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a b s t r a c t

The mobility of humic-substance dominated natural organic matter (NOM) concentrated

from a freshwater wetland by reverse osmosis was examined in sand columns at pH 5e8,

in 0.001 M and 0.01 M NaClO4. Greater mobility was observed at higher pH and lower ionic

strength, although breakthrough curves (BTCs) for bulk NOM exhibited extensive tailing

under all conditions examined. Based on observations from previous batch experiments

indicating preferential adsorption of intermediate to high molecular weight (MW) NOM, we

postulate that ‘adsorptive fractionation’ of the NOM pool leads to the observed tailing

behavior, and develop a novel approach to assess the effects of polydispersity on transport

of NOM and associated contaminants. BTCs for different NOM fractions were constructed

by separating column effluent MW distributions determined by high-pressure size exclu-

sion chromatography into five discrete intervals or ‘bins’ and calculating the mass of NOM

within each bin at four sampling times. Observed retardation factors (Ro), reflecting median

arrival time relative to that of a nonreactive tracer, ranged from 1.4 to 7.9 for the various

bins and generally increased with MW. NOM retarded transport of the contaminant metal

Cd (2.5 ppm, in 0.01 M NaClO4) slightly at pH 5 and more substantially at pH 8. Although Cd

had little or no effect on bulk NOM transport, retention of the more aromatic, IMW-HMW

NOM appeared to be slightly enhanced by Cd. Study results demonstrate that heterogeneity

in retardation as a function of MW is likely a major factor contributing to bulk NOM BTC

tailing and may have important implications for contaminant transport.

ª 2013 Published by Elsevier Ltd.

1. Introduction

Natural organic matter (NOM) is ubiquitous in aquatic and
terrestrial environments and influences transport of heavy
metals (Bryan et al., 2005), radionuclides (McCarthy et al.,
1998), and hydrophobic organic contaminants (Johnson and
Amy, 1995). A quantitative understanding of NOM transport
is thus essential for assessing potential contaminantmobility.
Yet because NOM is a polydisperse mixture of molecules
with a wide range of molecular weights (MWs), chemical

compositions, and functional group identities and distribu-
tions (Aiken et al., 1985; Cabaniss et al., 2000), modeling of
NOM transport is challenging.

NOM subsurface transport is controlled at least in part
by sorption to the porous medium, which is influenced by
such factors as: (1) mineral surface properties, (2) flow rate,
(3) solution conditions such as NOM concentration, pH, ionic
strength (I ), and concentrations of multi-valent cations, and
(4) the physicochemical characteristics of the NOM itself (e.g.,
Tipping, 1981; Vermeer et al., 1998; Avena and Koopal, 1999;
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Namjesnik-Dejanovic et al., 2000; Zhou et al., 2001; Hur and
Schlautman, 2003; Maurice et al., 2004; Weng et al., 2006;
Maurice, 2009). The various components of NOM display a
range of adsorption rates and affinities as determined largely
by MW (e.g., Meier et al., 1999; Namjesnik-Dejanovic et al.,
2000; Cabaniss et al., 2000; Zhou et al., 2001; Hur and
Schlautman, 2003), although other factors (at least some of
which often correlate with MW) including aromaticity,
carboxyl group content, and amino acid residues can also be
important (McKnight et al., 1992). Preferential adsorption of
intermediate to high MW components can lead to different
average properties of NOM in the dissolved versus adsorbed
phases (e.g., Meier et al., 1999; Namjesnik-Dejanovic et al.,
2000; Zhou et al., 2001; Hur and Schlautman, 2003; Pullin
et al., 2004), a process often termed ‘adsorptive fraction-
ation’ (McKnight et al., 1992). Adsorptive fractionation can
involve both kinetic and thermodynamic (stability) effects; for
example, Zhou et al. (2001) observed in batch studies of fulvic
acid adsorption on goethite that lower MW (LMW) compo-
nents adsorbed quickly but were gradually replaced by inter-
mediate to higher MW (IMW-HMW) components. This has
important implications for contaminant mobility because
various NOM components differ in their abilities to bind and
transport contaminants (Cabaniss et al., 2000).

In both column experiments and field studies, break-
through curves (BTCs) for bulk NOM are characterized by an
initial steep rise followed by extensive tailing, suggesting
rapid breakthrough of certain NOM components followed by
slow breakthrough of others (e.g., Dunnivant et al., 1992;
McCarthy et al., 1996). BTCswith such extensive tailing cannot
be fit by the classical advection dispersion equation (ADE) e
the ‘textbook’ standard for solute transport in saturated
porousmediaewhich assumes linear, equilibriumadsorption
of a single solute. A variety of modifications can be made to
the ADE to model NOM BTC tailing; to date, most efforts have
focused on the effects of heterogenous adsorption kinetics
using parameters determined from batch experiments. One
approach treats NOM as an essentially homogenous solute
and accounts for adsorption heterogeneity by postulating two
different types of adsorption sites with fast versus slow
kinetics (Jardine et al., 1992; Dunnivant et al., 1992; McCarthy
et al., 1993, 1996). In another approach (e.g., van de Weerd
et al., 1999, 2002), the porous medium is modeled with a sin-
gle type of adsorption site, and competitive adsorption
parameters calculated for several NOM fractions are
incorporated into a transport code.

Here, we demonstrate an alternative approach to assess
whether BTC tailing may arise from heterogeneity in the
adsorption affinities of different NOM MW intervals. Column
experiments were conducted using a naturally Fe- and
Al-oxide coated quartz sand and an NOM sample previously
shown to undergo adsorptive fractionation to goethite
(á-FeOOH) in batch experiments (Pullin et al., 2004). Transport
was investigated at pH 5e8 in 0.001M and 0.01MNaClO4. NOM
MWdistributions of column influent and of effluent at various
times were measured and the transport rates of each MW
interval calculated directly from resulting data. The primary
objective of this study was to quantify the mobilities of
different NOM fractions over a range of experimental condi-
tions and thus determine whether BTC tailing might result, at

least in part, from NOM polydispersity. A secondary objective
was to determine the effects of NOM and of the contaminant
metal Cd(II) on one another’s mobility.

2. Materials & methods

2.1. Natural organic matter

NOMwas concentrated on-site from surface water at Nelson’s
Creek, a first-order stream in the Ottawa National Forest (MI,
USA), using a portable RealSoft PROS/1S reverse osmosis (RO)
system (Sun et al., 1995). The physicochemical properties of
the RO concentrate and of raw filtered water collected
simultaneously were compared by Pullin et al. (2004) and are
summarized in Table S1 in the supplementary data (SD). The
weight and number average molecular weights (Mw and Mn,
respectively) are higher for the RO concentrate than for the
bulk water, likely reflecting removal of low molecular weight
components and/or potential condensation or coagulation on
the RO membranes as suggested by Maurice et al. (2002).
Although the values of Mw, Mn, and the polydispersity (ñ) are
consistent with those of aquatic fulvic acids (e.g., Chin et al.,
1994), we use the more general term NOM because the
humic fractions are strictly (operationally) defined by XAD
resin isolation (Aiken et al., 1985).

2.2. Geosorbent

Columns were packed with naturally Fe/Al-oxide coated
quartz sand from the U.S. Department of Energy research site
in Oyster, Virginia (hereafter referred to as the Oyster sand).
Characteristics of this sand are described by Dong et al. (2002)
and in the SD. This geosorbent was chosen because many
quartz sands contain coatings that enhance NOM adsorption
relative to that of ‘pure’ quartz surfaces (e.g., Chi and Amy,
2004; Wei et al., 2010). The sand was dry sieved with a 20e40
mesh sieve (0.842e0.420mm), rinsed repeatedly with distilled,
deionized water (DDI), and dried overnight at 55 "C. Because
the sand did not contain internal porosity, we shall refer to
NOM sorption as ‘adsorption’ and assume no ‘absorption.’

2.3. Column experiments

The limited supply of NOM constrained the column size,
number and breadth of experiments, and number of replicate
experiments. Columns consisted of a borosilicate glass barrel
10 cm long with 1.0 cm inner diameter (KimbleeKontes;
Vineland, NJ) andwere rinsed repeatedly with DDI water, then
acetone, and dried at 60 "C prior to each use. Columns were
wet packed by filling with background electrolyte and slowly
adding sand grains while tapping gently to remove air bub-
bles. Porosity was calculated from column weight under dry
versus saturated conditions. A gravity-feed system passed
solutions through the stationary sand grains at a constant
flow rate of w2 mL/min 20e25 mL (w6e7 pore volumes) of
background electrolyte was passed through the column prior
to introducing the experimental solution. All column experi-
ments were repeated in duplicate.
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Freeze-dried Nelson’s Creek RO concentrate was combined
with deionized (MilliQ) water and vacuum filtered through a
0.45 mmpolycarbonatemembrane filter tomake an NOM stock
solution. NOM sample solutions (5 ppm C; pH 5, 6, 7, 8) were
then prepared by mixing NaClO4 (0.001 M or 0.01 M) back-
ground solutions with the NOM stock. Solution pH was
adjusted with HCl and/or NaOH. The non-adsorbing conser-
vative tracer sulforhodamine B (SigmaeAldrich; St. Louis, MO)
was used at both ionic strengths and pH 5 and 8. Similar
experiments were run to determine the effects of NOM (0, 5,
and 20 ppm C) on Cd transport at pH 5 and 8, in 0.01 M HClO4.
Cd solutions (2.5 ppm) were prepared from 1000 ppm Cd ICP
stock in 2% HCl (Fisher Scientific; Pittsburgh, PA).

2.4. Solution analysis

For initial/influent and final effluent solutions, UV/visible
absorbance (l ¼ 200e600 nm) was measured using a Varian
Cary 3 spectrophotometer with 1.0 cm quartz cells; dissolved
organic carbon concentration ([DOC]) of a subset of samples
was measured using a Shimadzu TOC5000. In-line measure-
ments of [DOC] were not conducted, because the analyzer in
our lab tends to require relatively large samples at low [DOC]
(as described in Kreller et al., 2005), making continuous mea-
surements impossible for small columns. Effluent NOM was
monitored continuously using an in-line (Hewlett Packard
8453) UV/Vis spectrophotometer at l ¼ 254 nm, a wavelength
that has been broadly used as a surrogate for [DOC] in humic-
rich waters (such as studied here; Dobbs et al., 1972), and that
tends to be highly sensitive and reproducible for small sam-
ples at low [DOC], as occur at the earliest times of BTCs.
Absorbance at 565 nm was used to monitor the non-reactive
tracer sulforhodamine B. Effluent absorbance values were
normalized to the absorbance of the influent solution, and
BTCs for NOM and tracer solutions were constructed by plot-
ting the normalized absorbance (abs/abs0) versus the number
of pore volumes (dimensionless) eluted from the column.

Retention of NOM in the columns is discussed in terms of
the observed retardation factor (Ro), equal to the number of
pore volumes at which [abs/abs0]254nm ¼ 0.5 (50% retention;
e.g., Liu and Amy, 1993). Precise estimates of Ro were obtained
by linear interpolation between the nearest data points above
and below the 50% retention mark. Values of Ro averaged
across repeat experiments are denoted by Ro.

Subsamples (5 mL and 1.5 mL) of column influent and
effluent (after passing through the in-line spectrophotometer)
were collected for further analysis. Inductively coupled
plasma-optical emission spectrometry (ICP-OES; Perkin Elmer
Optima 2000 DV) was used to determine [Cd]. NOM MW dis-
tributions were determined by high-pressure size exclusion
chromatography (HPSEC; Waters 2695 HPLC system, Waters
Protein Pak 125 modified silica column, 0.1 M NaCl mobile
phase; detection at 254 nm by Waters 2996 photodiode array)
following Chin et al. (1994) and Zhou et al. (2000). Although
several studies have suggested that in-line [DOC] detection on
HPSEC can be important for some NOM samples (e.g., Huber
and Frimmel, 1992; Frimmel and Huber, 1996; Huber et al.,
2011; Kawasaki et al., 2011), previous research by our group
suggested that UV/vis detection (l ¼ 254 nm) was appropriate
for the RO concentrate used here (Kreller et al., 2005). For our

HPSEC system, in-line detection by UV/vis requires smaller
samples and provides greater reproducibility and sensitivity
than [DOC] detection.

MW distributions of column influent and effluent were
determined from HPSEC retention time using acetone
(Aldrich, 58 Da), salicylate (Aldrich, 138 Da), and polystyrene
sulfonate (PSS) polymers from Polysciences, Inc. (1430 Da;
4950 Da; 6530 Da; 15,200 Da) as calibration standards (Zhou
et al., 2000). The MW distribution (mass vs. log10 MW) of
NOM retained in the columns at each time period was then
calculated as:

m
!
log10ðMWÞ; ti

"
retained

¼ m
!
log10ðMWÞ

"
influent

&m
!
log10ðMWÞ; ti

"
effluent

(1)

where m is mass of NOM in solution (measured as absor-
bance), MW ismolecular weight, and ti denotes one of the four
sampling intervals. The distributions of NOM retained in the
column at each sampling period were compared to the MW
distribution of the influent solution. The weight average MW
(Mw; calculated as by Cabaniss et al. (2000), Zhou et al. (2000) of
influent and effluent solutions were also compared.

2.5. Determination of MW bins

To calculate the differences in transport rates between NOM
MW fractions, the area under the HPSEC curve for the influent
NOM solution was divided into five intervals of equal mass.
The chromatogram was first truncated using a LMW cutoff of
50 Da or 2% of the maximum absorbance (whichever is
higher), and a HMWcutoff of 1% of themaximum absorbance,
as recommended by Zhou et al. (2000). Assuming a log-normal
distribution model, as proposed by Cabaniss et al. (2000) (and
demonstrated by our data e see Section 3.4), the mean (mm)
and standard deviation (s) of the NOMmass distribution were
determined by fitting the HPSEC chromatogram (abs254nm vs.
log10(MW)) using a Gaussian peak shape. The mass m(a, b)

within MW range (Ma, Mb) was then calculated from the
log-normal cumulative distribution function (CDF):

mða;bÞ ¼
1

s
ffiffiffiffiffiffi
2p

p
ZMb

Ma

1
MW

exp

 
&
$
log10ðMWÞ & mm

%2

2s2
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dðMWÞ

¼ 1
2

&
erf
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s
ffiffiffiffiffiffi
2p

p
(
& erf

'log10ðMbÞ
& mm

s
ffiffiffiffiffiffi
2p

p
()

(2)

where erf(x) denotes the error function. Normalized BTCs for
each MW interval were constructed by normalizing the
effluent chromatogram to the CDF of the influent solution at
each of four sampling times and used to determine Ro for each
MW interval.

3. Results and discussion

3.1. Tracer and bulk NOM BTCs

Conservative tracer and NOMBTCs (abs/abs0 vs. pore volumes
eluted) are presented in Figs. 1 and 2, and values of Ro for
duplicate experiments (‘a’ and ‘b’) are given in Table 1. The
average Ro ¼ 1.0 for the conservative tracer, which is expected
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for a non-reactive solute. NOM solutions all showed greater
retention than the tracer (Ro ' 1.5). NOM retention increased
with increasing I; for the data at pH 5 (Fig. 1), Ro ¼ 4.7 for
0.001 M and 5.9 for 0.01 M NaClO4, respectively. Retention also
decreased with increasing pH (Fig. 2): in 0.001 M NaClO4,
Ro ¼ 4.7, 2.7, 2.0, and 1.5 pore volumes for pH 5, 6, 7 and 8,
respectively.

The classical ADE model provides an excellent fit to the
experimental BTCs for the sulforhodamine B tracer (average
r2 ¼ 0.9986; Fig. 3a). However, BTCs for bulk NOM displayed
significant retardation and tailing at late times that could not

be captured by this model (Fig. 3b). For this reason, ADEmodel
parameters are not presented here. The failure of the ADE
model to capture BTC tailing is attributed to NOM poly-
dispersity, as discussed in Section 3.5.

3.2. Bulk NOM retention

Observed retardation factors for bulk NOM transport under
the range of experimental conditions examined are summa-
rized in Table 1. Under all conditions examined, Ro values are
consistently much greater for NOM than for the tracer, indi-
cating that adsorption (and/or desorption) reactions strongly
affect NOM mobility (Ro ¼ 1.5e5.9). NOM retention is attrib-
uted to adsorption onto the column sands rather than to
degradation and/or straining because: 1) experiments were
short in duration, limiting potential for microbial activity
which could lead to NOM degradation; 2) previous batch and
column experiments have demonstrated adsorption of NOM
onto mineral surfaces (e.g., Tipping, 1981; Dunnivant et al.,
1992; Gu et al., 1996; Meier et al., 1999; Namjesnik-Dejanovic
et al., 2000; Zhou et al., 2001; Guo and Chorover, 2003; Chi
and Amy, 2004); and 3) experiments performed in flow-
through columns using an uncoated quartz sand and
various NOM samples resulted in little retention of NOM
(Weigand and Totsche, 1998; Wei et al., 2010).

Observations of decreased retention (hence lower Ro;
Table 1, Fig. 2) with increasing pH agree with results of

Fig. 1 e NOM retention on Oyster sand increased as a
function of background electrolyte (NaClO4) concentration
at pH 5. Black dashed line: conservative tracer (0.01 M,
pH 5a); black solid line: 0.001 M, pH 5a; gray dashed line:
0.01 M, pH 5b. Arrows along the horizontal axis represent
effluent sampling times for HPSEC analysis.

Fig. 2 e NOM retention at 0.001 M as a function of pH (data
plotted are pH 5a, 6b, 7b, and 8b). Overall retention
decreases with increasing pH. Arrows along the horizontal
axis represent effluent sampling times for HPSEC analysis.

Table 1 e Summary of BTCs for bulk NOM and
sulforhodamine B tracer under various solution
conditions in experiments with and without Cd.

I [M NaClO4] pH Flow rate
[mL/min]

Pore volume
[cm3]

Ro

NOM only 0.001 5a 2.0 3.4 4.9
5b 2.0 3.3 4.7

0.001 6a 2.0 3.3 2.7
6b 2.0 3.2 2.7

0.001 7a 2.0 3.4 2.0
7b 2.0 3.3 2.0

0.001 8a 2.0 3.3 1.5
8b 2.0 3.2 1.5

0.01 5a 2.0 3.5 5.9
5b 2.0 3.5 5.9

0.01 6a 2.0 3.5 5.1
6b 2.0 3.5 5.1

0.01 7a 2.0 3.4 4.4
7b 2.0 3.1 4.4

0.01 8a 2.0 3.3 4.0
8b 2.0 3.4 4.0

NOM þ Cd 0.01 5a 1.9 3.4 5.7
5b 1.8 3.6 5.2

0.01 6a 1.7 3.6 4.9
6b 2.0 3.5 4.8

0.01 7a 2.0 3.6 3.8
7b 1.8 3.5 4.1

0.01 8a 2.1 3.4 3.8
8b 2.0 3.3 3.1

Tracer 0.01 5a 2.0 3.4 1.1
5b 2.1 3.3 1.0

0.01 8a 1.8 3.4 1.0
8b 2.0 3.4 0.8
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previous batch studies showing that NOM adsorption affinity
tends to decrease with increasing pH (e.g., Tipping, 1981;
Vermeer et al., 1998; Zhou et al., 2001). Retention was also
enhanced at higher I (Table 1, Fig. 1). In batch experiments,
humic acid adsorption to Fe/Al-oxides has been shown to in-
crease with increasing I (Schlautman and Morgan, 1994;
Vermeer et al., 1998; Filius et al., 2000; Münch et al., 2002;
Saito et al., 2004; Weng et al., 2006), whereas studies of I
effects on fulvic acid adsorption have produced mixed results
(Schlautman and Morgan, 1994; Filius et al., 2000; Weng et al.,
2006). It is likely that a combination of the effects of surface
charge, charge screening, NOM hydrophobicity, and/or
conformational changes governs NOM adsorption under
different I conditions (e.g., Vermeer et al., 1998; Münch et al.,
2002; Au et al., 1999; Pullin et al., 2004).

3.3. Preferential retention of NOM components

UV absorbance ratios and the MW distribution of NOM in the
column effluent indicated preferential retention (due to pref-
erential adsorption) of HMW, more aromatic NOM compo-
nents. The initial 280 nm/254 nm ratio in the column effluent
was less than that of the influent (w0.7 and 0.8, respectively;
Fig. S1), indicating preferential retention of more aromatic
components (Traina et al., 1990) and greater mobility of
slightly less aromatic components. Other investigators have
observed a decrease in the aromaticity ormolar absorptivity at
280 nm of NOM remaining in solution in batch adsorption
experiments (e.g., Dunnivant et al., 1992; McKnight et al., 1992;
Zhou et al., 2001; Guo and Chorover, 2003; Pullin et al., 2004).
Similarly, the Mw of NOM in the column effluent (Table 2)
remained lower than that of the influent, indicating prefer-
ential retention of IMW-HMW components within the col-
umn. Decrease in NOM Mw upon adsorption has been
observed in both batch and column experiments (e.g., Meier
et al., 1999; Namjesnik-Dejanovic et al., 2000; Guo and
Chorover, 2003; Pullin et al., 2004).

As the experiments progressed, overall NOM retention
decreased, but preferential adsorption persisted. The peak of
the MW distribution for NOM retained in the column (calcu-
lated from HPSEC data as the difference between influent and
effluent chromatograms at each of four sampling times t1e4)
shifted toward lower maximum absorbance, but higher
log10 MW (from 3.2 to 3.3 or 3.4 for the 0.001 M or 0.01 M ex-
periments, respectively) over time. The ‘retained’ NOM MW
distributions only reveal what is retained in the column at a
particular point in time, thus may be masking transient
effects of NOM adsorption exchange at the mineral surface

a

b

Fig. 3 e Advectionedispersion equation (ADE) fit to
experimental breakthrough curves (BTCs) for the non-
reactive tracer sulforhodamine B (0.01 M, pH 5a; a) and for
NOM (0.001 M, pH 5a; b). While the best-fit ADE model
provides a near-perfect match to the tracer data, the NOM
data show strong tailing at late times that is not captured
well by the ADE model.

Table 2 e Weight average molecular weight, Mw (in
Daltons), of influent and effluent NOM at t1e4 from
column experiments with 5 ppmC in 0.001MNaClO4 and
0.01 M NaClO4 with or without Cd.

pH 6 pH 8

Sample Mw Sample Mw

0.001 Me5 ppm C
Influent 2030 Influent 1970
t1 572 t1 2090
t2 2110 t2 2040
t3 2010 t3 2030
t4 2010 t4 2050

0.01 Me5 ppm C
Influent 2170 Influent 2280
t1 411 t1 699
t2 1240 t2 1900
t3 1920 t3 2120
t4 2050 t4 2200

0.01 Me5 ppm C þ Cd
Influent 2250 Influent 2290
T1 509 t1 522
T2 1020 t2 1640
T3 1610 t3 1980
T4 1880 t4 2070
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that occur between sample points and cannot be inferred
directly from these macroscopic measurements. Neverthe-
less, they provide a measure of the fraction of influent NOM
retained (adsorbed) within the column and indicate how this
distribution evolves over time.

At t1, essentially all NOM components were retained, with
only a small proportion of LMW material passing through the
column, hence low effluent Mw (Fig. 4, Fig. S2). The 280
nm/254 nm absorbance ratio and Mw of the effluent gradually
increased with time, approaching the influent absorbance
ratio and Mw by t4. These changes occurred more quickly at
lower I and higher pH, suggesting that preferential adsorption
of IMW-HMW components was more persistent under condi-
tionsatwhichmoreoverallNOMadsorptionoccurred (Table2).

These results are consistent with results of batch adsorp-
tion experiments on NOM adsorption to goethite (Zhou et al.,
2001; Pullin et al., 2004) which showed that (1) a portion of
LMW components did not adsorb under any conditions, and
(2) ‘adsorptive fractionation’ increased as a function of surface
coverage due to increased competition for surface sites. At
high coverage, when sorbent molecules greatly exceeded
available sorbent surface sites, greater competition favored
adsorption of larger molecules. However, the very highest
MW material did not adsorb preferentially at high surface
coverages, perhaps due to increased electrostatic repulsion
between these highly chargedmolecules and nearby adsorbed
molecules, particularly at high solution pH. Conversely, at low
pH, protonation promoted adsorption of HMW components
by leading to less negatively charged molecules and likely
stabilization via hydrophobic interactions.

Kinetic limitationsmight explain, at least in part, the lower
adsorption affinity of the highest MW fraction in the column
experiments. Competitive displacement during adsorption of
polymers of different sizes has been well documented;
similarly, fast-adsorbing LMW fractions of NOM may be

successively replaced by slow-adsorbing HMW fractions (e.g.,
Gu et al., 1996). If this displacement does not achieve steady
state, then adsorption of HMW fractions may be under-
estimated. Zhou et al. (2001) reported that fast-adsorbing
LMW components of fulvic acid were replaced on goethite
within a few minutes by larger components, which formed
more stable adsorption complexes. At high surface coverages,
even after attainment of apparent steady state (in terms of
both total adsorbed DOC and MW distributions), lack of
adsorption of the highest MW components persisted.
Adsorption of HMW components may be inhibited by an
interfacial electrostatic barrier that increases with molecular
size, hence increased total molecular charge, as observed by
de Laat and van den Heuvel (1995) for polyacrylic acid (PAA) at
low salt concentrations.

3.4. NOM retardation as a function of MW

To quantify the different transport behaviors of the various
NOM components (by MW), the MW distribution was divided
into bins (Fig. 5). HPSEC chromatograms for all influent solu-
tions exhibited a unimodal Gaussian peak [log10(MW)w N(3.2,
0.3)], although with some tailing on the LMW side of the peak.
Cabaniss et al. (2000) observed similar tailing in experimen-
tally determinedMWdistributions for aquatic fulvic acids and
attributed the asymmetry to sorption interactions within the
stationary phase of the HPSEC column. Despite the slight
asymmetry, the chromatogram is well described as a
log-normal MW distribution. Minor variability among the MW
distributions of influent NOM solutions used in the experi-
ments led to slight differences in the MW bins that divide the
chromatogram into equal segments; average MW cutoffs are
reported in Table 3.

Average Ro values for each of the MW bins are listed in
Table 3. Although there are only four data points per bin (due
to sampling constraints), trends in NOM component mobility
similar to those observed for bulk NOM are clearly observed in
the HPSEC data. Differences in Ro were observed across MW

Fig. 4 e Molecular weight (MW) distributions of NOM
retained in the column (calculated as the difference
between column influent and effluent at a particular time t)
for each of four sampling periods compared to the influent
MW distribution from experiments conducted with 5 ppm
C in 0.01 M NaClO4, pH 6b. Dashed vertical line represents
the MW peak of the influent solution.

Fig. 5 e NOM MW distribution determined by HPSEC
(‘experimental’), and approximated by a log-normal model
(‘fitted’). Vertical lines separate the log-normal distribution
into MW intervals of equal mass.
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intervals for a given set of experimental conditions. A one-
way analysis of variance (ANOVA) revealed significant differ-
ences in retardation amongst the five MW bins (Fcrit
(4, 5)¼ 5.19, p¼ 0.05; see the SD for details). Ro was greatest for
IMW-HMW fractions, consistent with previous observations
of NOM adsorptive fractionation in batch experiments (Zhou
et al., 2001; Hur and Schlautman, 2003; Pullin et al., 2004).
Fig. 6 shows BTCs for all five MW bins at 0.01 M and pH 6.
Similar patterns were observed for the other experiments
(data not shown). As with the bulk NOM transport data, Ro for
individual MW bins tended to decrease with increasing pH
and to increase with increasing I. For example, Ro of MW2
decreased from 4.6 to 3.7, 1.8, and 1.7 at pH 5, 6, 7, and 8,
respectively in 0.001 M NaClO4 and from 5.7 to 5.0, 3.6, and 3.6
at the same pH values in 0.01 M NaClO4.

3.5. Effects of NOM polydispersity on BTC tailing

Tailing of the bulk NOM BTCs cannot be attributed to varia-
tions in flow velocity within the porous medium, because
tailing is not observed in the tracer BTCs (Fig. 3). Drawing on

research in contaminant hydrology, which has shown that a
broad range of retardation factors distributed randomly
throughout a system can lead to BTC tailing (Dentz and Castro,
2009; Dentz and Bolster, 2010), and based on the observation of
differences in retardation for different MW bins (Table 3), we
attribute the bulk NOM BTC tailing to NOM geochemical het-
erogeneity. Although the cited studies focused on spatially
variable retardation resulting from heterogeneity of the
porous medium, the equivalence between spatial and
ensemble averages (known as the ‘ergodic’ hypothesis; Dagan,
1990) implies that the same principle could be used to describe
transport of an ensemble of NOM components each displaying
a unique retardation factor.

3.6. Effects of NOM on Cd and of Cd on NOM retention

In the absence of organic ligands, Cd(II) adsorption to oxides
and clays tends to follow an adsorption edge; i.e., adsorption
increases with increasing pH (e.g., Johnson, 1990; Angove
et al., 1997). In contrast, NOM adsorption to minerals tends
to decrease with increasing pH (Tipping, 1981). Cd adsorption
in ternary systems (metal-ligand-mineral surface) is difficult
to predict, as the overall effect of NOM on Cd adsorption de-
pends on numerous competing interactions (Davis and
Bhatnagar, 1995). Cd adsorption can be decreased if NOM
bound to mineral surfaces blocks adsorption sites and/or if
formation of dissolved Cd-NOMcomplexes prevents a fraction
of the metal from adsorbing. Alternatively, cationic Cd
adsorption could be enhanced by formation of ternary surface
complexes and/or by surface charge effects when negatively-
charged NOM adsorbs to positively-charged oxide or clay
surfaces (Vermeer et al., 1999). Previous studies have shown
that organic ligands can enhance, inhibit, or have no effects
on Cd adsorption to oxides and clays depending upon the
nature of the ligand and the mineral surface, along with pH
and Cd concentration (Floroiu et al., 2001; Bäckström et al.,
2003; Hepinstall et al., 2005; Alessi and Fein, 2010).

In the present study, a general increase in Cd retardation
(hence Cd adsorption) was observed with increasing NOM
concentration (0, 5, and 20 ppm C) at pH 5 and 8 (Table 4,
Fig. S3). Because [Cd] was measured in discrete effluent sam-
ples rather than continuously, not enough data points are
available to assess potential effects of NOM on Cd BTC tailing.
This topic warrants further investigation.

Table 3 e Average Ro for individual NOM MW fractions under various solution conditions. Average MW cutoffs between
each of the five intervals are reported in Daltons (Da).

I[M NaClO4] pH Ro

MW1 [60e930 Da] MW2 [930e1460 Da] MW3 [1460e2130 Da] MW4 [2130e3330 Da] MW5a [>3330 Da]

0.001 5 3.4 4.6 5.5 5.8 5.0
6 3.2 3.7 3.9 3.9 3.6
7 1.4 1.8 2.2 2.0 1.6
8 1.5 1.7 2.0 1.9 1.6

0.01 5 4.1 5.7 6.8 7.9 7.7
6 3.5 5.0 5.9 6.6 6.8
7 2.6 3.6 4.1 4.6 4.7
8 2.8 3.6 4.1 4.6 4.8

a HMW cutoff ¼ 1% of chromatogram peak height; values (not shown) vary due to tailing of HPSEC data.

Fig. 6 e BTCs for NOM fractions of differing MW for
experiments conducted at 0.01 M, pH 6b. Marker symbols
indicate the proportion of the influent mass (measured as
absorbance at 254 nm) within a particular MW range
detected in the sand column effluent, as determined from
HPSEC data at four sampling times.
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Cd had little effect on bulk NOM retention. While Ro

decreased slightly in the presence of Cd at pH 5 (Ro ¼ 5.5, 5.9
with and without Cd, respectively) and at pH 8 (Ro ¼ 3.4, 4.0),
BTCs for each pair of experiments were nearly indistinguish-
able (Fig. 7). These results agree with the observations of
Floroiu et al. (2001), who found that Cd did not affect PAA
adsorption to aluminum oxide (ã-Al2O3), and Vermeer at al.
(1998, 1999), who observed that Cd (10&4 M) slightly
enhanced the adsorption of purified Aldrich humic acid to
hematite in batch experiments at pH 9, but had no significant
effect at lower pH.

Although Cd only slightly affected bulk NOM retention,
preferential adsorption of the more aromatic, IMW-HMW
components was enhanced (Figs. S4, S5). MW distributions
of adsorbed NOM compiled for the four sampling intervals
displayed a more pronounced shift toward IMW-HMW com-
ponents in the presence of Cd (Fig. 8) and the increase in
effluent Mw occurred more slowly in 5 ppm C experiments
with Cd than without Cd (Table 2). This was not an effect of
increased overall NOM adsorption, hence increased

competition, because NOM Ro values decreased slightly in the
presence of Cd (Table 1). It may indicate that Cd binding to
NOM is MW specific, as observed for many metals (Cabaniss
et al., 2000).

4. Conclusions and implications

NOM consists of a mixture of organic molecules whose
chemical behavior (e.g., hydrophobicity, affinity for metals
and other contaminants, and adsorption affinity) strongly
correlates with MW. Heterogeneity in NOM adsorption to
porous media leads to strong BTC tailing that cannot be
described by the classical ADE. Previous studies have relied on
batch experiments to determine kinetic parameters to capture
tailing in transport models. Here, we apply an alternative
approach that uses analysis of column influent and effluent
MW distributions to calculate observed retardation Ro for
different MW intervals. Results demonstrate differences in
the transport rates for NOM subcomponents, thus suggesting
that NOM heterogeneity plays a clear role in tailing.

This research provides a new multi-component approach
to conceptualizing NOM transport, which is needed to
describe the complex behavior of such a heterogenous
mixture. By determining transport rates not just for the bulk
NOM sample, but for its individual components, we should
ultimately be able to understand and model transport of
contaminants and/or nutrients preferentially associated with
different NOM fractions. The newly quantified retardation
factors for different NOM components also set the stage for
our group’s ongoing research applying a new generation of
anomalous transport models designed to address heteroge-
neity, such as continuous time random walks (CTRW) and
multi-rate mass transport (MRMT) approaches, to modeling of
NOM and associated pollutants.

Table 4 e Summary of BTCs for Cd in experiments with
various concentrations of NOM.

NOM
[ppm C]

pH Flow rate
[mL/min]

Pore volume
[cm3]

Ro

0 5a 2.0 3.3 1.6
5b 2.1 3.3 2.5

0 8a 2.1 3.3 4.2
8b 2.0 3.3 4.4

5 5a 2.1 3.3 1.5
5b 1.9 3.3 1.8

5 8a 2.0 3.3 6.2
8b 1.9 3.2 6.7

20 5a 1.9 3.6 2.4
5b 1.9 3.7 2.6

20 8a 2.1 3.6 4.4
8b 2.0 3.6 4.5

Fig. 7 e Effects of Cd (2.5 ppm) on NOM (5 ppm C) retention
in Oyster sand. Cd slightly decreased NOM retention
(presumably through effects on adsorption) onto Oyster
sand in 0.01 M NaClO4, pH 5a (solid lines) and pH 8a
(dashed lines).

Fig. 8 e MW distributions of the ‘total’ effluent NOM (black
lines) and ‘total’ adsorbed NOM (gray lines) compiled over
the four HPSEC samples for each of the 5 ppm C
experiments at pH 6 or 8 in 0.001 M NaClO4 and 0.01 M
NaClO4 with or without Cd. The black vertical line
represents the peak log MW of the influent solution.
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