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Communication: A full solution of the annihilation reaction A + B → ∅
based on time-subordination
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The connection between the governing equations of chemical reaction and the underlying stochas-
tic processes of particle collision and transformation have been developed previously along two
end-member conditions: perfectly mixed and maximally diffusion-limited. The complete governing
equation recognizes that in the perfectly mixed case, the particle (i.e., molecular or macro-particle)
number state evolution is Markovian, but that spatial self-organization of reactants decreases the
probability of reactant pairs finding themselves co-located. This decreased probability manifests
itself as a subordination of the clock time: as reactant concentrations become spatially variable
(unmixed), the time required for reactants to find each other increases and the random opera-
tional time that particles spend in the active reaction process is less than the clock time. For ex-
ample, in the system A + B → ∅, a simple approximate calculation for the return time of a
Brownian motion to a moving boundary allows a calculation of the operational time density, and
the total solution is a subordination integral of the perfectly-mixed solution with a modified in-
verse Gaussian subordinator. The system transitions from the well-mixed solution to the asymptotic
diffusion-limited solution that decays as t−d/4 in d-dimensions. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4800799]

I. INTRODUCTION

Accurate predictions of combined transport and re-
action are required in settings as variable as particle
physics,1, 2 biology,3 economics,4–6 social sciences,7 technol-
ogy transfer,8 warfare studies,9 and ecology.10 The predictions
are often confounded by the coupled effects of transport and
reaction, which may lead to incomplete mixing of the reac-
tants. The primary consequence of incomplete mixing is that
the rate of reaction can be slowed many orders-of-magnitude
relative to the rate that is measured in a well-mixed (labo-
ratory) setting. Incomplete mixing can occur for a variety of
reasons including the natural emergence of stochastic fluctua-
tions in concentration,1, 11, 12 irregular boundary conditions,13

and heterogeneity in flow systems14–17 such as those im-
posed by porous media. When segregation of reactants occurs,
the reaction is limited by how quickly they can be brought
together, which is dictated by the underlying transport
process.11, 18–24 The experimental observations of incomplete
mixing from micron- to kilometer-scales highlight the need to
develop improved models capable of describing its effects.

II. CHEMICAL REACTIONS AND STOCHASTIC
PROCESSES

For nearly a century,1, 2, 25–30 the exact link between
stochastic particle collision/transformation models and
upscaled partial differential equations (PDEs) of chemical
reaction has been sought. In every case, an assumption is
made about the degree of mixing in the system at hand. When
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considering chemical reactions from a stochastic perspective,
there are two probabilities that, in combination, describe the
propensity for reactions to occur. The first is the probability
that two reactant particles (molecules or larger particles of
mass) become co-located. The second is the conditional
probability that two co-located particles favorably transform
in a reaction. The co-location is dictated by random motion,
which can be diffusive or anomalous. The end-members of
“well-mixed” versus “diffusion-limited” reaction are found
when, on average, one of these probabilities is much smaller
than the other. We briefly describe these two end members
and then show the process that contains both end members
and all conditions in between.

Perfect Mixing: The Markov Reaction Process.—If the
probability of particles of different species coming into con-
tact is high compared to the probability of reaction, the sys-
tem will behave as well-mixed. Define the random state of
the system by N(t), where the components Ni are the integer
number of molecules or macro-particles of component i. Un-
der the condition of perfect mixing, N(t) is a Markov process,
because the reactions depend only on the current numbers of
molecules. Thus the probability of the state follows:28

dP (N, t |N0)

dt

=
M∑

j=1

aj (N − nj )P (N − nj , t |N0) − aj (N)P (N, t |N0),

(1)

where aj are the propensity functions for each reaction chan-
nel j, and nj are vectors of actual molecule number changes
for the same reactions. The functions aj depend on the
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current state and account for the probability of creating (or
destroying) molecules of each species through all possible re-
action pathways. One may write (1) as a coupled set of i equa-
tions, one for each Ni. Take the ith equation, multiply each
term by Ni, sum over the possible number of molecules and
divide by the volume enclosing the molecules to get the ex-
pected number

d[Ni]

dt
=

M∑
j=1

ni,j aj ([N]) i = 1, . . . , N, (2)

where now [Ni] denotes the real-valued expected concentra-
tion of the ith species. For simplicity let us focus on a sim-
ple system,1, 11, 20, 31 the bimolecular precipitation (or annihi-
lation) reaction A + B → ∅. The expected concentrations in
(2) follow

d[A]

dt
= d[B]

dt
= −a1([A], [B]), (3)

because each reaction reduces the number of molecules by
one: nA, 1 = nB, 1 = −1. The propensity function a1 depends
on the number of molecules of A and B, which have been
converted to concentrations by division by the volume. In the
well-mixed case, the probability of particle encounter is given
exactly by the number of possible combinations of particles in
a volume, regardless of their locations. For A + B → ∅ within
a fixed volume, there are NA × NB potential reaction pairs,
and a1 = Kf[NA][NB], where Kf is the rate associated with the
thermodynamic probability of reaction given a collision. This
is the link between the Markov evolution equation (3) and the
law of mass action PDE,28

d[A]

dt
= d[B]

dt
= −Kf [A][B]. (4)

This assumes that any A particle is equally available to all
B particles: there is no discrimination based on distance. It
would also appear that the deterministic rate equation (4) is
derived from the underlying stochastic process and is exact as
written. However, even under the conditions of perfect mix-
ing, (3) and (4) are equivalent only when the expected number
and concentration are equivalent, which implies ergodicity.

III. A PHYSICS-BASED CALCULATION

Rather than assume that all molecules are equally ac-
cessible to all others, one may explicitly consider the ran-
dom motion of particles. In general, this is an intractable
analytic problem considering the joint density of interac-
tion for all molecules,27 but it is relatively straightforward to
simulate.12, 32 For symmetric motions such as unbiased diffu-
sion, the probability density of collision is the convolution
of the individual motion densities over some time period:
v(s) = ∫

fA(x)fB(s − x)dx, where fA(x) and fB(x) denote the
densities of random motion of an A and B particle pair. Nearby
particles are more likely to collide and react, which causes a
self-organized segregation of reactants and a reduced over-
all reaction rate. Any randomness in the positions of particles
can be expected to engender “islands” in which the interiors
are devoid of one of the reactants.1, 11, 20, 21 It is difficult, in a

mixing-limited environment, to get one of the reactants into
close contact with another.

Due to independence, the probability of forward reaction
is the product of the probability of co-location and the thermo-
dynamic probability of reaction given by the well-mixed reac-
tion rate K times the infinitesimal time interval dt, and the total
mass represented by a single particle. Consider a 1-d domain
of size � that initially contains N0 particles representing con-
centrations [A]0 = [B]0. Then the probability32 that an A and
B particle pair with initial separation s react to form a C par-
ticle is P (forward) = Kdt �[A]0

N0
v(s)ds. The rate coefficient K

is specified along with the volume associated with that rate
ds. The product Kds ≡ Kf has units of inverse concentration
in d-dimensions × time [LdT−1M−1] and is equivalent to the
classical bimolecular rate coefficient (compare to Kf in (4)).
The differential volume represents the volume in which the
rate coefficient K is applicable, i.e., the volume under which
perfect mixing may be assumed. In any well-mixed system, Kf

will be equivalent to the classical thermodynamic rate coeffi-
cient measured in a stirred beaker. The final probability, when
cast using the same rate coefficient as the continuum equation
(4) and discretized in a way that may be simulated reads

P (forward) = Kf �t�[A]0v(s)/N0. (5)

In a transport/reaction algorithm, this probability is com-
pared to a uniform [0,1] random number to assess if a reaction
occurs. The �t is chosen so that the maximum probability
possible (when s = 0) is less than 0.1. Each A particle is eval-
uated against B particles until either reaction occurs or pairs
are exhausted. Alternating with the reaction calculations, each
particle is moved by random walks to simulate molecular dif-
fusion using standard methods. We may compare these simu-
lations to the solution for a well-mixed system following (4).
For equal and uniform initial concentrations [A]0 = [B]0 the
solution [A](t) = [A]0([A]0Kft + 1)−1 decays proportional to
t−1 at late time. In all Lagrangian simulations using (5) and
purely diffusive particle transport, the concentration [A](t) is
always greater than, or equal to, the well-mixed concentra-
tion (Fig. 1(a)) and follows t−d/4 in d-dimensions at late time.
This decay rate was derived asymptotically1, 11 using scaling
arguments of the growth rate of “islands” of the reactants that
follows ∼t1/2. The self-organized islands form due to small
perturbations in the system—areas with slightly more of one
reactant will deplete the lesser. The islands grow diffusively33

and swallow nearby smaller islands. The probabilities of col-
lision become smaller than that of the thermodynamic reac-
tion (and continue to become smaller as islands grow and co-
alesce), and a different functional regime—with a governing
equation necessarily different from (4)—applies.

IV. TIME-SUBORDINATION

We may exploit the fact that chemical reactions are
Markovian. The advance of the state depends only on the cur-
rent state. However, when the particles are not well-mixed, the
time devoted to the reaction process is not deterministic for
each particle. Every particle within an island of similar reac-
tant executes a random walk and reaches a reaction spot at the
interface with the other reactant in a random amount of time T.
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FIG. 1. (a) Comparison of simulated (symbols) versus analytic solutions via subordination (curves). The solid curves, largely obscured by the symbols, use
the subordinator (7) for diffusion toward moving boundaries with 2H = 1.5. The dotted line assumes fixed island size of 5�/N0 and 2H = 1. The particle

simulations are invariant with dimensionless constant
�
√

Kf [A]0

N0
√

2D
. (b) Example subordinator densities h(u, t) for stationary boundaries (thin lines) versus moving

boundaries (thick lines) for β = 0.1. Each density is shown at 4 different clock times t. While similar at early time (red curves), the moving boundaries severely
reduce operational time at later time (purple curves) due to increasing distance to island boundaries.

The times at the boundary, while not engaged in the sojourn,
are the operational times U(t). At any clock time t, every
particle has some random time 0 ≤ U ≤ t that it might
be in a favorable location for reaction. Under certain re-
strictions, Feller34 showed that the deterministic time in
a Markov process should be replaced by a random time,
i.e., N(t) → N[U (t)]. This subordination process, which
randomizes the clock time, has been extensively used in
trapping systems where motion processes are interrupted
by transfer into immobile states.35 If the expectation of the
molecular number state in a well-mixed system is given by
E[N(t)] = z(t), then the subordinated process z[U(t)] can be
solved by conditioning, if the density h(u, t) of U(t) is known.
The entire solution, which we now denote q(t), is given by
the subordination integral

q(t) =
∫ t

0
z(u)h(u, t)du. (6)

The key to solving this problem is calculating the density
h(u, t), upon which subordinating the known well-mixed
solution z(t) is trivial.

Here we compare the analytic solutions of (6) to a one-
dimensional Lagrangian simulation of diffusion and reac-
tion (described above) of the system A + B → ∅ with [A]0

= [B]0.1, 11 An equal number N0 of A and B particles were po-
sitioned uniformly randomly in a 1D periodic domain. Every
case was run a sufficient number of times to get an ensemble
average of the spatially-averaged concentration. In all cases,
the system follows a well-mixed solution until the probabil-
ity of co-location is globally smaller than the thermodynamic
probability (Fig. 1(a)), at which time the solution transitions
to the well-known t−1/4 scaling.

To calculate the density of U(t) for (6), it is often easier
to calculate the random hitting time T required to reach an ac-
tive site. The fact that T(u) and U(t) are inverse processes35

gives h(u, t) via P[U(t) ≤ u] = P[T(u) ≥ t]. For a series of
examples that illustrate the role of the subordinator density

h(u, t) in the 1D diffusion-reaction system, first assume the
unlikely and very simple scenario that every particle spends
exactly 9/10 of its clock time inside an island, away from an
active reaction site. Then the operational time actively in re-
action has density h(u, t) = δ(u − t/10), and the subordination
integral (6) gives a reaction solution [A](t) = q(t) = z(t/10)
= [A]0([A]0Kft/10 + 1)−1. This is identical to using an effec-
tive rate coefficient one-tenth of the well-mixed rate, which
would shift the entire well-mixed solution an order of magni-
tude to the right (Fig. 1(a)). This use of an effective reaction
rate is a common approach that misses the essential character
of the different decay rate induced by poor mixing.

Now assume a more realistic picture in which the par-
ticles diffuse by

√
2DWt , where Wt is a standard Brownian

motion in an infinite half-space, to a fixed boundary distance l
roughly representing the nearest side of an island. The particle
executes a series of walks to the boundary. The standard in-
verse Gaussian density L(t) = 1√

4πt3
exp(−1/4t) and the dif-

fusion/distance constant β = l/
√

2D allows a calculation36 of
the hitting time density for one walk β−2L(t/β2). Because the
random time that a particle survives at the boundary is expo-
nential with rate Kf[A]0 (for the Markov reaction process37),
the total accumulated time for a series of walks inside the
islands separated by times at the interfaces is compound
Poisson, so that T(u) has a Laplace transform density (see
Ref. 35) g(t) 	→ g(s) = exp ( − us − β(Kf[A]0u)2Hs1/2). For
fixed island sizes, the coefficient 2H = 1, which we soon gen-
eralize. Grouping the constants into β = l(Kf [A]0)2H/

√
2D,

the operational time can be exactly calculated (using the
method in Ref. 35) as

h(u, t) =
(

1 − 4H + 4Ht

u

)
1

(βu2H )2
L

(
(t − u)

(βu2H )2

)
. (7)

This density converges to the delta function h(u, t) = δ(u
− t) for β → 0, i.e., perfect mixing (Fig. 1(b)). The assump-
tion of fixed island size with 2H = 1 gives solutions that are

Downloaded 05 Apr 2013 to 129.74.243.167. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



131101-4 Benson, Bolster, and Paster J. Chem. Phys. 138, 131101 (2013)

better than the Dirac delta function in the previous example,
but diverge from the simulations at later times. One exam-
ple, using a fixed island size of five times the initial particle
spacing, underpredicts reaction rates at early time and over-
predicts at late time (dotted curve in Fig. 1(a)).

To incorporate the fact that the islands grow in time, con-
sider that a particle that has not met the boundary by time t is
unaware of the boundary moving outward ahead of it. At the
time a particle has reached the boundary, we may consider the
time-dependent boundary position explicitly via β = β0u1/2,
where β0 is given by the reaction and diffusion constants and
an initial island size l0. Now the scale of the hitting time of the
random walk inside the island grows super-linearly, which is
identical to keeping β0 constant—representing initial chemi-
cal variability—and adding 1/2 to the exponent on u for the
island growth, i.e., replacing 2H = 1 with 2H = 1.5 in (7).
Now β = l0(Kf [A]0)2H/

√
2D codes an initial distance of a

particle to an island edge along with the moving boundaries.
We may compare analytic solutions with particle simulations
that start with uniformly random particle positions, so that the
initial island size can be approximated by the inter-particle
spacing (�/N0). By the reflection principle we need only con-
sider a half island, and the average starting position is half

of this distance, so l0 ≈ �/(4N0) and β = �(Kf [A]0)2H

4N0
√

2D
is given

by known quantities: initial chemical variability, reaction, and
diffusion parameters. By including island growth, the subor-
dinator has significantly reduced operational time, all other
things held equal (Fig. 1(b)). This derivation of the subordina-
tor gives very accurate solutions of chemical reaction—from
initially well-mixed to late-time diffusion-limited (thick lines,
Fig. 1(a))—considering the other neglected factors including
the influence of the other island boundary, the distribution
of island sizes, and the mixture of particle starting distances
from the boundaries.13

The subordination is derived from the self-organization
of the reactants and the decreased mixing rate as they dis-
appear. The simplicity of this example system allows a rea-
sonable a priori calculation of the subordinator. The return
of A and B from a dissolution process in A + B ⇀↽ C would
re-homogenize the reactants to a degree dictated by the ra-
tio of forward and backward rate coefficients, and the oper-
ational time may tend toward some constant fraction of the
clock time. Conceivably, the form of the subordinator for
more complicated reaction chains and/or geometries could be
discerned through an inversion of (6) using prior knowledge
of z(t) by the classical differential equation of well-mixed re-
action, and an experiment that measures q(t). The subordi-
nation equation would then allow a quick calculation of the

subordinator for upscaled systems that suffer from imperfect
mixing.
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