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On the formation of breakthrough curves tailing during convergent
flow tracer tests in three-dimensional heterogeneous aquifers
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[1] Anomalous transport in advection-dominated convergent flow tracer tests can occurs
due to small-scale heterogeneities in aquifer hydraulic properties. These result in
fluctuations of the groundwater velocity field and complex connectivity patterns between
injection and extraction wells. While detailed characterization of heterogeneity is often not
possible in practice, a proper understanding of what fundamental physical mechanisms can
give rise to macroscopic behaviors that are measurable is essential for proper upscaling of
solute transport processes. We analyze here how heavy-tailed breakthrough curves can arise
in radially convergent flow to a well. The permeability fields are three-dimensional multi-
Gaussian fields with varying statistical geometry and degrees of heterogeneity. We consider
transport of conservative tracers from multiple injection locations by varying distance and
angle from the extraction well. Anomalous power law tailing in breakthrough curves is
attributed to a variety of features including the initial vertical stratification of the solute that
arises due to a flux-weighted injection, the injection distance to the well relative to the depth
of the aquifer, and the statistics of the heterogeneity field as defined by the correlation
length and variance of the permeability. When certain conditions cooccur for a given
injection, such as strong connectivity contrasts between aquifer layers, injection distances
comparable to the horizontal heterogeneity integral scales, and large global variances,
breakthrough curves tend to scale as a PL with unit slope at late time. These findings offer
new insights to understand what physical processes must be understood to develop and
choose appropriate upscaling approaches that might reproduce such anomalous transport in

heterogeneous advection-dominated systems.
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1. Introduction

[2] Transport parameters are often obtained from inter-
preting the temporal evolution of concentrations at a given
location or volume control section (breakthrough curves
(BTCs)). The actual estimated parameters are model depend-
ent. The conventional approach based on the advection-
dispersion equation (ADE) [Bear, 1972] has been shown
consistently to fail at completely predicting data obtained
from real sites. In such cases, transport is called “anoma-
lous” or non-Fickian. Many authors have postulated
that non-Fickianity is a consequence of the presence of
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heterogeneity in hydraulic parameters [e.g., Levy and Berko-
witz, 2003 ; Salamon et al., 2007 ; Riva et al., 2008].

[3] Phenomenological evidence of this effect of hetero-
geneity comes from observations of heavy-tailed distribu-
tions on BTCs [e.g., Hoehn et al., 1998 ; Fernandez-Garcia
et al., 2004; Gouze et al., 2008]. Sometimes, BTC tails at
late times scale like power laws (PLs) of the form ¢ ~ ™
(long after the peak is observed). The parameter m is often
called the “BTC slope” since PL distributions scale as
straight lines in double log plots; in the literature m has
been reported to range anywhere between one and three
[e.g., Becker and Shapiro, 2000, 2003; McKenna et al.,
2001].

[4] A general current goal is to find strict relationships
between PL-shaped BTCs and specific spatiotemporal dis-
tributions of physical soil properties [e.g., Dentz and Ber-
kowitz, 2003 ; Bijeljic and Blunt, 2006; Willmann et al.,
2008 ; Dentz and Bolster, 2010]. In this paper, our aim is to
show that heavy-tailed BTCs with PL late-time distribu-
tions can be found in finite-scale stationary hydraulic con-
ductivity, K, fields, provided a third spatial dimension is
accounted for and flow is convergent to a well.

[s] Convergent flow appears naturally in describing
many flow configurations from real experiments. In fact, the
most common form of tracer test is perhaps the convergent



PEDRETTI ET AL.: TAILING IN CONVERGENT FLOW TRACER TESTS

flow tracer test (CFTT). This is for practical reasons, such
as a better control of test duration, reduced required tracer
mass and large mass recoveries (compared, for example,
with natural-gradient flow tracer tests).

[6] Classical examples of stationary fields include multi-
Gaussian fields with log-transformed hydraulic conductiv-
ity. One of the conclusions in Willmann et al. [2008] is that
no PL-shaped late-time behavior of BTCs could be
observed from transport through 2-D stationary multi-
Gaussian fields, unless an artificial modification of the con-
ductivity field was made. Nonetheless, the presence of
heavy-tailed BTCs for short travel distances in multi-
Gaussian fields with log-transformed hydraulic conductiv-
ity (called Y field, where Y =In(K)) was shown by
Sanchez-Vila and Carrera [2004] using 1-D analytical and
numerical solutions.

[71 An example of BTCs that can be observed in hetero-
geneous media was given by Fernandez-Garcia et al.
[2004], who experimentally studied convergent, divergent,
and uniform flow tracer tests in an intermediate-scale three-
dimensional heterogeneous aquifer constructed in the
laboratory with different types of sands. The resulting K
distribution showed correlated structures, well described by
an exponential variogram model. Several conservative
(bromide) and sorptive (lithium) tracers were injected at
different points located between one and five horizontal in-
tegral scales from the extraction well. Concentrations were
recorded as depth-integrated BTCs. Four of the experimen-
tal BTCs obtained during the CFTTs using a deep-
penetration source injection [Fernandez-Garcia, 2003] are
shown in Figure 1 and clearly display nonuniform transport
behavior. We observe that (a) the BTC obtained from
injecting at E1 (located two integral scales away from the
pumping well) displayed a heavy-tailed distribution after
the peak, well approximated by a PL with m =1; (b) at the
same radial distance from the pumping well, the BTCs
obtained from injections at E2 and E3 were less anomalous
and quite symmetric; and (c) E4, also at the same injection
distance, is much more irregular and only approximately
similar to a PL with m = 1.

[8] These results lead us to ask the following questions:
Does scaling in BTCs with a PL with m = 1 occur for some
specific physical reasons, or is it just a random output?
More generally, are there any, and if so what are the physi-
cal mechanisms controlling BTC scaling, for large time af-
ter injection in radial convergent flow ?

[o] Willmann et al. [2008] tried to answer to the latter
question, using 2-D numerical simulations to reproduce
anomalous transport under the assumptions of uniform flow
conditions and finite correlated heterogeneous log conduc-
tivity fields (i.e., fields with log-normally distributed
hydraulic conductivity). They concluded that classical low-
order geostatistical indicators (such as variograms), usually
adopted to characterize these fields, cannot be directly
related to parameters associated with anomalous transport
models such as those including memory functions [Carrera
et al., 1998]. Similar results were also found by Flach
[2012], who used dual-domain models.

[10] According to Zinn and Harvey [2003] and Willmann
et al. [2008], among others, connectivity is the hydrody-
namic parameter that most influences BTC late-time behav-
ior. Here connectivity is defined as the ratio between

spatially averaged and effective parameters defining flow
and transport [Knudby and Carrera, 2006]. We refer to the
recent work by Renard and Allard [2013] for an extensive
review of connectivity concepts.

[11] In the simulations of Willmann et al. [2008], the
BTC slopes were bounded by a minimum value of m ~ 2,
which is not in agreement with the experimental observa-
tions reported by Fernandez-Garcia et al. [2004]. It is not
truly fair though to compare these works for two main rea-
sons. First, radially converging flow is fundamentally
different from uniform flow. For instance, tailing can natu-
rally arise in BTCs, even for homogeneous fields [Gelhar
and Collins, 1971; Moench, 1989; Welty and Gelhar,
1994]. Second, 2-D models are not suitable to reproduce
this type of CFTT, where the distance between injection
and controlling section is on the range of the representative
heterogeneity scale such as the integral scale (/) in a multi-
Gaussian X field. In this case, whenever possible, 3-D mod-
els are preferable [e.g., Dagan, 1989].

[12] Dimensionality is also a key factor when studying
connectivity. Inclusion models [e.g., Fiori et al., 2006]
show, for instance, that nonsymmetric BTCs naturally arise
from the distribution of travel times in 3-D models under
uniform flow; moreover, this method also showed that
(flow) connectivity is largely enhanced by 3-D configura-
tions relative to their 2-D counterparts [Fiori and Jankovic,
2012]. This is particularly true if unconditional sequential
Gaussian simulations (SGSs) are used to simulate stochas-
tic hydraulic conductivity fields [Fernandez-Garcia et al.,
2010]. In fact, Willmann et al. [2008] had to heavily condi-
tion their simulations to generate highly conductive nonsta-
tionary structures that gave rise to heavy-tailed BTCs
similar to those observed in the field. It should be noted
that the numerical 3-D flow and transport simulations by
Fogg [1986] showed that one of the most influential factors
controlling flow and transport is the connectivity of lenses,
rather than the relative K value of the lenses themselves.
The reliability of 2-D SGS to adequately reproduce trans-
port connectivity patterns has been extensively debated in
the past [e.g., Sanchez-Vila et al., 1996 ; Gomez-Hernandez
and Wen, 1998]; however, 3-D models have received much
less study, in large part due to the still highly computation-
ally intensive nature of 3-D simulations.

[13] In this paper, we investigated the origin and devel-
opment of heavy-tailed BTCs using 3-D numerical realiza-
tions under radially convergent flow conditions. We
simulated synthetic heterogeneous fields drawn from a
multi-Gaussian log-normal K distribution. Such a distribu-
tion is characterized by different combinations of finite-
scale correlation and variances. Our aim was to provide
new insights to explain how and why BTCs behave in typi-
cal CFTT field settings. We also aimed to find the key
physical links to interpret the results obtained from field
tracer tests in real applications.

[14] This paper is structured as follows. In section 2, we
described the numerical approach we used to reproduce
CFTTs in synthetic heterogeneous aquifers. Section 3
shows the results in which we highlighted how BTC tailing
develops in different heterogeneous fields. This paper ends
with a final discussion on the similarities between 3-D sim-
ulations and their corresponding 2-D counterparts, the role
of the local dispersivity, and a possible physical



PEDRETTI ET AL.: TAILING IN CONVERGENT FLOW TRACER TESTS

E1

Conc

time

Figure 1.

E2

10

Four of the experimental BTCs obtained by Fernandez-Garcia et al. [2004] during CFTT in

heterogeneous 3-D tank. Notice that the part of the BTCs showing heavy-tailed distribution scale follow-
ing ¢ ~ t~! (at E1 and at E4), while at E2 and E3 the shape is more symmetric. The injecting location
varies within the 3-D tank, keeping the radial distance from the well (1) ~ 2)

explanation of PL scaling on the BTCs, in section 4, and
the conclusions.

2. Numerical Simulation of CFTT in Different
Geological Settings

[15] We considered a typical CFTT scenario, in which a
passive injection well (or piezometer) is located at a dis-
tance (») from an extraction well. We assumed both wells
to be fully penetrating the aquifer, which is confined and
characterized by constant thickness (b). The extraction well
is activated to withdraw groundwater at a constant dis-
charge rate (Q). Once steady-state conditions are estab-
lished at the injection well, a known mass (M) of tracer is
introduced into the aquifer through the injection well.
Under ideal conditions the injected mass is fully recover-
able. In real field tests, a combination of mass losses and fi-
nite recording times leads to partial recovery of the injected
mass.

[16] In heterogeneous aquifers, under forced-gradient
conditions, the horizontal flow velocity can vary along the
vertical column by several orders of magnitude. This vari-
ability depends on the hydraulic disorder of the system
(described, for instance, by variance of Y, o3 which can
vary from o2 = 0.1 — 1 for mildly heterogeneous systems
to 0% >4 for highly heterogeneous ones [e.g., MacKay
et al., 1986; Bohling et al., 2012]); it can also depend on
local hydraulic gradients, which are controlled, for
instance, by well pumping rate Q. Therefore, the amount of

tracer mass injected into the aquifer at different depths is
proportional to the local horizontal velocity found at the
different horizons along the vertical injection column. This
configuration forces one to pose the problem in terms of
“flux-averaged” concentration rather than resident ones
[e.g., Parker and Van Genuchten, 1984].

[17] BTCs can be measured both at the extraction well
and if possible, at some control section between the injec-
tion and the extraction location. We assumed that only the
extraction well is used for measuring concentrations. At the
extraction well, concentrations are usually observed as
“depth-integrated” measures over the entire screened sec-
tion of the well, taking samples of the water once withdrawn
and pushed to the surface. Alternatively, measurements can
be made at different intervals along the screened section of
the well, for instance, using “clustered columns,” or “pack-
ers” [e.g., Ptak et al., 2004]. While “depth-integrated”
BTCs are more commonly and easily obtained in the prac-
tice, “multilayered” BTC can provide useful information
about stratification of transport properties of the aquifers,
can provide valuable potential information about mixing
[e.g., Le Borgne et al., 2010; Bolster et al., 2011], and can
help indicate the existence of preferential flow paths [e.g.,
Ptak and Schmid, 1996; Bianchi et al., 2011].

[18] With these concepts in mind, we adopted a classical
numerical approach consisting of

[19] (1) generation of a number of 3-D realizations of
log hydraulic conductivity Y fields from a predefined geo-
statistical model;
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[20] (2) solution of the groundwater flow problem in
each of the Y fields by setting appropriate boundary condi-
tions to impose forced-gradient behavior to a well;

[21] (3) solution of the transport problem by means of a
random-walk particle method; and

[22] (4) calculation of BTCs, both as “depth-integrated”
and “multilevel” concentrations at the well.

[23] Details of the different steps are provided in the
subsequent subsections.

2.1. Simulation of Heterogeneous Hydraulic
Conductivity Fields and Convergent Flow Solution

[24] We started by generating three stochastic realizations
of Y fields using a SGS algorithm included in the Stanford
geostatistical modeling software (SGEMS) [Remy et al.,
2009]. The support grid consisted of a regular 3-D lattice
composed of N, =100 planar layers, each of which was
made up of N¢o = 251 horizontal square cells per side. We
used i, j to identify a cell, respectively, in the x, y direction
(ij=1,...,N¢) and k to identify a specific layer
(k=1,...,N.). We assumed Y to be isotropic in each cell,
with the exception of the central vertical column, which rep-
resented the well. Here we imposed very large vertical con-
ductivities. Each cell has unit size, in all three directions
(i.e., r=1 corresponds to 1 cell).

[25] By construction, all Y fields had zero mean log-
transformed hydraulic conductivity (¥ = 0). Three expo-
nential variograms with unit variance (02 = 1) and vari-
able integral scales (/) were used. Thus, denoting the three
directional integral scales as /,, /,, and L, we built

[26] (1) Field (A): [, =1, =1.=4;

[27] (2) Field (B): [, =1,=40,1.=4;

[28] (3) Field (C): I, =1, =I. = 40.

[29] Field (B), reported on the left of Figure 2, displays
statistical axisymmetric anisotropy, with ratios /, = I, and
I./I. = I,/I. = 10. Fields (A) and (C) are statistically iso-
tropic, but with different integral scales to explore the
impact of the relative distance of the injection point. Note
that the same fields will be used throughout to explore the
effect of having larger variances (increased degree of heter-
ogeneity) by simple scaling of the variance. For this reason,
Figure 2 does not report a color legend.

251 cells

400 \ayers

one multigaussian
3D realization

x = injection locations (with D)
O = extracting well

is decomposed to

Figure 2.

[30] To obtain pumping conditions in each heterogene-
ous field, we proceeded as follows. In each realization and
at each cell, Y were back-transformed to arithmetic values
(K =exp (Y)), and set as the hydraulic conductivity within
the finite-difference numerical code Modflow-2000 [Har-
baugh et al., 2000]. Flow simulations were run under
steady-state conditions, and the aquifer was considered
confined. To simulate radial flow conditions, we set Dirich-
let boundary conditions at the lateral domain sides and
assigned a sink term to the bottom cell of the pumping
well, situated at the center of the domain. Flow effects in
the pumping well were achieved by setting a large anisot-
ropy ratio in the local hydraulic conductivity between hori-
zontal and vertical direction (K./K, = 10°) in the pumping
well central column.

[31] Finally, to simulate other Y fields, characterized by
the same heterogeneous architecture but different varian-
ces, we multiplied each cell of the Y field by a factor of 2
and 2+/2 to obtain new synthetic fields with variances of
0% = 4 and 8, respectively, for fields (A)~(C). No numeri-
cal convergence problems were found regardless the
variance used.

2.2. Design of 3-D Transport Simulations and
Estimation of Depth-Integrated BTCs

[32] We simulated conservative solute transport using
the random-walk particle-tracking code RW3D [Fernan-
dez-Garcia et al., 2005; Salamon et al., 2006], which is
efficiently coupled with Modflow-2000. In this algorithm,
M is discretized into N, particles (the mass of each parti-
cle being m, = M/N,). Based on the Langevin equation,
each particle moves with a drift displacement, based on
the radial flow velocities calculated at each cell of the
domain by Modflow-2000, and a Brownian motion that
accounts for local dispersive process. In our simulations,
we set a constant porosity value of ¢ = 0.1 in all simula-
tions and Np = 3 x 10*. Via a convergence test we found
our results to not be sensitive to an additional number of
particles.

[33] Injection wells were located at 16 different points
in the domain around the extraction well as depicted in
Figure 2. Each tracer test was independent of all others.

k=100

100 multigaussian
2D realizations

(left) The 3-D anisotropic field (B) used in the simulations, along with the position of the

injection locations at various radial distances and angles around the well. (right) Schematic decomposi-
tion of a 3-D field into 100 layers, each of them representing a 2-D field with the same planar spatial cor-

relation as the 3-D original counterpart.
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The injection positions were oriented along the coordinate
axes and were defined such that

[34] (1) injection boreholes at points Ul, R1, L1, DI,
located at » = 5 from the extraction well;

[35] (2) injection boreholes at points U2, R2, L2, D2,
located at » = 12 5 from the extraction well;

[36] (3) injection boreholes at points U3, R3, L3, D3,
located at » = 25 from the extraction well; and

[37] (4) injection boreholes at points U4, R4, L4, D4,
located at » = 75 from the extraction well.

[38] In all simulations, we started by setting an isotropic
local dispersivity value of « = 0.25, which ensures an
r/o > 20 at the injection locations. This was chosen con-
sidering /a = 20 as a suitable minimum value to ensure
advection-dominated transport in radial flow problems in
homogeneous aquifers [e.g., Moench, 1989]. We consid-
ered « to be isotropic in all directions (i.e., ay = ar = ay,
where L, T and Z indicate here the directions, respectively,
collinear, transverse in the plane, and transverse in the ver-
tical direction with the main flow direction), to avoid a pos-
sible bias in the interpretation of our results due to local
anisotropic dispersive mechanisms.

[39] The number of particles in each layer was taken to
be proportional to the local Darcy flux, to better represent
flux-averaged conditions. Particles were introduced in the
system from layer £k = 5 to layer k£ =95. Five cells were
left empty at the top and at the bottom, to avoid rebounds
and other uncontrolled boundary effects. Injection took
place as a pulse, at the initial time (1= 0).

[40] We obtained “depth-integrated” BTCs after esti-
mating the density of the distribution of travel times of the
ensemble of released particles. As such, we did not keep
track of where (at which depth) particles were injected.
Since each particle carries the same amount of mass (m,,),
the estimated density distribution of travel time was equiv-
alent to the estimation of a normalized BTC.

[41] The estimation of the density function was based on
the automatic optimal kernel density estimator algorithm
described by Fernandez-Garcia and Sanchez Vila [2011].
The numerical solution was successfully tested under ho-
mogeneous conditions against the analytical formulae of
Moench [1989] and Gelhar and Collins [1971], to ensure
that measured transport was not affected by boundary
conditions.

2.3. An Illustrative Result of a Depth-Integrated BTC

[42] Let us first analyze some key aspects involved in the
formation of a BTC obtained in one specific simulation.
This is done to highlight the main phenomenological fea-
tures needed to understand subsequent results. As our
example, we considered injection at location L4 in field (B)
(Figure 2) with 0% = 4. Figure 3 is divided in four subplots,
each of them representing the position of 1000 particles
(above) and the “depth-integrated” BTCs (below) col-
lected at the well at different times ranging from the initial
injection time to a late time when the vast majority of par-
ticles have been captured at the well. The background col-
ors represent the distribution of the (log) hydraulic
conductivities on the vertical section parallel to the x axis,
passing through both the injection and the extraction wells.
Note that a consistent system of units was used throughout
this work.

[43] At the initial time particles are concentrated in the
highly conductive areas along the vertical section where
Darcy velocities are higher (red pixels), while only a few
particles are located in less conductive areas (green pixels).

[44] At the first earlier intermediate time, particles
located initially within the higher Y zones have traveled
greater distances, eventually reaching the extraction well,
compared to those located in initially lower permeability
areas. Since a large number of particles were initially
injected in relatively high Y areas, the concentration peak
appears at a relatively early time.

[45] At the second intermediate time, most of the par-
ticles (i.e., mass) have been collected, and only a few
remain in the system. Note that the BTC scales very differ-
ently before and after this time. In particular, a fairly well-
defined tail with behavior similar to ¢ ~ ¢! is clearly
visible from this moment on.

[46] This example indicates that our numerical settings
were able to produce anomalous transport which gives rise
to heavy-tailed BTCs, similar to experimental observations.
See, for example, Figure 3 as compared to case El case in
Figure 1. We could therefore take advantage of the numeri-
cal model to see whether we could provide a physical ex-
planation for m ~ 1. To address this issue in detail, which
will be more thoroughly discussed in section 4, we studied
the impact of imperfect stratification in the 3-D model.

2.4. Simulation of “Multilevel” Transport

[47] To evaluate the variability of solute mass arriving at
different depths in a fully penetrating pumping well, we
propose the following approach, which is graphically sum-
marized in Figure 2. We noted that in radial convergent
flow, planar flow is dominant with respect to vertical flow.
Moreover, at relatively short injection distances compared
with the horizontal integral scales, plumes in each planar
layer migrate practically independently from those in other
planar layers. This effect is enhanced in fields displaying
axisymmetric anisotropy. Figure 3 illustrates this behavior,
where it was found that particles move mainly horizontally.

[48] Noting that negligible vertical velocities and trans-
verse dispersion lead to particle paths that follow primarily
the horizontal plane in which particles are initially injected,
we proceeded as follows. We separated each k layer mak-
ing up the 3-D block and use them as independent 2-D Y
fields. The new 2-D fields have 251 cells per side with unit
thickness (b=1). They have the same horizontal integral
scales Iy, I, but due to the effects of subsampling, (slightly)
smaller variance than the original 3-D Y field (e.g., from
0% = 4 in the 3-D simulations to an average value of o7 ~
3.5 for the 2-D simulations). We did not renormalized the
variance in each layer to obtain the same original value as
the 3-D simulation since our aim was to evaluate the effects
of the stratified transport in each layer within the 3-D for-
mation and asked how much information does one obtain
from 2-D versus the full 3-D system ?

[49] In each of the N, = 100 layers, we calculated 2-D
flow and transport and estimated BTCs, using the same pro-
cedure described in previous sections. We injected the
same mass (M) per layer as a pulse release directly at the
same 16 positions used for the 3-D simulations. In each
layer, we imposed the same discharge rate as in the 3-D
counterparts (Q). We thus obtained 100 BTCs (one for
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Figure 3. Particle displacement at different temporal steps during the simulation of a CFTT in the ani-
sotropic field (B) with o3 = 4, after injecting from position L4. (top) Particles are plotted along with the
distribution of log-transformed hydraulic conductivities, Y, at the central section of the domain. (bottom)
The evolution of the BTC estimated as “depth-integrated” particle mass density at the extraction well.
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each layer) for each injection position; we call BTCs
obtained from this approach “2-D BTCs.”

[s0] As an illustrative example, we considered again the
injection taking place at location L4 in field (B) with o3 = 4.
In Figure 4 the “depth-integrated” BTC obtained from 3-D
transport (Figure 3, bottom right) is depicted as a thick, black
line. Along with that, the gray curves represent the 100 BTCs
obtained after injecting in each layer making up the 3-D block
(i.e., the 2-D BTCs). We note from Figure 4 that unlike the
3-D integrated case, 2-D BTCs never show heavy PL tailing
but are mostly symmetric. This means that the behavior of
most of these BTCs is much more similar to that of a homo-
geneous Y field rather than the typical curves in heterogeneous
media. Moreover, 2-D BTCs look like “convolved” versions
of one another, as indicated by the spread of the maximum
peak of concentrations on each BTC (marked by a blue
square). This behavior is qualitatively very similar to the
one found by Becker and Shapiro [2003], where they repro-
duced depth-integrated BTCs as a convolution of independ-
ent BTC obtained from transport in individual channels. We
discuss and compare their results with ours in section 4.

[s1] The difference between the estimated concentration
for 2-D and 3-D BTCs is due to the fact that in 2-D realiza-
tions the injected mass is equal to the total injected mass
for the 3-D cases, while in each layer of the 3-D simula-
tions mass enters as a flux-weighted amount. In addition, to
compare different BTCs, we need to express variables in
terms of dimensionless parameters. To this end we used the
following dimensionless quantities:

[52] (1) A estimated mass density, p (¢, k), was obtained by

where D is a dilution factor that is proportional to the mass
injected in the system at each layer in 2-D simulations and
the 3-D simulations. The parameter C(¢) is the resident con-
centration at the well locations, and Dy can be defined as

__ax(k)
ZL qx(k)
k=1

where ¢, (k) is the local seepage velocity at each injection
location.
[53] (2) A normalized time (¢.) was defined such that

D (k) (2)

tc = % (3)
where t,,, is the advection time [e.g., Moench, 1989], such
that

b
tady = Q

where b is the aquifer thickness (b =1 for 2-D simulations
and =100 for 3-D simulations). This normalization
ensures that the concentration peaks of the BTCs under
CFTTs performed from injection locations at different dis-
tances (7) from the pumping well always collapse around
t. = 1 for homogeneous aquifers.

[54] (3) A normalized injection distance (ry) was
obtained to compare BTCs obtained from different realiza-
tions with different integral scales. We normalized r by the
horizontal integral scale of each field, /,, such that

4)

(5)

ensemble of BTC

g Lo |
p (t ) ) - D—(k)— ( ) r
r / oC(t)de mW=T
X
Injecting point L4 (rk=1 .875), field (B), c$=4
10* T T T T ™ T L R |
peaks of the 2D BTC
F ‘depth-integrated’
L BTC from 3D simulation:
10°F 3
10°1 <
o from 2D simulations, pbtained
10 | 10.4 after 3D block decoznposition
R |
8| ,
10 E 10-8 “\ E
A
particle Lo, v““[‘. i ll‘ I |
denr'l]iis L10 ‘l] I r,\“ Wl 1Y ‘\
ity 10 H Ay
10— A 1. 1 I
104 1
dimensionless time
Figure 4. Superposition of particles’ probability density functions (BTC) obtained after injecting at L4

in the anisotropic field (B) with 6% = 4 and r, = 1.875. The 3-D BTC is plotted with a dark strong line.
The 2-D BTC from “layer injection” is plotted with gray colors. A red 2-D curve is plotted to emphasize
one of the rare examples of heavy-tailed 2-D BTC. The peaks of the 2-D are marked in blue. Two lines
with slope ¢ ~ t~! are overlapping the 2-D peak cloud and the late time of the 3-D BTCs to highlight

this late-time scaling behavior.
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[55] (4) A normalized vertical injection length (L.) was
obtained to measure “how stratified” the solute is injected
into the system, and thus how homogenized the solute
transport is for short travel distances. The parameter L, was
found as the ratio between the aquifer thickness (b, which
also corresponds to the particle injection length) and the
vertical integral scale 7, such as

b

[s6] Note that in equation (4), we used r rather than ry
since we wanted to emphasize the effect of heterogeneity
on the solute travel time.

[57] Let us first analyze the case when Dy was not
accounted for and the same mass was injected in each 2-D
simulation and equal to the one imposed for the 3-D simula-
tions (M). This is plotted in Figure 41 (big window) from
which we can infer two fundamental issues. First, it looks like
2-D settings that are not suitable to reproduce anomalous
transport, even though the 2-D simulations were performed
with similar horizontal variogram statistics (e.g., same correla-
tion lengths but slightly smaller variance) as the 3-D counter-
parts. We believe this is due to the use of unconditional 2-D
SGS simulations, a result that is similar to what was observed
by Willmann et al. [2008]. Second, the ensemble of peak con-
centrations for the 2-D BTCs (indicated by squares in Figure
4) scales like a PL with unit slope, i.e., of the form p () ~ 7. '.

[s8] We also observe the effect of rescaling particle den-
sity with Dg. This is plotted in Figure 4II (small window),
where to avoid redundancy we only plot the 2-D BTC

Field L1 (r. = 0.1)
(B) 10%¢ *
3 «  peaks of 2D BTC
o =4 3D BTC
Y
10°}
10*}
10°}
10°
10
10°
pmd
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10
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Figure 5.

peaks. It can be seen that the concentration peaks were
found at similar concentrations to the 3-D counterparts.
This confirms that the mass distribution among layers can
perhaps be thought of as a convolution of effects giving rise
to such tailing (i.e., as in Becker and Shapiro [2003]). There
is not an exact match between the 2-D peaks and 3-D curves
(as it would be expected, for instance, analyzing multilevel
concentrations at the well) due to intrinsically different flow
structures of the 2-D and 3-D flow simulations.

[59] In the next section, we present the most relevant
findings extracted from the additional simulations, in order
to find the impact of the degree of heterogeneity on the dif-
ferent late-time slopes of the BTCs.

3. Comparison of Different Cases

[60] Here we describe other significant results of our nu-
merical analysis, which we compared with the illustrative
example in Figure 4. The goal was to show how exportable
the scaling p(¢) ~ ;! of the depth-integrated BTC tailing
at late times is. We also aimed to link this slope to some
characteristic physical patterns to gain a proper physical
understanding of why and when it occurs.

3.1. Evaluation of the Anisotropic Case (Field (B))
With o7,=
[61] In this part, we compare the results for other injec-
tion locations within the anisotropic field (B) with o3 = 4.
For this field the normalized injection length was L, = 25.
[62] In addition to the injection at L4, in Figure 5 we
plot the results for three other injection locations,

L2 (r, ~0.3)

The 3-D BTCs (and relative peak distributions) obtained after injecting in the anisotropy
field (B) with 0% =4, at L points. Notice that the behavior p(¢) ~ ¢!

can be fitted only at

c

L4 (r) ~ 1.8), while the other locations display a more symmetric behavior.
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specifically at L1, L2, and L3. These cases look at injec-
tions at different distances from the pumping well. In Fig-
ure 5, the depth-integrated BTCs (black line) are reported
along with a cloud of points representing the peaks of the
2-D BTC simulations, which were obtained using the
“layer decomposition” approach described above.

[63] We observe that the depth-integrated BTCs always
show some form of heavy-tailed distribution, but that the
BTC slopes change as the injection location r, increases.
Specifically, we observe that injections at short distances
(L1 and L2) where the normalized injection distance is
small (r) ~0.1,0.3), tailing is observed with constant
slope, but different from (faster than) p(r) ~ ¢, !. This re-
gime is on the other hand clearly observed at the largest
injection distance (L4), where ) ~ 1.8. A subtle look at
the data suggests that a regime qualitatively like p(¢) ~ ;!
may exist to some extent in all cases but persists for much
longer times as the injection distance approaches ) ~ 1.8.

[64] Looking at the “cloud” of 2-D peaks, it seems that
they align well with p() ~ ;! for all injection locations.
However, it is visually evident that the relative spread of
these point varies, being narrowest at L1 and widest at L4,
with L2 and L3 as intermediate cases. To quantify this
spread, we calculated the spread of this “cloud,” defining

1 X

o N — 1; (|1°g (14 (k) _W‘) @

where log (tpk) represents the base 10 log-transformed
value of the dimensionless time coordinate at which the
peaks are observed. The parameter log (tpk) is the average
of log-transformed dimensionless peak times over the Nj
layers. A low value for this spread (e.g., o> — 0) would
indicate that transport is very similar in all the horizons
(e.g., relatively homogeneous medium), while large varian-
ces represent stronger heterogeneity induced spreading.

[6s] For injection location L1, o =0.076. This low
value is due to the relatively short injection distance, which
prevents the tracer from displaying strong vertical stratifi-
cation of the concentration measurable in terms of “depth-
integrated” BTCs. At L2 and L3, O.[Z =0.165 and 0.324,
respectively, emphasizing the development of vertical strat-
ification of the plume, and enhanced differences between
layers. At L4, where r, is close to the horizontal integral
scale, o7 = 0.561, indicating that the plume is more strati-
fied than in the other cases and is heavily controlled by the
different properties of each layer.

[66] Note two fundamental points. Anomalous tailing
like p(f) ~ ¢! clearly takes place (1) when the solute
travel distance is of the order of the horizontal heterogene-
ous scale of the multi-Gaussian field (i.e., R of the order of
Iy) and (2) when o7 is maximum among the four injection
points L1-L4. As shown in the following sections, these
characteristic patterns will be also found for the other field
geometries and variances.

3.2. Comparison With Isotropic Fields

[67] Noting that field (B) (Figure 2) has an anisotropic
correlated structure of hydraulic conductivity, a reasonable
question is whether the stratification of the plume is con-
trolled dominantly by the stratified distribution of Y. We

therefore evaluated the behavior of BTCs for the 2-D and
3-D Y fields associated with fields (A) and (C), which are
isotropic.

[68] The curves for field (A) are plotted in Figure 6. For
this case, the normalized injection distance is again the
same as for field (B), i.e., L, = 25. We plot only the curves
corresponding to injection wells R1-R4 since the other
arrays (L, U, D) display similar behavior. As I, = 4 in this
field, the normalized injection distance is close to unity for
R1 (r) ~ 1.8) and increases up to r, ~ 18 for R4. At posi-
tion R1, 3-D BTCs display anomalous tailing with a behav-
ior very similar to p(¢) ~ ¢~! right after its peak. As soon
as the injection distance increases, this behavior seems to
diminish, until it is no longer truly observable at R4.

[69] Observing the peak distribution, the spread at R1 is
larger (otz = 0.621) than at R2 and R3 (af = 0.372). At
R4, since no tailing develops, one expects o7 to be the
smallest value; however, it is slightly higher than for the
other cases (0.717). It should be noted from Figure 6 that
this latter value can be biased by the presence of a few out-
liers (a few layers displaying very large peak time). Disre-
garding the five largest values at peak times (5% of the
total number of layers) leads o7 to reduce to 0.341, which
is smaller than for R1, R2, and R3.

[70] The curves for field (C) are plotted in Figure 7. In
this case, L, = 2.5, which means more homogenization in
the BTCs might be expected. We find that at very short nor-
malized injection distances, such as R1 (ry =0.1), no
heavy-tailed behavior is clearly observed in the 3-D BTC,
while a tailing behavior emerges once again as the normal-
ized injection distance increases to order one and a broad
time range of peak arrival times occurs: e.g., at R4
(r» = 1.8), BTC scales as p(t) ~ ¢, . Again, field (C) dis-
plays a similar behavior as in the other fields (A) and (B).
The distribution of 2-D peaks is very narrow when no tail-
ing develops (at R1, 07 = 0.07), and it is the largest among
the four injection location at R4 (o7 = 0.25).

[71] We found in BTCs from fields (A) and (C) a similar
behavior as the one found on BTCs for field (B). Account-
ing for the 2-D peak outliers’ values at R4 in field (A), the
new observations suggest again that p(¢) ~ ¢! is observed
in the 3-D BTC when o7 is the largest among the four
injection point in each field and ), ~ 1 is met.

[72] The similar behavior between BTCs from the iso-
tropic fields (A) and (C) and BTCs from stratified field (B)
can be explained considering the initial vertical stratifica-
tion of the tracer, which is quite relevant and independent
of the statistical structure of the media in our single realiza-
tion analysis. It seems that if the solute travel distance is
very small compared with the injection distance, the system
acts as practically homogeneous and solutes tend to arrive
at similar times, while if the solute travel distance is very
large, transport becomes more homogenized, as the solute
samples a sufficient number of heterogeneous scales before
being collected at the well.

3.3. Effect of Changing the Injection Location

[73] In single stochastic realizations and particularly
under radial flow conditions, solute behavior is hardly er-
godic. Nonergodicity of the plume means that BTCs can
vary drastically from realization to realization. A direct
consequence of ergodicity would be that all curves would
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Figure 6. The 3-D BTCs (and relative peak distributions) obtained after injecting in the isotropic field
(A) with 02 = 4, at R points. Notice that the behavior p(¢) ~ £ ! is very similar to the 3-D BTC slope at
L1 (ry &~ 1.25) but tends to diverge as long as the injection distance increases. At R4, the BTCs are

more symmetric.

not depend on the specific injection location, but only on
its distance to the well. In our realizations, this is clearly
not the case, and so we compared solutions obtained for the
BTCs recorded at points located at the same injection dis-
tance from different directions.

[74] Referring to Figure 2 for the position map, we plot
in Figure 8 the depth-integrated BTCs and relative 2-D
peaks obtained for locations D2, L2, D4, and L4 for all
thzree fields (A)—(C). For these simulations, we kept
oy =4.

[75] For field (A), we observe that the shapes of the
BTCs are slightly different for injection locations L2 and
D2 (ry = 3), and no PL tail is observed. At L4 (r) ~ 18),
BTCs show a well-defined p(7) ~ ¢! at late times; here
the spread of the distribution of 2-D peaks is close to the
unity (07 at L4=0.701). At D4, the variance is slightly
smaller than in the previous case (02 = 0.533), and analo-
gously to what is seen for R4 (Figure 6), the BTC does not
scale with p(¢) ~ ¢, ! (see Figure 6).

[76] Looking now at the results from field (B), the late-
time behavior of BTCs at D2 and L2 (r) ~ 0.6) is practi-
cally the same, showing no constant PL tailing. Here the
spread of the distribution of 2-D peaks is narrow
(012 = 0.263 for D2 and otz = 0.165 for L2), indicating that
once again the BTC does not develop for low vertical vari-
ability of the plume behavior. A more pronounced PL
effect is found at D4, but not in the case of injection from

10

L4. Again, despite the fact that both injection points are
located at ry ~ 1.8, the spread of the 2-D peaks distribution
is much higher for D4 (0?=1.007) than at L4
(07 = 0.562).

[77] In field (C) (right), for injection locations D2 and L2
and L4, BTCs are found to follow a relatively similar sym-
metric behavior at late time. Only at D4 the BTC shows a
more nonsymmetric distribution (roughly following
p(t) ~ 1!, despite the presence of multiple peaks) Once
again, the spread of the peaks is higher when BTCs display
less symmetric distributions and more tailing (02 = 0.252
at D4) than where no tailing occurs (02 = 0.045 at D2;
0? =0.036 at L2; 07 = 0.056 at L4).

[78] These results serve to highlight and confirm the pre-
vious hypothesis, i.e., that a combination of high 0,2 and r)
close to unity to determine p(¢) ~ !, independent of
injection location and type of geological setting. It should
be noticed that the characteristic values of o7 for tailing to
develop vary from field to field. It is difficult at this level to
build a general rule, if it exists, to quantitatively evaluate
what this value should be for p(¢) ~ 7! to develop. For
this purpose, additional numerical outcomes were needed.
We address such an evaluation in the last section.

3.4. Effect of Y Variance
[79] We explore here the effect of the variance of the

log-transformed hydraulic conductivity, 0%, on the BTC
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Figure 7. The 3-D BTCs (and relative peak distributions) obtained after injecting in the anisotropy

field (C) with 03 = 4, at R points. Notice that the behavior p(¢)

~ t71 can be fitted at L4

c

(V)\ ~ 18)

From R1 to R4, the 3-D BTCs increasingly tend to heavy-tailed distributions; at R2 and R3, a PL behav-
ior with m =1 can be inferred at different intermediate portions of the BTCs.

tailing. In our analysis, we focused on values of 0% = 1,4,
and 8. For illustrative purposes, we will use the example of
anisotropic field (B) (Figure 2b), with injections from two
different locations (L2 and L4). Again, these are chosen to
illustrate results, and it is important to note that similar
behavior was observed and conclusions made with observa-
tions from the other fields and locations. The results are
displayed in Figure 9.

[s0] As one might intuitively expect, the general effect
of increasing o3 is to increase o2. At L2, we observe that
the variance of the 2-D peaks increases from o7 = 0.038
for 03 = 1 to 02 = 0.329 for 07 = 8. In none of the BTCs
do we observe p(f) ~ £, !, which we attribute to the fact
that injections take place very close to the well, and our
hypothesized condition ) close to unity is not met.

[81] At L4 (where ) ~ 1.8), BTCs are more anomalous.
While for 0% = 1, with o7 = 0.143, BTCs do not show a
clear PL behavior, this is much more visible for the larger
variance cases of 03 =4 and 8, where p(f) ~ £, ! at the
late time. In the two latter cases, Jf is 0.562 and 1.101,
respectively.

[s2] From this last analysis, we observe that the variance
of log conductivity is a key controlling factor in the devel-
opment of PL tailing on our BTCs. In particular though,
these results provide evidence confirming our two other
hypothesized conditions for p(¢) ~ ¢!, which are (1) an
injection distance close to the integral scale and (2) a large
spread of the 2-D peaks.
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4. Discussion

[83] From our results, we observed so far that in many
cases that meet certain conditions, a PL behavior of the
form p(t) ~ ;! develops on depth-integrated BTCs when
collected during CFTTs in advection-dominated aquifers.
This behavior is highly variable, but we identify common
patterns to phenomenologically explain this behavior. In
particular, we note that for p(f) ~ £ ! to take place on
BTCs, the normalized injection distances should be 7y ~ 1.
If it is much smaller or much larger than this it will not
occur, although BTCs may still be highly nonsymmetric.
Once this condition is met, the PL extends over larger time
ranges with increasing a%,, or better said larger af, which is
controlled by o3 . Peak times have been already reported in
the literature to characterize flow and transport variables
[e.g., Bellin and Rubin, 2004]; here we can attribute a large
0? to large variability of point-to-point connectivity pat-
terns [e.g., Trinchero et al., 2008] along the vertical injec-
tion line.

[s4] We note that the presented findings are based on a
finite set of realizations, and caution should be taken in try-
ing to generalize them. However, based on our observa-
tions, there are some questions we would like to address
here: (1) Is there, and if so, how strong is the correlation
between 2-D peak spreading and 3-D tailing in our simula-
tions? (2) Does local dispersivity play a key role in 3-D
tailing and/or 2-D peak spreading? (3) Can we explain
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Figure 8. The 3-D BTCs (and relative peak distributions) after injecting in the three fields A, B, and C
with 0 = 4, at different locations. The line indicates which BTCs display a behavior like p () ~ 7. 1.

tailing a with unit slope on both 2-D peak distributions and
in late-time 3-D BTCs? We provide answers in the
following.

4.1.

[85] We observe that the peak spreading, measured by
o7, has to surpass some critical threshold for the behavior
p(t) ~ ;! on the BTC to occur, but so far we have only
qualitatively indicated that o has to be generally “large”
for this regime to take place. It would be useful to find a
more quantitative relationship between this value and some
parameters it may depend on.

[s6] We started to compare if peak spreading can be
related with the nonsymmetric degree of the 3-D BTCs.
Tailing has been seen to be highly variable from case to
case, and peak distribution is in addition nonunique
between different types of fields. Let us focus one moment
only on those injection locations providing conditions for
the 3-D BTCs to display p(¢) ~ £ '. As indicated in section
3.2, this condition takes place for field (A) at R1, where
o? = 0.621, for field (B) at L4, where o2 = 0.561, and for
field (C) at R4, where o = 0.25. Note that a value of
0,2 = 0.25, which is sufficient for field (C) to generate
p(t) ~ t-1, is not sufficient for field (B), as in the latter

c °
field it would correspond to an intermediate injection point

Can Peak Spreading and Tailing Be Related ?

between L2 and L3, which do not show such a well-defined
PL behavior. However, L2 and L3 still display anomalous
behavior.

[87] We explore here, for each field (A)—~(C) and for all
the system variances (o3 = 1,4,8), whether a relationship
can be built between peak spreading and the nonsymmetric
behavior of 3-D BTCs at least for those injection points
that satisfy the ry ~ 1. We plot in Figure 10, for each of
these points, the corresponding peak spreading distance
(¢7) and another characteristic distance (/3) indicating the
degree of tailing of the corresponding 3-D BTC. The latter
was calculated as the normalized distance between the peak
concentration time of the 3-D BTC (z,,) and the first
moment of the travel time distribution (7) such that

_[pk—i
T

B (8)

[88] Note that a value of 3 — 0 indicates that the peak
time corresponds to the center of mass of the distribution,
which means a symmetric distribution, similar, for instance,
to the BTC modeled under homogeneous conditions.

[89] Results are shown in Figure 10. In field (A) the
points that satisfy the required condition r, ~ 1 correspond
to injection locations R1, Ul, D1, and L1. For fields (B)

12
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Figure 9. The 3-D BTCs (and relative peak distributions) for the anisotropic field (B) for variable var-
iance (0% = 1,4, 8, respectively, from the top to the bottom of the plot), at two injection locations, L2
and L4. Note that BTC tends to scale as a PL with m & 1 for L4 in case of variance o5 = 4 and 8, which
also show distribution of 2-D peaks more spread than in the case where m is not found close to the unit.

and (C), on the other hand, these injection locations are R4,
U4, D4, and L4. In Figure 10 it can be seen that there is a
good correlation between o7 and f3, but there is a striking
difference between the behavior of points in field (A)
(using the local dispersivity value of o = 0.25) and the
ones in fields (B) and (C). In the first case, points at (A)
with a = 0.25 are distributed very similarly to a PL func-
tion of the form o2 o 3°°. For the other case, if we exclude
some outliers (such as the point indicated by “N”) in the
plot, points (B) and (C) seem to be still PL distributed, but
this time of the form o7 oc #*. This result reveals several
important aspects.

[90] (1) We observe that for field (A) with « = 0.25, a
short increase of the 2-D peak variance (i.e., higher inde-
pendent behavior of strata in the domain) leads to higher
tailing, while this regime is much slower for fields (B) and
(C) (i.e., more variability between strata is needed on fields
(B) and (C) to generate the same amount of nonsymmetric
behavior as in the field (A)).

[o1] (2) The plot suggests that the behavior for fields (B)
and (C) is very similar, despite the characteristic vertical
injection distance L. being an order of magnitude larger in
field (B) than in field (C). This means that in this configura-
tion, solute initial stratification due to the flux-weighted
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injection mode dominates, on single realizations, over the
statistical distribution of Y.

[92] (3) The plot quantitatively suggests how total var-
iance ¢y = 550 (37%) controls the distribution of peak
time (cr?) and in turn the nonsymmetric degree of the 3-D
BTC (53). As one might expect, this figure intuitively sug-
gests that the larger the total variance in 3-D simulations,
the larger the difference in connectivity displayed by the
different layers of the formation, and the larger the effect
of stratification.

™

4.2. Are Results Sensitive to the Local Dispersivity ?

[93] All simulations presented so far have an isotropic
local dispersivity o = 0.25. This value was set to enforce
that dimensionless parameter /o> 20 and maintain
advection-dominated transport. Another similar important
dimensionless parameter that might play an important role is

Iy = ©)

1
o

which can be thought of as a Peclet number. Typically,
large 7, suggests advection-dominated transport, while low
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Figure 10. Relationship between 2-D peak spreading, o7, and degree of tailing of 3-D BTCs, (3, meas-
ured for fields (A)—(C) using normalized injection distance 7 ~ 1 and different variances o%. We note
that all the points having /, = 160 are collinear with a PL correlation with a slope of 2, while points hav-
ing 1, = 16 are collinear with a PL correlation with a slope of 0.5.

values represent dispersion-dominated regimes. In our sim-
ulations, fields (B) and (C) have 7, = 160 (considering / =
[, in field (B)), while field (A) only has /, = 16. Note that
the two correlations empirically suggested in Figure 10 dis-
criminate field (A) with fields (B) and (C), which may sug-
gest this is a reflection of different /,, values.

[94] To explore this point, we repeated the simulations
for the field (A), with o = 0.025, which sets 7, = 160, the
same for the field (B) and (C) simulations. For brevity, we
focus only on the results with variance of 0% = 4, although
all other cases were considered also. Figure 10 also
includes the results of o7 against 3 from these simulations
(green squares). These points behave much like those of
fields (B) and (C), i.e., a regime close to o2 o 3. Figure
11 compares the original BTCs and peak distributions to
the new ones (in red).

[95s] The results indicate that local dispersivity plays an
important role in the distribution of arrival times, but not
on the phenomenon relating to BTC slope:

[96] (1) Figure 10 suggests that a reduction of « yields a
reduction in 3 (the BTCs tend to have less persistent tailing
and thus asymmetry), while the 2-D peak spread varies
quite little. This can be seen in Figure 11, where the red
(I, = 160) BTCs are narrower than their black (1, = 16)
counterparts, while the dots reflecting the 2-D peaks dis-
play qualitatively similar scatter. This behavior indicates
that the effects of transverse dispersivity may not be
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negligible for the development of anomalous behavior in
radially convergent transport in 3-D systems.

[97] (2) From Figure 11 we note that tailing occurs over a
narrower range of times, but it does seem that the tail slope is
not strongly influenced by «; this means that likely, the slope
is more controlled by stratification and connectivity rather
than by local dispersion, and transverse dispersivity may not
be negligible for the development of PL-like slopes on
BTCs. For R1, the qualitative behavior p(r) ~ ¢.' at later
times is still somewhat visible in the new BTC with low «
(red curve), even if the “length” of this tail is much shorter
than for the simulation with a larger «. Discrepancies
between the BTCs diminish as the normalized injection dis-
tances increase suggesting less sensitivity to local dispersivity
values, probably due to comparable heterogeneity sampling
by the particles over very large times.

4.3. What Does p(t) ~ t~! Scaling Mean ?

[98] To explain why the specific PL behavior with m =1
arises on depth-integrated BTCs, let us first consider why
this occur on the slope of the peaks of 2-D BTCs. We al-
ready noticed from Figure 3 that the architecture of the
tracer, once it has been injected into the well, is stratified,
due to the flux-weighted scheme. Such stratification is due
to the existence of hydraulic heterogeneities that condition
(a) the mass injected in each layer, which depends exclu-
sively on the flow velocities at the cells located along the
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Figure 11. Comparison between 3-D BTCs (and relative peak distributions) obtained after injecting in

the isotropic field (A) with 03 = 4 at R points, with two different local dispersivity (o) values and conse-

quently with two different /,, ratios.

injection column, and (b) the mean travel time along each
horizon.

[99] In a perfectly stratified homogeneous medium
(e=1I /I, — 0), each layer acts independently. This is
strictly valid assuming negligible transverse dispersion. In
this limit case, convergent radial transport in each layer can
be approximated by the analytical solution of Welty and
Gelhar [1994, equation 26], which after some manipula-
tion, allows us to estimate the peak concentration (c,z) as

4 (655
37rr

where «; is the longitudinal dispersivity. This solution is
valid for advection-dominated transport (r/ay > 20). This
result highlights that the maximum concentration in each
layer scales linearly with the layer-specific injected mass M
and inversely with the discharge rate Q.

[100] For the 2-D BTCs, the injected mass in all realiza-
tions is equal. Thus, the peak concentrations are governed

M

201, 1o

Cpk
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by O and t,. The parameter Pe is constant for a given
injection distance. Hence, from (10) we can say that

(11)

Cpktpk ~ 1/] Y

0

where 1) is a constant. Note that this relationship can and is
often used to design the total mass of solute tracer to be
injected during experiments.

[101] Now, how do we translate this concept to our three-
dimensional models and to depth-integrated BTCs?
Assuming again a perfectly stratified homogeneous me-
dium, for a given layer and due to boundary conditions
(flux-averaged injection), the ratio M/Q should be constant.
Thus, in each layer the condition

(12)

—1
Cpk ™~ tpk

should be satisfied. Under some conditions (that we identi-
fied to be controlled by the parameters 0%, 02, and ), the
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3-D solute transport becomes so highly stratified that each
layer acts separately, and the final shape is eventually
similar to a PL with m=1 (independent of the statistical
distribution of Y, and also despite the fact that the three-
dimensional flow solution allows for transverse dispersion).
The further away from these conditions, the more the solu-
tion deteriorates.

[102] This explains why we found a universal scaling PL
with slope m = 1 only for certain fields, and why it is differ-
ent than m =2 proposed by the Becker and Shapiro [2003]
model. Their universal BTCs with PL slope m =2 were
obtained as a convolution of single BTCs from individual
channels plus the ADE; however, they assumed individual
channels acting independently that in each channel M is
proportional to the cube of the mean channel size, and also
that the mean advection time was proportional to the square
of the mean channel aperture. Here we do not have such
conditions since our solution for single “channel” (hori-
zon) follows Welty and Gelhar [1994] solution, as stated
previously.

5. Conclusions

[103] We have studied the development of heavy-tailed
BTCs in heterogeneous porous media using a numerical
approach, based on single realizations of flow and transport
in stochastic multi-Gaussian log-normal hydraulic conduc-
tivity fields. We used a three-dimensional approach under
convergent radial flow, to reflect realistic conditions often
used in real tracer tests. We note that despite this very prac-
tical application, the topic appears to have received rela-
tively little attention in the literature to date.

[104] This work focused on the development of heavy-
tailed BTCs, and in particular on the physical mechanisms
that determine PL tails with unit slope at late time (i.e., af-
ter the concentration peak has elapsed), which have been
observed in real tests.

[10s] The first conclusion of this work was that in realistic
three-dimensional settings, the late-time distribution of the
concentrations observed in convergent flow field tracer tests
is mainly controlled by the degree of stratification of the
solute. For a given random field with well-defined geostatis-
tical properties, different late-time behaviors are observed
for BTCs obtained from different injection locations.

[106] We note that we observe BTC scaling at late time
with unit slope PL behavior when the following conditions
are met:

[107] (1) large vertical variability of the connectivity for
the layers making up the 3-D formation;

[108] (2) disordered systems (with mid to high variance);

[109] (3) injection distance comparable with the planar
horizontal integral scale of the heterogeneity.

[110] Conditions 1 and 2 are highly correlated. We dem-
onstrated that a possible reason for this is that the maxi-
mum concentrations of BTCs under homogeneous flow
conditions scale inversely with arrival time of the peak
value. When these conditions were not or only partially ful-
filled, BTCs no longer showed PL distribution, but they
could still display heavy tailing.

[111] This work suggested that full three-dimensional
models are required to reproduce skewed BTCs similar
to the ones observed in field settings. Tailing does not
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naturally occur in our 2-D transport simulations. Based on
all of this we hypothesized that the nature of memory func-
tions for large-scale effective models of such systems will
depend heavily on the vertical architecture and connectivity
patterns between the injection location and the pumping
well.
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