j, t)
= h−2 ∑

[j ′ |j ][φs(j ′, t) − φs(j, t)];
∑

[j ′|j ] denotes the sum
over the nearest neighbors of j. Thus, we obtain for the mean
field φs(j, t),

dφs(j )

dt
= Ds

{
�φs(j, t)

[
1 −

∑
m

φm(j, t)

]

+φs(j, t)
∑
m

�φm(j, t)

}
− kφA(j, t)φB(j, t),

(A6)

dφC(j )

dt
= DC

{
�φC(j, t)

[
1 −

∑
m

φm(j, t)

]

+φC(j, t)
∑
m

�φm(j, t)

}
+ kφA(j, t)φB(j, t),

(A7)

for s = A, B. In the spatial continuum limit for an obser-
vation scale L � h and for dilute solutions, φs(j) � 1,
Eqs. (A6) and (A7) reduce to

∂φs(x, t)

∂t
= Ds�φA(x, t) − kφA(x, t)φB(x, t),

∂φC(x, t)

∂t
= DC�φC(x, t) − kφA(x, t)φB(x, t). (A8)
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We identified here φs(j, t) = φs(x, t). If the system is not dilute,
Eqs. (A6) and (A7) do not reduce to the classical reaction-
diffusion equations as discussed in Ref. 40.

The governing equation for the fluctuation PDF, 
(ξ , t)
is obtained from the contributions to Eq. (A1) of the order
one. Thus, we obtain

∂
(ξ , t)

∂t
= (G1 + R1 + G2 + R2)
(ξ , t). (A9)

The Ri (i = 1, 2) refers to terms that originate in the reactive
transitions and are given by

R1 =
∑

j

{
−

[
∂

∂ξC(j )
− ∂

∂ξA(j )
− ∂

∂ξB(j )

]

× k[ξA(j )φB(j ) + ξB(j )φA(j )]

}
, (A10)

R2 =
∑

j

[
∂

∂ξC(j )
− ∂

∂ξA(j )
− ∂

∂ξB(j )

]2

kφA(j )φB(j ).

(A11)

The terms Gi (i = 1, 2) are due to the diffusion transitions.
They read as

G1 =−Ds

∑
js

∂

∂ξs(j )

[
�ξs(j ) + ξs(j )

∑
m

�φm(j ) − �φs(j )

×
∑
m

ξm(j ) + φs(j )
∑
m

�ξm(j ) − �ξs(j )
∑
m

φm(j )

]
,

(A12)

G2 = Ds

4

∑
s

∑
s[jj ′]

{
φs(j )

[
1 −

∑
m

φm(j ′)

]

+φs(j
′)

[
1 −

∑
m

φm(j )

]}

×
[

∂2

∂ξs(j )2
+ ∂2

∂ξs(j ′)2
− 2

∂2

∂ξs(j )∂ξs(j ′)

]
. (A13)

From the analytical expressions obtained for R1, R2, G1, and
G2, it is possible to express the sums as scalar product be-
tween the matrix A(t) and B(t) and the vector ξ of all the
fluctuations. Doing this we can express Eq. (A9) as

∂
(ξ , t)

∂t
= −∇ξ · [A(t) · ξ 
(ξ , t)]

+∇ξ · [B(t) · ∇ξ 
(ξ , t)]. (A14)

The latter is a linear multi-variate Fokker-Planck equation,
where A(t) and B(t) are 3� × 3� matrices that we can write
as a � × � block matrices

A =

⎡
⎢⎢⎢⎢⎣
A0(1) C1(2) 0 . . . C1(�)

C1(1) A0(2) C1(3) . . . 0

. . . . . . . . . . . . . . .

C1(1) 0 0 . . . A0(�)

⎤
⎥⎥⎥⎥⎦ with blocks

A0(j ) =

⎡
⎢⎣

aAA(j ) aAB(j ) aAC(j )

aBA(j ) aBB(j ) aBC(j )

aCA(j ) aCB(j ) aCC(j )

⎤
⎥⎦

C1(j ′) =

⎡
⎢⎣

cAA(j ′) cAB(j ′) cAC(j ′)

cBA(j ′) cBB(j ′) cBC(j ′)

cCA(j ′) cCB(j ′) cCC(j ′)

⎤
⎥⎦

, (A15)

in which

aAA(j ) = −kφB(j ) + DAh2(2 −
∑
m

�φm(j ) − �φA(j )

+ 2φA(j ) − 2
∑
m

φm(j )), (A16)

aAB(j ) = −kφA(j ) + DAh2(�φA(j ) + 2φA(j )), (A17)

aAC(j ) = DAh2(�φA(j ) + 2φA(j )), (A18)

aBA(j ) = −kφB(j ) + DBh2(�φB(j ) + 2φB(j )), (A19)

aBB (j ) = −kφA(j ) + DBh2(2 −
∑
m

�φm(j ) − �φB(j )

+ 2φB (j ) − 2
∑
m

φm(j )), (A20)

aBC(j ) = DBh2(�φB(j ) + 2φB(j )), (A21)

aCA(j ) = kφB(j ) + DCh2(�φC(j ) + 2φC(j )), (A22)

aCB(j ) = −kφA(j ) + DCh2(�φC(j ) + 2φC(j )), (A23)
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aCC(j ) = DCh2

(
2 −

∑
m

�φm(j ) − �φC(j )

+ 2φC(j ) − 2
∑
m

φm(j )

)
, (A24)

css(j
′) = −Dsh

2(1 + φs(j
′) −

∑
m

φm(j ′)), (A25)

csr (j ′) = −Dsh
2φs(j

′), (A26)

and

B =

⎡
⎢⎢⎢⎢⎣
B0(1) D1(2) 0 . . . D1(�)

D1(1) B0(2) D1(3) . . . 0

. . . . . . . . . . . . . . .

D1(1) 0 0 . . . B0(�)

⎤
⎥⎥⎥⎥⎦ with blocks

B0(j ) =

⎡
⎢⎣

bAA(j ) bAB(j ) bAC(j )

bBA(j ) bBB(j ) bBC(j )

bCA(j ) bCB(j ) bCC(j )

⎤
⎥⎦

D1(j ) =

⎡
⎢⎣

dAA(j ) 0 0

0 dBB(j ) 0

0 0 dCC(j )

⎤
⎥⎦

, (A27)

where

bAA(j ) = kφA(j )φB(j ) − Ds

2

(
φA(j )

(
1 −

∑
m

φm(j ′)

)

+φA(j ′)

(
1 −

∑
m

φm(j )

))
, (A28)

bAB(j ) = kφA(j )φB(j ), (A29)

bAC(j ) = −kφA(j )φB(j ), (A30)

bBA(j ) = kφA(j )φB(j ), (A31)

bBB(j ) = kφA(j )φB(j ) − Ds

2

(
φB(j )

(
1 −

∑
m

φm(j ′)

)

+φB(j ′)

(
1 −

∑
m

φm(j )

))
, (A32)

bBC(j ) = −kφA(j )φB(j ), (A33)

bCA(j ) = −kφA(j )φB(j ), (A34)

bCB(j ) = −kφA(j )φB(j ), (A35)

bCC(j ) = kφA(j )φB(j ) − Ds

2

(
φC(j )

(
1 −

∑
m

φm(j ′)

)

+φs(j
′)

(
1 −

∑
m

φm(j )

))
, (A36)

dss(j ) = −Dsφs(j )

(
1 −

∑
m

φm(j ′)

)
. (A37)

At large times we disregard contributions to matrices A
and B that are of the order of t−1, that is, the terms that are
proportional to the mean field φsj(t) and powers thereof. In
this approximation, the matrix B is zero and the only non-
zero components of matrix A are

aAA(j ) = 2DAh2, (A38)

aBB(j ) = 2DBh2, (A39)

aCC(j ) = 2DCh2, (A40)

css(j ) = −Dsh
2. (A41)

Thus, matrix A reduces to the discrete Laplacian operator. In-
serting this approximation into Eq. (18) and summing over j,
the volume term on the right side is zero. Furthermore, insert-
ing the approximations for A and B into Eq. (19) and sum-
mation over j directly gives Eq. (22).

APPENDIX B: FIRST MOMENT
OF THE FLUCTUATIONS

To calculate the first moment of the sj-th component of
the fluctuations, we multiply the Fokker-Planck equation by
ξ s(j). Integrating over the fluctuations domain �, we obtain∫

�

ξs(j )
∂
(ξ , t)

∂t
dξ = −

∫
�

ξs(j )(∇ξ · [A · ξ
(ξ , t)]

+∇ξ [B · ∇ξ
(ξ , t)])dξ . (B1)
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We integrate this expression by parts, obtaining volume and
surface terms. Using the Divergence theorem, we can evalu-
ate the integrals of divergence over a domain as integrals of
the argument of the divergence over the surface of the do-
main. Considering that the system is dilute, we assume that

(ξ , t) = 0 at the upper boundary (for ξ → √

N (1 − φ)) and
we obtain,

dξs

dt
= (A · ξ )s +

∑
s ′j ′

∫
∂�

[ξs(j )As ′j ′s ′j ′ξs ′(j ′)
(ξ , t)] · dn

+ 1

2

∑
s ′j ′

∫
∂�

[ξs(j )B · ∇s ′j ′
(ξ , t)] · dn

− 1

2

∑
s ′j ′

∑
s ′′j ′′

∫
�

esj · (BT · ∇s ′′j ′′ )
(ξ , t)dξ

−
∑
s ′j ′

∫
∂�

ξs(j )∂tξs ′ (j ′)∂t
(ξ , t)es ′j ′ · dn, (B2)

where ∂� is the surface of the domain �, dn is the vector or-
thogonal to the surface ∂�, and es is a vector with all compo-
nents equal to zero except the sj-th component which is equal
to one. This quantity derives from the integration of the term
∇s. For compactness of notation in the previous expression,
we denoted fs(j) = fs, fs ′ (j ′) = fs ′ , and fs ′′ (j ′′) = fs ′′ .

APPENDIX C: THE FOKKER-PLANK EQUATION IN
THE NON-REACTIVE ISLANDS REGIME

The number of reactants is a positively defined quan-
tity. Therefore the support of ξ is bounded, because ρs(j )
= φs(j ) + ξs(j )/

√
N is bounded between 0 and N. This

implies that the fluctuations ξ s(j) are bounded in the
subdomains

�s(j ) = {ξs(j )| −
√

Nφs(j ) ≤ ξs(j ) ≤
√

N [1 − φs(j )]},
(C1)

with � = ∏
sj �sj . As such the domain of fluctuations ξ is a

hypercube and each component of ξ s(j) is confined within a
segment whose size varies over time. In Appendix A, we de-
rived the Fokker-Planck equation for the evolution of 
(ξ , t).
We specify zero flux of 
(ξ , t) at the boundaries of the 3�-
dimensional domain �. For an infinite fluctuation domain
� and natural boundary conditions for 
(ξ , t), the solution
of Eq. (15) is a multi-variate Gaussian distribution.20, 41 In
this approximation, the solution is fully characterized by its
first and second moments. The boundary terms in Eq. (B2)
are zero. The average fluctuations ξ s(j ) decrease exponen-
tially with time. As long as the natural boundary conditions
are a valid approximation, the average behavior of the whole
system will not be affected by fluctuations. For situations in
which the mean field is not very large compared with the size

of fluctuations, the approximation of infinite fluctuation do-
main is no longer reasonable and boundary effects arise.
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