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We study solute transport in a periodic channel with a sinusoidal wavy boundary when inertial flow
effects are sufficiently large to be important, but do not give rise to turbulence. This configuration and
setup are known to result in large recirculation zones that can act as traps for solutes; these traps can
significantly affect dispersion of the solute as it moves through the domain. Previous studies have con-
sidered the effect of inertia on asymptotic dispersion in such geometries. Here we develop an effective
spatial Markov model that aims to describe transport all the way from preasymptotic to asymptotic
times. In particular we demonstrate that correlation effects must be included in such an effective model
when Péclet numbers are larger than O(100) in order to reliably predict observed breakthrough curves
and the temporal evolution of second centered moments. For smaller Péclet numbers correlation effects,
while present, are weak and do not appear to play a significant role. For many systems of practical inter-
est, if Reynolds numbers are large, it may be typical that Péclet numbers are large also given that Schmidt
numbers for typical fluids and solutes can vary between 1 and 500. This suggests that when Reynolds
numbers are large, any effective theories of transport should incorporate correlation as part of the upscal-
ing procedure, which many conventional approaches currently do not do. We define a novel parameter to
quantify the importance of this correlation. Next, using the theory of CTRWs we explain a to date unex-
plained phenomenon of why dispersion coefficients for a fixed Péclet number increase with increasing
Reynolds number, but saturate above a certain value. Finally we also demonstrate that effective preas-
ymptotic models that do not adequately account for velocity correlations will also not predict asymptotic
dispersion coefficients correctly.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Taylor [44], in a seminal work, demonstrated that at asymptotic
times, for laminar flow conditions transport in a cylindrical tube
can be effectively described by a one dimensional transport equa-
tion with an enhanced longitudinal effective dispersion that
accounts for the interplay between transverse molecular diffusion
and longitudinal advection by the shear flow. Aris then formalized
this concept by relating this dispersion coefficient to the second
centered spatial moment of a plume [3]. For all parallel shear flow
geometries, the scaling of the dispersion coefficient as a function of
the average fluid velocity, typical geometrical dimension, and
molecular diffusion coefficient is the same. See for example [16]
for a detailed account of Taylor’s, Aris’, and subsequent early
developments on this matter. Since then there have been countless
studies, in numerous fields including hydrology, using effective
dispersion coefficients, thus demonstrating the strength and utility
of this simple concept. While Taylor’s concept was limited to
purely shear flows, the idea was extended to more complex
domains and flows by a variety of methods, including the method
of moments [17], the method of volume averaging [41] and
homogenization [31]. Howard Brenner, in honor of Taylor’s contri-
bution, coined the term ‘Taylor dispersion’ to describe this effective
dispersion phenomenon.

Taylor dispersion is only valid at asymptotic times, which in
other words means after the solute in the system has had sufficient
time to sample the full statistics of the velocity field. This time
scale is determined by how quickly diffusion can act and is typi-
cally quantified as sD ¼ l2

c =D, where lc is a characteristic length
scale of the system being considered. If this time is much shorter
than the times of interest, then it may be appropriate to use
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asymptotic Taylor dispersion estimates. However, if the time scales
of interest are shorter than or on the order of sD, then preasymp-
totic effects should be accounted for. At preasymptotic times the
evolution of the spatial moments of a plume generally do not
scale in a Fickian manner and so models capable of capturing
these anomalous scalings should be used. For the specific case of
shear flows considered by Taylor and Aris a variety of
papers studying preasymptotic effects have been published
[9,16,29,36]. Preasymptotic effects may be particularly important
for modeling mixing, since transverse concentration gradients are
significant in this regime [12,36,37]. The goal of the work
presented here is to develop and test a model for transport at pre-
asymptotic times.

For more complex geometries and flows traditional Taylor–Aris
type modeling approaches may not be appropriate, but a rich fam-
ily of alternatives exists. In this particular work we will focus on
the Spatial Markov model originally introduced and studied in
[1,13,14,33] to model effective transport in highly heterogeneous
porous media flows. This model has also gone by the name corre-
lated CTRW and has been applied successfully to model effective
preasymptotic transport in a channel with periodically varying
aperture and in a two-dimensional porous medium at the pore
scale [1,38]. Both of these flows were considered using the classical
porous medium assumption of Stokes flow at low Reynolds num-
bers (Re� 1).

While for many practical applications the low Reynolds
assumption is perfectly reasonable, there are situations where
inertial effects may play an important role, e.g. flow through frac-
tures [19], or flows where fluid viscosity is small such as for Carbon
sequestration where the viscosity of supercritical CO2 can be two
orders of magnitude smaller than that of water [5,45]. Inertial
effects change the structure of the flow, which can have profound
implications when upscaling the flow equation. In particular, as
inertial effects increase, the presence of recirculation zones also
increases. While such recirculation zones can and do occur for
flows at low (and even vanishing) Reynolds number [10,35,40]
they become more pronounced as inertial effects become increas-
ingly important; their structure can also change significantly with
increasing inertia, leading for example to strong asymmetries with
respect to the flow direction, regardless of existing symmetries in
the geometry. These recirculation zones are low velocity regions
that are known to have a significant impact on conservative
[8,20,30] and reactive transport [27,48]. They are often conceptual-
ized as regions where solutes are trapped in an immobile state. For
example, Aris [4] studied asymptotic dispersion coefficients in flow
through a tube with immobile pockets.

In this work, we study preasymptotic transport in a system
where inertial effects in the flow are important. We focus on a sim-
ple idealized pore geometry, namely a channel with a periodically
varying aperture, which is formally defined in the following sec-
tion. While this is a very simple system it has been shown in a vari-
ety of studies to provide valuable physical insight into what
controls flow and transport in a porous medium. One of the bene-
fits is that the system is sufficiently simple so as to limit the num-
ber of relevant dimensionless numbers, a feature exploited in a
variety of previous studies. Limitations of this geometry are that
it is periodic, which true porous media will likely not be, it is ver-
tically bounded meaning that transverse dispersion effects cannot
be explored and it is two-dimensional, where real systems would
be three dimensional. Dykaar and Kitanidis [28] chose this geome-
try to upscale reactive transport in a porous medium. Cardenas
et al. [18] studied a similar geometry in a variety of contexts to
assess the impact of inertia on flow from the perspective of upscal-
ing flow and the breakdown of Darcy’s law [22]. Bolster et al. [10]
used this geometry to demonstrate that an increase in boundary
fluctuations does not automatically induce greater dispersion
under creeping flow conditions. Le Borgne et al. [38] used this
geometry to study preasymptotic transport in low Reynolds num-
ber flows and the authors showed that the features that emerged
from this simple geometry were both qualitatively and quantita-
tively similar to features obtained from a more complex, heteroge-
neous and realistic pore structure. Bouquain et al. [15] studied
asymptotic dispersion in this geometry when inertial effects
become important. They investigated the dependence of the
asymptotic effective dispersion coefficient on Reynolds and Péclet,
and observed that it saturates at high Reynolds numbers at a
Péclet-dependent value. A scaling law was found for the asymp-
totic dispersion coefficient as a function of Reynolds and Péclet,
with a power law dependence on the Péclet that deviates from
the classic Pe2 of Taylor and Aris. A recent work by Richmond
et al. [42] looks at asymptotic dispersion in a similar geometry,
including at higher Reynolds number unsteady, but not fully turbu-
lent, flow. At these larger Reynolds number temporal velocity fluc-
tuations result in increased mass transfer, diminishing tailing and
thus decreasing longitudinal dispersion effects. It is some of these
results that motivate the current study, where we look more clo-
sely into the role of recirculation zones. Wood [46], using the the-
ory of volume averaging, studied dispersion in flows through
porous media where inertial effects play a role and showed how
different scalings with Péclet number for the asymptotic dispersion
coefficient emerge depending on the specific value of the Reynolds
number and whether inertial effects are important or not. Experi-
ments exploring asymptotic longitudinal dispersion in porous
media where inertial effects are significant have also been con-
ducted [23], showing scalings similar to those in [46].

The paper is structured as follows. Section 2 defines the model
system, the numerical methods used to study flow and transport
through it, the development of the proposed effective spatial
Markov model and the metrics and observables used to test the
model. Section 3 presents results of the simulation and compari-
sons of observed results to model predictions. Section 4 provides
a discussion on predictions of asymptotic dispersion coefficients
using CTRW theory which does not incorporate correlations and
demonstrates how preasymptotic models that do not adequately
account for correlation effects will not accurately predict asymp-
totic dispersion coefficients for sufficiently large Péclet numbers.
It also discusses the importance of the probability of successive
trapping of particles in immobile/recirculation zones. Section 5
provides conclusions of this work.

2. Model system

2.1. Geometry

The geometry we consider in this study is a two-dimensional
channel with a sinusoidal boundary, depicted in Fig. 1; the bound-
aries of the system are described by

hðxÞ ¼ �h� h0 cos
2px

L

� �
; ð1Þ

where x is the horizontal coordinate, h is the half-aperture, �h is the
mean half-aperture, h0 is the amplitude fluctuation of the half-
aperture and L is the length of a single cell. This geometry is fully
characterized by two dimensionless numbers

� ¼ 2�h
L

and a ¼ h0

2 �h
; ð2Þ

where � describes the aspect ratio of the cell and a the relative
amplitude of the aperture fluctuations. a is bounded between
0 < a < 1=2 as for values equal to or greater than 1=2 the channel
is closed and no flow occurs. For a ¼ 0 one recovers Poiseuille flow,



Fig. 1. Schematic of the unit cell ‘pore’ for flow and transport modeling in this work.

D. Bolster et al. / Advances in Water Resources 70 (2014) 89–103 91
i.e. parallel flow between two plates. Bouquain et al. [15] demon-
strated that for sufficient a and � recirculation zones will arise even
if they were not present at Re ¼ 0 and grow in area as inertial effects
become more important. In order to maintain a small number of
dimensionless parameters in this current study we will restrict our-
selves to a system with specific values of a ¼ 0:4 and � ¼ 0:47.
These values are chosen because they coincide with one set of
values that received focus in [15]. However, as outlined in [15],
the features that we will focus on in this study such as emergence
of recirculation zones as inertial effects increase or an asymptote
in the effective dispersion coefficient as inertial effects increase
are not restricted to these values and occur for similar reasons at
other values of � and a.

We consider flow in this system from left to right. Given a mean
fluid velocity �u we define the additional dimensionless Reynolds
number as

Re ¼ 2�h�u
m

; ð3Þ

where m is the kinematic viscosity of the fluid. The Reynolds number
characterizes the relative importance of inertial to viscous effects.
In this study we always maintain �h and �u constant and so modify
m to change the Reynolds numbers so that systems with similar
average velocities can be easily compared. As noted, in this study
we are interested in flows where inertial effects are important
and so we focus on flows for which Re � 1. However, in this current
study we are not interested in the role of turbulence, which
emerges at very large Reynolds numbers. We restrict our study to
non-turbulent inertial effects with Reynolds number smaller than
100. While in [15] we studied a broad range of 1 6 Re � 100, here
we focus primarily on cases where Re ¼ f1;30;100g as these effec-
tively serve to highlight our central messages. Streamlines for these
three cases are shown in Fig. 2. For Re ¼ 1 no recirculation is pres-
ent and streamlines follow the wall boundary structure. For Re ¼ 30
a large asymmetric recirculation zone has already developed. For
Re ¼ 100 a very large recirculation zone that occupies most of the
domain, other than a narrow flow channel down the center
between throats, exists.
Fig. 2. Streamlines for the selected geometry at Re = 1, 30 and 100. Note the larger area
Since we are interested in describing the effective transport of a
solute, a final dimensionless number, the Péclet number, arises
such that

Pe ¼ 2�h�u
D

; ð4Þ

where D is the diffusion coefficient of the solute considered. The
Péclet number is a measure of the ratio of advective to diffusive
effects in transport. In this it is similar to the Reynolds number,
which is an estimate of the same ratio for the flow. The ratio of
the Péclet number to Reynolds number is known as the Schmidt
number Sc ¼ Pe=Re ¼ m=D; it is an intrinsic property of the fluid
and solute and for most solutes of practical interest it is greater than
1, meaning that when advective effects are important for flow they
are also important for transport.

2.2. Flow simulations

The steady state flow field through the geometry described
above was modeled numerically by direct numerical simulation.
The flow was treated as incompressible, resulting in the following
conservation of mass and momentum equations (Navier–Stokes)

$ � u ¼ 0 qu � $u ¼ qg� $pþ l$2u: ð5Þ
These equations are solved using a finite element method

with the commercially available software package COMSOL
MULTIPHYSICS. The in and outflow boundaries are treated as peri-
odic, a mean flow is imposed at the inlet and a constant pressure at
the outlet, which allows the solver to adjust the pressure so as to
satisfy periodicity and the imposed flow rate. Further details are
available in [15].

2.3. Simulation of transport

We consider conservative solute transport as governed by the
advection diffusion equation

@C
@t
þ u � $C ¼ Dm $2C; ð6Þ

where C is the concentration of the solute and Dm is the molecular
diffusion coefficient. In all cases we consider a flux weighted pulse
initial condition at the narrowest location in the throat of the chan-
nel. Due to the linearity of the problem at hand this initial condition
provides sufficient information to predict transport for more com-
plex initial configurations, although it should be noted that specific
breakthrough curves and spatial moments of a plume can be sensi-
tive to the specific initial condition [21,47,49]. We solve this system
numerically using a Lagrangian particle based random walk
method, where the solute plume is discretized into a finite number
of N particles. In our simulations particle numbers were increased
until results converged. Generally this was achievable with 104

particles and to minimize noise effects in most cases we used one
million particles. For a given time step Dt each particle i is then
moved according to the Langevin equation

xiðt þ DtÞ ¼ xiðtÞ þ uiDt þ ni

ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

yiðt þ DtÞ ¼ yiðtÞ þ v iDt þ gi

ffiffiffiffiffiffiffiffiffiffiffiffi
2DDt
p i ¼ 1; . . . ;N;
occupied by the recirculation zones as the Reynolds number gets bigger and bigger.
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where xi and yi are the horizontal and vertical position of particle i
respectively and n and g are independently distributed Gaussian
variables with zero mean and unit variance. We used a third order
Runge–Kutta scheme to advance particle locations in time. The
choice of time step is critical in producing accurate results (e.g.
[32]). Typically we found convergence of results for time steps
smaller than Dt ¼ 10�2 and in most cases ran simulations with steps
of Dt ¼ 10�3. It should be noted that time in these simulations is
chosen such that one unit of time corresponds to the amount of
time it takes an advective particle traveling with the mean velocity
�u to traverse a distance 2 h. The solid boundaries in the domain are
treated as no flux boundaries and are modeled numerically as elas-
tic reflection boundaries for particles, meaning that we calculate a
particle’s angle of incidence as it strikes a boundary and reflect it
with the same angle of reflection. Particle velocities are interpolated
linearly from nodal values of the flow mesh [26]. This Lagrangian
numerical method is chosen for a variety of reasons, including
(i) it allows for easy and effective calculation of the spatial moments
of the plume and (ii) given the periodic nature of the flow domain it
makes it possible to consider transport through a very large number
of unit cells without requiring a prohibitively large numerical mesh.
Specifically a particle can have any ðx; yÞ location, which is simply
stored as a vector. It can have arbitrarily large x and its velocity,
needed to calculate its next spatial location, can be calculated for
this location by simply noting that it is identical to the velocity at
location modðx; LÞ, where mod denotes the remainder function,
due to the channel’s periodic structure.

2.4. Effective transport model – spatial Markov model

One of the primary outcomes of Taylor dispersion is that at
asymptotic times a two- or three-dimensional transport process
is properly described by a one-dimensional transport equation in
the longitudinal direction of flow. In this study we aim to develop
an effective one dimensional transport equation that is valid at
pre-asymptotic times. To this end we will build our effective model
using a spatial Markov framework. Like the classical random walk
described above, spatial Markov models break the solute plume
into a large, in principle infinite, number of particles. At a step n
each particle has a position xðnÞi and travel time tðnÞi , which can be
grouped into vectors fxðnÞg and ftðnÞg describing the kinematic state
of the particle population at step n. The governing equation for
transport can be written as

xðnþ1Þ ¼ xðnÞ þ DxðnÞ

tðnþ1Þ ¼ tðnÞ þ DtðnÞ:
ð7Þ

DxðnÞ and DtðnÞ are successive spatial and temporal increments. The
spatial Markov model is based in the hypothesis that Lagrangian
velocities form a Markov process in space. Physically one can justify
this property for our setup from the following argument. The tran-
sition time distribution that a particle will have to cross one pore
depends solely on which streamline it enters the periodic domain
on. Likewise the probability of which streamline one starts the next
jump on, and thus the probability of the next transition time,
depends also on the streamline where it entered. Thus the Markov
property arises quite naturally for this system. In principle Dt and
Dx can be random with joint distribution wðx; tÞ; independent [8]
and coupled cases [24,39] have been also considered. In many stud-
ies to date a common approach is to fix Dx to a constant value such
that wðx; tÞ ¼ wðtÞdðx� DxÞ; in this particular case the most logical
choice would be the unit cell length, i.e. Dx ¼ L. Then the travel time
distribution describes the distribution of times it takes particles to
traverse one ‘pore’. It has to date also been common to take the
Dt as independent identically distributed variables [8], but a series
of recent papers [13,14,38] have shown that it may be important to
account for the fact that successive time steps can be correlated,
particularly if one wishes to capture transport at pre-asymptotic
times well. Physically this reflects the fact that particles that tra-
verse a pore quickly have a higher probability of traversing the next
one quickly too and vice versa because fast particles will tend to
stay on faster streamlines and slow particles on slower streamlines
until diffusion smears this effect out. This conceptual picture is
valid for high Péclet numbers. In order to develop this effective
model, we use the fine scale simulations from Sections 2.2 and
2.3 to build the distribution for Dt and quantify the correlation
between successive steps.

2.5. Metrics and observables

Here we define the metrics and observables that we will use to
understand the system of interest and assess the effective spatial
Markov model.

2.5.1. Longitudinal spatial moments
Two classic metrics of solute transport are the first and second

centered spatial moments of the plume. Respectively these are
given by

m1 ¼
Z 1

�1

Z hðxÞ

�hðxÞ
xCðx; y; tÞdydx ð8Þ

and

j2ðtÞ ¼
Z 1

�1

Z hðxÞ

�hðxÞ
x2 Cðx; y; tÞdydx �m2

1: ð9Þ

The first spatial moment m1ðtÞ represents the horizontal posi-
tion of the center of mass of the plume and is a measure of the lon-
gitudinal position of a plume. j2 is the second centered moment,
which represents the spatial variance of the plume and is a mea-
sure of the spreading around the center of mass. This is closely
related to the effective dispersion coefficient since

DeðtÞ ¼ 1
2

dj2

dt
; ð10Þ

which in the limit t !1 tends to the asymptotic constant Taylor
dispersion coefficient. At early times it will tend to evolve superdif-
fusively with time.

2.5.2. Unit cell breakthrough curves
One of the key components of any random walk model is the

distribution of travel times wðDtÞ. For Dx ¼ L as we have defined
it for our spatial Markov model, this distribution can be obtained
by measuring the first passage time distribution of particles at
x ¼ x0 þ L where x0 is the starting x position of the particles. This
is qualitatively similar to the breakthrough curve at this location,
although caution must be taking in noting differences between
breakthrough curves and first passage times (e.g. [2]). The wider
this distribution, the wider the range of arrival times between fast
and slow moving particles, leading to potentially greater dispersive
spreading.

2.5.3. Transition matrix
In order to account for the correlation between successive time

steps, we must find the conditional probability density rðDt j Dt0Þ,
which characterizes the probability of having a time increment
Dt given that the previous time step was Dt0. If correlation were
non-existent in the system, the conditional probability would be
independent of Dt0 and the conditional distribution would
equal the distribution of travel times: rðDt j Dt0Þ ¼ wðDtÞ. When
correlation is important this is not true. Quantifying this
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correlation formally is not numerically straightforward and so we
adopt a discrete approach introduced by [13].

Let us discretize the time step distribution wðDtÞ into a finite
number n of discrete classes in the range Ci (1 6 i 6 n) such that
a particle belongs to bin Ci if its transition time lies in the range
Dti 6 Dt < Dtiþ1. In this work the discretization is performed such
that each class is equiprobable. For such discretization, the struc-
ture of the transition matrices is due to correlation effects only
and is not influenced by distribution effects. Alternative discretiza-
tions that have been explored previously include linear in time or
linear in log time. The latter is particularly interesting to refine the
transitions that occur in the tails. For simulation purposes these
discretization work well but they do not allow for as simple a phys-
ical interpretation of the transition matrices as the present one
since the value of individual transition probabilities depends both
on the strength of the correlation and on the probability of occur-
rence of each class.

Now, given these classes, we can discretize rðDt j Dt0Þ into a
transition probability matrix that provides the probability of
jumping between classes between successive time steps. The tran-
sition matrix is defined as

Tij ¼
R Dtjþ1

Dti

R Dtiþ1
Dti

rðtjt0Þwðt0Þdt0dtR Dtiþ1
Dti

wðtÞdt
ð11Þ

Tij characterizes the probability for a particle to jump from class i in
one step to class j in its next step. Tij is calculated numerically by
tracking how long it takes a particle to traverse a first pore as well
as how long it takes to traverse the next one. The travel time to
cross the first pore is used to assign its i class and the travel time
across the second pore its j class. This process is repeated for a suf-
ficiently large number of particles to populate Tij. In this study one
million particles were used. An important question is how many
classes are adequate to resolve the pertinent dynamics. In a previ-
ous work [38], it was shown that reliable effective models can gen-
erally be built with as few as 10 classes, although in this work we
used a larger number of 25.

A novel metric that we introduce here is

IC ¼ 1
Nc

XNc

i¼1

XNc

j¼1

T2
ij; ð12Þ

where Nc is the number of discrete velocity classes. IC quantifies
how important correlation in a given system is. It is bounded
between 1=Nc 6 IC 6 1. If there is no correlation between succes-
sive steps each entry in the transition matrix will be identical and
equal to Tij ¼ 1=Nc and IC ¼ 1=Nc . If the system is perfectly corre-
lated (i.e. each successive step is identical to the last) then the diag-
onal elements of the correlation matrix will be Tii ¼ 1 and all others
zero such that IC ¼ 1.
3. Results

For all results presented here �u ¼ 1;2�h = 1 and m and D are
adjusted accordingly to obtain the correct values of Re and Pe. All
time units in this work correspond to a characteristic advection
time, defined as the time it would take a particle moving at mean
velocity �u to traverse distance 2�h.

3.1. Breakthrough curves and transition matrices

Unit cell breakthrough curves for Pe ¼ 100 and Pe ¼ 1000 are
shown in Fig. 3. In all cases a flux weighted pulse injection was per-
formed, injecting a line at the narrowest part of the pore throat, i.e.
x0 ¼ 0 in Eq. (1). The associated transition matrices are depicted in
Fig. 4. The same color scale is used for all transition matrices and
both values of Pe to highlight similarities and differences.

At the lowest Reynolds number, Re ¼ 1, where recirculation
zones are nonexistent, the breakthrough curves look very similar
to those that have been published in previous studies [13,14,38].
The breakthrough curves have an early arrival of concentration
that causes a rapid rise of the breakthrough curve up to a peak.
After the peak the concentration decreases monotonically with
time. However as the Reynolds number increases and the recircu-
lation zones occupy a larger and larger fraction of the unit cell, the
post-peak part of the curve does not decrease monotonically; there
is a double-hump, which becomes more distinct as Re increases.
Such double peaks have not been observed in previous studies
[13,14,38]. The dominant and distinct feature of the flows studied
here compared to those of previous studies is the presence of large
recirculation zones. Le Borgne et al. [13,14] studied transport in
highly heterogeneous porous media at the continuum scale, for
which flow is governed by Darcy’s law, which does not mathemat-
ically permit the existence of recirculation due to the fact that
pressure must be monotonically decreasing in the direction of flow
along a streamline, precluding streamlines from wrapping back on
themselves. This restriction does not exist for Stokes or Navier–
Stokes flow, where recirculation zones can and often do occur. Le
Borgne et al. [38] studied flow in a geometry similar to the present
one, but at small Reynolds numbers, where any recirculation zones
that do exist cover a rather small area and exhibit very small fluid
velocities, which renders them practically equivalent to zones of
immobile fluid. Based on this we initially hypothesized that the
presence of this double peak is clearly associated with recircula-
tion. Physically we believed it is a reflection of the fact that a par-
ticle can enter a recirculation at one point and exit at an upstream
point from where it entered, which can result in the double-hump
feature.

Another notable feature is that as the size of the recirculation
zones increases the distribution of travel times becomes broader
with earlier arrival times as Re increases and later tails for cases
with large recirculation. Physically this reflects the fact that the
recirculation zones cause a faster flow speed through the central
channel as well as trapping and delays in breakthrough. In the
breakthrough curves the primary role of Péclet number appears
to be a sharper initial peak and greater late time tailing, which is
consistent with previous observations. This reflects the fact that
with weaker diffusive effects more of the solute remains in the
main channel breaking through quickly, but that the solute that
does enter the recirculation zones will reside there for longer.

We also measured the amount of time that the particles spend
in the recirculation zone and the mean times are approximately
t ¼ 11 for both Reynolds numbers for the Pe ¼ 1000 case and
approximately t ¼ 2:8 for the Pe ¼ 100 cases. The similarity for
both Re numbers at each Pe helps explain why the late time tails
for the breakthrough curves at each Pe, once recirculation exists,
in Fig. 3 are so close regardless of Re.

The transition matrices in Fig. 4 display many of the features
observed in previous studies. All of the matrices have a diagonal
dominance reflecting the fact that a particle’s most probable next
transit time sits in the same class as its previous one. With the cho-
sen color scale this is difficult to see for the Pe ¼ 100 cases, but it
becomes clearer if one rescales the color scale. The specific color
scale in Fig. 4 does not aim at showing this, but rather at highlight-
ing contrasts and the weakness of correlation in the Pe ¼ 100 cases
relative to the Pe ¼ 1000 ones. The strongest correlation exists for
the greatest and lowest transit times; i.e. particles in the center of
the channel with the highest velocities will continue to sit there
and particles with the slowest velocities, which are those that
enter the recirculation zones, are most likely to enter the next
recirculation zone. This is visually depicted in Fig. 5 and discussed
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Fig. 4. Spatial transition matrices T corresponding to different Reynolds numbers for Pe ¼ 100 (left column) and Pe ¼ 1000 (right column). The horizontal axis represents the
initial transit time class and the vertical axis represents the next transit time class. Small matrix indices correspond to small Lagrangian velocities (large transit times), and
large matrix indices correspond to large Lagrangian velocities (small transit times). The color scale represents the transit time transition probabilities along particle paths.
(For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this article.)
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Fig. 5. Particle Trajectories for two sample particles at Re ¼ 30 and Pe ¼ 1000. The
blue one starts in the fast channel and persists there. The red one starts in an
immobile zone and is also trapped in the next one. This visually demonstrates
strong correlations between successively fast and successively slow transition
times. (For interpretation of the references to colour in this figure caption, the
reader is referred to the web version of this article.)

D. Bolster et al. / Advances in Water Resources 70 (2014) 89–103 95
in greater detail in Section 4.2. It appears that the structure of the
matrices, at least qualitatively, is weakly sensitive to Reynolds
number. However, the dependence on the Péclet number is clearly
evident. For the Pe ¼ 100 case the greatest values in the transition
matrix are approximately 0:06, while for the Pe ¼ 1000 case they
are 3 times greater. If there were absolutely no correlation all val-
ues in the transition matrix would be equal to 0:04. This suggests
that correlation effects for the Pe ¼ 100 case may not be all that
important, while they may play a significant role in the
Pe ¼ 1000 case. Again, this will be discussed in greater detail
below.
3.2. Role of recirculation advection in immobile zones

As noted above, the recirculation zones change the nature of the
single unit breakthrough curves by increasing the breadth of travel
time distributions and allowing the emergence of a double hump.
In order to test the true influence of advective recirculation in
these regions we reran the transport simulations, but under the
condition where all velocities in the immobile regions are set to
0 and particles can only move by diffusion. Advection only occurs
in the main channel flow and any transport in the ’recirculation’
zones is purely diffusive. Note that this is unphysical as the flow
will no longer satisfy the Navier–Stokes equation and is purely
done as a numerical experiment to isolate the role of advection
in the recirculation zones.

The unit cell breakthrough curves for cases with recirculation
turned on and off are shown in Fig. 6. Results are shown for the
Re ¼ 30 and 100 cases as no recirculation exists at Re ¼ 1. As we
had originally hypothesized, for the Pe ¼ 100 case the double-
hump feature does indeed disappear and the post peak break-
through curve decreases monotonically when advection is turned
off in the recirculation zones. However for the Pe ¼ 1000 case a
double hump does still occur for both Reynolds numbers, but it
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Fig. 6. Breakthrough Curves for Re = 30 (red) and 100 (black) for Pe = 100 (left) and Pe = 10
treated as inertial advective zone and resolve the velocity field while the solid lines rep
(For interpretation of the references to colour in this figure caption, the reader is referre
occurs at lower concentrations and later times, still suggesting that
advection in the recirculation zones is a dominant contributor to
this effect. Physically, the proposed mechanism for the double
hump, by which a particle enters the recirculation region at a
one point and exits at an upstream point can still occur when
motion is purely diffusive; its occurrence is just less probable,
hence the shift of the second hump to later times and lower
concentrations.

We also conducted simulations where we maintained zero
velocity and also turned horizontal diffusion off in the recirculation
zones, allowing particles to only diffuse vertically. In all of these
curves the second hump is not discernible. Other than this the
breakthrough curves look virtually unchanged. This provides some
evidence that it is indeed horizontal transport mechanisms in the
recirculation zones that are responsible for the emergence of this
double hump behavior.

While as part of this discussion we have focused heavily on the
difference between the advective and diffusive immobile zones
with regard to the double-hump, it is important to note that this
feature occurs at intermediate breakthrough times. An equally
interesting observation is that both the early and late arrival times
seem to be virtually unaffected by the presence of advection in the
recirculation regions. In many cases early and late arrival times are
those of greatest practical concern [e.g. 11], suggesting that perhaps
resolving these recirculation zones is not critical depending on a
specific application. From the scientific perspective we find these
differences interesting and important as they are signatures one
can clearly look for in real breakthrough curves, providing addi-
tional interpretation possibilities of observations. While not
depicted here, the transition matrices for purely diffusive recircula-
tion zones are virtually identical to those with advection turned on.
3.3. Down stream breakthrough curves

While studying the unit cell breakthrough curve is key to devel-
oping our effective modeling framework, ultimately the goal is to
understand how transport behaves at greater downstream dis-
tances. Fig. 7 displays breakthrough curves at greater distances
(x ¼ 5L;10L;20L and 50L), which will be used to test the predictive
capacity of the effective spatial Markov model. To supplement the
discussion of the previous section, breakthrough curves are shown
for cases where advection in the recirculation zones is both
switched on and off.

In all cases the early breakthrough curves preserve many of the
signatures of the single cell breakthrough curves, displaying fea-
tures like tailing and the double hump, associated with the pres-
ence of recirculation zones discussed above. For the Pe ¼ 1000
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00 (right). The dashed lines represent simulations where the recirculation zones are
resent simulations where advective effects in the recirculation zones are neglected.
d to the web version of this article.)
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curves many of these features are preserved in all breakthrough
curves, while for the Pe = 100 the breakthrough curves at large dis-
tances (e.g. x ¼ 50L) appear more Fickian, which is consistent with
the idea that at these late times transport has converged to an
asymptotic Fickian Taylor regime. Similar differences, such as
smaller second humps but similar early arrivals and late time tails,
exist as between the curves where advection is left on and turned
off in the recirculation zones as was observed for single cell break-
through curve.

3.4. Predictive capacity of spatial Markov model

One of the primary goals of this work is to test the effective spa-
tial Markov model, which is developed with the single unit break-
through curves and transition matrices. In order to test it we
consider two measures. First we test the effective model’s ability
to predict the late time breakthrough curves discussed in Sec-
tion 3.3. It is common to find fits to a single breakthrough curve
as a measure of an effective model’s success, although multiple
examples of predictions of concentration at various times and
downstream locations do also exist [7,8]. We argue that full model
validation should require this prediction of other breakthrough
curves with no additional fitting. The second measure is the mod-
el’s ability to reproduce the second centered moment of the plume,
which is another traditional measure of a model’s strength. The
work of Dentz and Bolster [25] highlights why there is a need for
cross-validation using breakthrough curves and spatial moments.
3.4.1. Comparison of down stream breakthrough curves
Predictions with both an uncorrelated and correlated spatial

Markov model for Pe ¼ 100 and Pe ¼ 1000 cases are shown in
Figs. 8 and 9. The uncorrelated effective model takes the unit cell
breakthrough curve as the probability distribution for transit
times, but does not use information from the transition matrix to
condition a transit time on its previous value – i.e. successive steps
are completely independent of one another, while the correlated
spatial Markov model imposes correlation of successive steps using
the transition matrix.

For the Pe ¼ 100 case both models do an excellent job of pre-
dicting the late time breakthrough curves, including early arrivals,
intermediate effects such as the double hump and any late time
tails. For the Pe ¼ 1000 case the correlated spatial Markov model
does an equally good job of predicting the measured breakthrough
curves. However, the uncorrelated model is unable to reproduce
certain features observed in the simulated curves. In particular it
does not faithfully reproduce early and intermediate time arrivals,
underestimating the peak concentration of the breakthrough
curves. It appears, at least for the Re ¼ 30 and 100 cases to capture
the late time tails. This suggests that correlation of fast moving
particles is particularly important as these are the main contribu-
tors to the early arrival times.

The fact that correlation in the effective model is unimportant
for Pe ¼ 100 is perhaps unsurprising given how weak correlation
effects are in the transition matrices for these cases. However, it
should be clear that correlation becomes increasingly important
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as Pe increases. Again this comes as no surprise as it is diffusion
that allows particles to jump across streamlines and thus transition
between velocity classes.

These results demonstrate a very important point though. If
correlation effects are not important the unit cell breakthrough
curve provides sufficient information to predict late time behavior
of the plume and traditional effective models such as CTRW char-
acterized by uncorrelated transition times, multi-rate mass trans-
fer (MRMT) and fractional advection dispersion equations (fADE)
[6–8,20,30] should work well in a predictive sense. If however, cor-
relation effects are important, they must be incorporated into the
model. It is interesting to note that incorporating correlation
effects appears to play its most important role in predicting early
concentration arrivals as to date much focus on effective models
has been aimed at capturing late time anomalous tails.
3.4.2. Moments
Fig. 10 displays the evolution of the second centered moment

against time for three different Reynolds numbers Re ¼ 10, 30
and 100. The second centered moment is larger for larger Re, which
is consistent with the observations of [15]. To address how well
our models work at capturing the observed simulated second
centered moments we introduce the following measure of error

Er ¼ 1
N

XN

i¼1

j Oi �Mi j
Oi

; ð13Þ

where Oi is observed data from the fine scale simulations and Mi is
model data from the spatial Markov and uncorrelated CTRW mod-
els. This is a measure of by what fraction the modeled results are
off from the simulated observed results. For Pe ¼ 100 Er is less than
5� 10�3 for the correlated model and less than 2:5� 10�2 for the
uncorrelated model. Both errors can be considered small, but clearly
the correlated model outperforms the uncorrelated one demon-
strating that even for this Pe some small correlation effects are pres-
ent and may be necessary depending on what one is interested in.
For the Pe ¼ 1000 case Er is around 1:5� 10�2 for the correlated
model and 0:28 for the uncorrelated model, demonstrating a
significant improvement with the inclusion of correlation. This is
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consistent with the BTC predictions, where the uncorrelated model
failed to adequately capture the peak early arrivals, which would
lead to a greater spread in mass around the plume’s mean position.
Again it is clear that there is a transition from correlation being
unimportant to important, which we discuss in further detail in
the next section.

3.5. The importance of accounting for correlation in successive jumps

As noted above it seems clear that there is a transition from
correlation being unimportant to correlation being important in
developing the effective CTRW model somewhere between
Pe ¼ 100 and Pe ¼ 1000. In order to fully understand this let us
take a look at the importance of correlation parameter IC defined
in Eq. (12). A plot of how IC varies with Pe is shown in Fig. 11.
For Pe < 100 it is clear that IC is close to its absolute minimum
value, which is 1=25. This suggests that for these values of Pe the
transition matrix is relatively homogenous, meaning that there is
little correlation between successive jumps. For Pe > 100 there is
a monotonic increase of IC with Pe emphasizing that correlation
effects become more and more important as Pe increases. Interest-
ingly for the Pe ¼ 1000 case where we have already shown that
correlation effects must be included to reliably reproduce observ-
ables, IC ¼ 0:07, which one could argue is not all that large. While
IC clearly measures some degree of correlation effects, better met-
rics should be sought. This demonstrates perhaps how strong the
influence of correlation, even if relatively weak, truly can be. Some
of the large Pe numbers shown in Fig. 11 may seem very large for
Re ¼ 100. However they may not be unusual as for flowing water
systems Sc ¼ Oð100—1000Þ, while for flowing gasses Sc ¼ Oð1Þ
may be more typical. Results for Péclet numbers much larger than
105 may not be entirely physical for water and should be taken
with a grain of salt, although they may apply for example for sol-
utes in more more viscous fluids (e.g. oil, glycerol, molasses). Addi-
tionally materials that diffuse more slowly, such as larger
nanoparticles, which can have diffusion coefficients several orders
of magnitude smaller than typical solutes [34], may exhibit higher
Pe, although in this case further physics may be required to model
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the system adequately. However, it should be noted that this plot
merely serves to demonstrate the increasing importance of corre-
lation with Pe. To demonstrate that the spatial Markov model is
able to replicate results even at these larger numbers a comparison
of late time breakthrough curves for Re ¼ 100 and Pe ¼ 105 is
shown in Fig. 12. Again, note the correlated model is able to cap-
ture the early time peaks exactly, while the uncorrelated one fails.
At this large Péclet number the uncorrelated model also fails to
capture the later time tails.
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Fig. 12. Comparison of late time breakthrough curves at distances of x ¼ 5L (blue), 10L (gr
(right) for Re ¼ 100 and Pe ¼ 105, which would correspond to a solute with Schmidt num
Solid lines are measured from simulations and symbols are model results. (For interpretat
version of this article.)
4. Discussion

4.1. Asymptotic dispersion

In this section we discuss and attempt to explain physically,
using the models and results presented so far, a to date unex-
plained observation made by [15]. As outlined in the introduction,
Bouquain et al. [15] observed that as the Reynolds number
increases, for fixed Pe, there is an increase in the asymptotic effec-
tive dispersion coefficient. As the area of the recirculation zones
grows there is a strong and rapid growth of asymptotic dispersion
coefficient with Reynolds number that eventually almost saturates
to some upper value. The rapid growth at intermediate Reynolds
number appears to be related to the growth of the area of the recir-
culation zone as a function of the Reynolds number. Note that this
behavior is observed at fixed Pe. In a physical experiment, increas-
ing the mean flow velocity to increase the Reynolds number would
also increase the Péclet number, hence the behavior as a function
of Reynolds alone is difficult to investigate experimentally. As
mentioned in the introduction, [15] have already shown that the
dependence of the asymptotic dispersion coefficient on Reynolds
and Péclet can be separated into two factors, the factor dependent
on Péclet being a power law with a negative exponent.

To understand this behavior let us look at the expected theoret-
ical behavior of asymptotic dispersion coefficients in continuous
time random walks, which are analogous to our uncorrelated
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ber 1000, an order of magnitude typical for many solutes in aqueous environments.
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model. In a seminal paper [43] showed that the second centered
moment of a plume moving with a CTRW is given by

r2ðtÞ ¼ l2L�1 w	ðsÞ
sð1� w	ðsÞ

� �
þ l2L�1 2w	2ðsÞ

sð1� w	ðsÞ2

 !

� l2 L�1 w	ðsÞ
sð1� w	ðsÞ

� �� �2

; ð14Þ

where L is the Laplace transform operator, L�1 the inverse Laplace
transform operator, s the Laplace domain variable, w	ðsÞ, the Laplace

transform of the travel time distribution, l the mean jump distance

and l2 the mean of the jump distance squared. For our case l is con-
stant and equal to the length of the pore. Recall that late time
behavior (i.e. t !1) in the time domain corresponds to small
Laplace domain variable (i.e. s! 0). If wðtÞ has finite first and sec-
ond moments, which in all our cases it does [43] argued that for

small s;w	ðsÞ 
 1� st þ 1
2 s2 t2 þOðt3Þ; t and t2 are the first and sec-

ond moment of the travel time distribution respectively, which
are calculated from the first passage times obtained in the numer-
ical simulations. Substituting this expression into (14), expanding
in small s and performing the inverse Laplace transforms it can be
shown that at large times to leading order in time, its time depen-
dence can be written as

r2ðtÞ ¼ l2 1
t
þ 2

t
1
2

t2

t2
� 1

" # !
t þ Oðt0Þ; ð15Þ

which scales linearly in time, with all other order terms of order
Oðt0Þ or lower. For all cases considered the asymptotic mean veloc-
ity of the plume is equal to the mean velocity of the flow, meaning
that t must be the same for all cases, since �u is identical for all
numerical simulations. Thus, since the asymptotic dispersion coef-
ficient is equal to the time derivative of r2ðtÞ

D1 ¼ l2 t2

t2
� 1

 !
: ð16Þ

The red circles in Fig. 13 correspond to predictions made with
this formula for Pe ¼ 100 and it can be seen that there is excellent
agreement between this prediction and the values of the asymp-
totic dispersion coefficients measured from the random walk
numerical simulations. Note that the observations made with
numerical simulations correspond to times greater than the charac-
teristic Taylor dispersion time. For this setup Eq. (16) in essence
says that the asymptotic dispersion coefficient is directly propor-
tional to the variance of the arrival time distribution. A look at the
travel time distributions presented in Fig. 3 demonstrates why
there is a large jump in asymptotic dispersion between the small
and intermediate Reynolds numbers, but also why the value more
or less saturates. As already mentioned previously as the Reynolds
number increases and recirculation zones emerge there is a broad-
ening of the arrival times with both greater earlier arrival as well as
increased late time tailing. As the Reynolds number increases fur-
ther the late time tail seems relatively unaffected, while there is a
small shift in the early arrival times. The relative influence of this
shift in early arrival times is small with respect to the variance
and so the asymptotic dispersion coefficient as predicted by Eq.
(16) changes very little. In essence it is the tails that control the
asymptotic dispersion coefficient and once significant recirculation
zones have formed these tails are almost identical for all Re.

If we apply Eq. (16) to the Pe ¼ 1000 case as we did to the
Pe ¼ 100 case the resulting equivalent plot is also shown in
Fig. 13. Note that the measured asymptotic dispersion coefficients
behave almost identically to the Pe ¼ 100 case, which is in line
with the observations of [15], who showed that the ratio of
asymptotic dispersion coefficients behaves the same regardless of
Péclet number. However the results from applying (16) differ sig-
nificantly from the measurements, overpredicting the ratio
between asymptotic dispersion at Re ¼ 100 to Re ¼ 1 by about a
factor of 2. This is consistent with the ideas presented so far,
because for Pe ¼ 1000 correlation effects must be included and
the theory leading to Eq. (16) does not account for correlations.
We address this issue briefly in the next section.

4.2. Probability of successive trapping

A primary feature that arises in the considered flow as Reynolds
number increases is the emergence and growth of the recirculation
zone, which can be thought of as a trapping zone. Given the corre-
lated nature of transport, particularly at larger Péclet numbers, a
pertinent question is what is the probability of a particle being
trapped in the next recirculation zone given that it has just exited
a recirculation zone (see Fig. 5). This persistence of longer travel
times is an important feature that the proposed spatial Markov
model captures, but that an uncorrelated model would not capture
as well; this explains for example why the late time tails are not
captured by the uncorrelated model in Fig. 12. Here we briefly dis-
cuss estimates of this probability of successive trapping.

Let us define Pt as the probability for a particle to be trapped in
the immediately next recirculation zone given that it has been
trapped in a current recirculation zone. Thus

Pt ¼ pðtiþ1 > t	jti > t	Þ; ð17Þ

where ti is the travel time of a particle through cell number i and t	 is
the maximum such travel time that a particle can have without
entering the recirculation zone. This can be estimated as the travel
time along the streamline adjacent to the recirculation zone. Assum-
ing that the trapping process is Markovian, the probability of n suc-
cessive trappings occurring along a particle’s trajectory is simply Pn

t .
This is because this probability is stationary (i.e. the probability of
being trapped in recirculation zone 2, given that the particle was
trapped in recirculation zone 1 is the same as being trapped in
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recirculation zone nþ 1 given being trapped in n). The average
number of successive trapping events, hni, is then obtained as

hni ¼ 1P1
n¼1Pn

t

X1
n¼1

nPn
t ¼

PtP1
n¼1Pn

t

d
dðPtÞ

X1
n¼1

Pn
t

 !
; ð18Þ

where
P1

n¼1Pn
t is equal to Pt=ð1� PtÞ. Hence:

nh i ¼ ð1� PtÞ
1

ð1� PtÞ2
¼ 1

1� Pt
: ð19Þ

Pt can be computed from the transition matrices or by direct
numerical simulation, and, consequently, nh i using Eq. (19).
Fig. 14 shows how Pt varies with Reynolds number. As the recircu-
lation zones become larger and larger the probability of trapping
increases, although the range of Pt does not vary enormously, par-
ticularly for Pe ¼ 1000. Interestingly for the larger Reynolds num-
ber cases the probability of successive trapping for the Pe ¼ 100
case is larger than the Pe ¼ 1000 case, while for the smaller
Reynolds number Pt is larger for Pe ¼ 1000: for the Pe ¼ 1000 case
the average number of successive trapping events nh i varies
between 1.5 and 1.8, while that for the Pe ¼ 100 case varies
between 1.4 and 2. This is due to the way diffusion and advection
interact. Let us consider solute particles that have just exited a
recirculation zone (by diffusion) and are therefore moving close
to the boundary of the recirculation zone. Diffusion is what can
allow them to enter the next recirculation zone; it is also what
can allow them to move transversally away from the next recircu-
lation zone. At lower Reynolds numbers, the latter process is
enhanced by advection, as flow lines diverge significantly after
going through the neck that separates consecutive cells; therefore
increasing diffusion can actually decrease successive trapping.
Conversely at larger Reynolds numbers the mainstream channel
is quasi linear, and increased diffusion is observed to favor trapping
in the recirculation zones over transport towards the center line of
the cells.

Another interesting metric in thinking about correlation and
successive trapping is, given that a particle is trapped in a recircu-
lation zone what is the probability of it getting trapped in any
downstream recirculation zone, i.e.

pðtiþn > t	 j ti > t	Þ: ð20Þ

It is important to recognize that just because a particle is not
trapped in the immediately next recirculation zone does not mean
that it does not have a preferential trapping in further downstream
ones as correlation effects can persist over several jump lengths.
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Fig. 14. Probability of being trapped in the next recirculation zone given that a
particle is trapped in the current one depending on Re. Red solid line corresponds to
Pe = 1000 and the blue dashed line to Pe = 100. (For interpretation of the references
to colour in this figure caption, the reader is referred to the web version of this
article.)
This metric provides an idea of how quickly the system decorre-
lates as eventually the probability of entering a recirculation zone
should be independent of whether it was previously trapped or
not. This metric provides a measure of memory in the system.
Fig. 15 (top) depicts this probability where initially all particles
are trapped in recirculation zone 1 and then the probability of
being trapped in downstream recirculation zones 2, 3, . . .15 is mea-
sured. Results for Re = 30 and 100 and Pe = 100 and 1000 are
shown. It is immediately evident that for the Pe = 100 cases the
probability of successive trapping is higher than the Pe = 1000
cases, reflecting the fact that with larger diffusive effects it is easier
for particles to enter the recirculation zones. Additionally though
for Pe = 100 the probability of entering any of the downstream
recirculation zones is the same for all recirculation zones. This
reflects the fact that all particles have almost equal access to all
travel times as shown by the weak correlation and almost uniform
transition matrices for the Pe ¼ 100 cases. This is in effect why the
uncorrelated model works as well as it does in reproducing
observed metrics from the direct numerical simulations. For
Pe ¼ 1000 there is a decay in probability of trapping with down-
stream recirculation zone, reflecting the strong correlation.
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An alternative manner of looking at this persistence of correla-
tion is to look at the importance of correlation parameter IC and
the transition matrix. Due to the Markov property of the transition
matrix one can look at correlations over multiple jumps by taking
powers of the transition matrix

TTðnÞ ¼ Tn ð21Þ

where TTðnÞij measures the transition probability after n spatial
jumps; i.e. it calculates the probability of a particle belonging to
some class j, given that it belonged to class i n jumps ago. Now
we can calculate IC for successive powers of T, defined as the
squared norm of matrix TTðnÞ:

ICTðnÞ ¼
1

Nc

XNc

i¼1

XNc

j¼1

ðTTðnÞÞ2ij; ð22Þ

A plot depicting IC (normalized) against n, the number of steps, is
shown in Fig. 15 (bottom). This appears to display the same
quasi-exponential correlation structure as Fig. 15 (top). Thus the
transition matrix combined with IC provides all information needed
to estimate the number of steps required for correlation in the
spatial Markov model to no longer be important. In this case it
appears to be on the order of about 12 to 15. Thus, if one measured
the transition time over 15L one could in principle build a predic-
tive uncorrelated model using this transition time distribution
and a jump size of 15L. Consistently, if one applies (16) to the travel
time distributions obtained after a distance of 15L one obtains a
much better prediction of the asymptotic dispersion behaviors as
shown by the corresponding results in Fig. 13 (magenta square
symbols).

5. Conclusions

We have studied dispersion in a periodic wall bounded domain
with sinusoidal boundaries using finite element numerical simula-
tions of the flow field and random walk numerical simulations of
transport. We have considered systems with Reynolds numbers
that are sufficiently large that inertial effects play an important
role on transport, but limited ourselves to systems where flows
are laminar and steady. As Reynolds number increases in the
chosen flow domain, recirculation zones emerge and become
increasingly large in size as inertial effects grow. These recircula-
tion zones act as traps for solute and cause a strong preferential
channel down the center of the domain. In combination these
effects strongly affect the nature and magnitude of dispersion in
such a channel. To date most research on such effects has been
restricted to studying asymptotic dispersion effects, in analogy
with Taylor dispersion.

In order to better understand and model preasymptotic disper-
sion, which cannot be effectively modeled using a classical Fickian
approach, we develop a spatial Markov model, which aims to effec-
tively model transport from early to asymptotic times. The method
relies on measuring breakthrough times at two successive lengths
and with this information calculating a correlation matrix that
quantifies correlation between successive transit time jumps. In
order to quantify the magnitude of this correlation we have
defined a new parameter IC, the importance of correlation. IC, for
this chosen configuration, suggests that correlation effects are
unimportant when Pe < Oð100Þ, but become increasingly impor-
tant as the Péclet number grows larger than this. Indeed we dem-
onstrate that an effective model, which does not incorporate
correlation between successive jumps, does an almost equally
good job as a correlated equivalent of predicting breakthrough
curves at several downstream breakthrough locations as well as
in predicting the evolution of a plume’s second centered moment
over time when Pe ¼ 100. However, when Pe ¼ 1000 only the
correlated model successfully matches observations, with the
uncorrelated CTRW underpredicting the magnitude of the second
centered moment and failing to accurately capture the early con-
centrations of the breakthrough curves. For a larger Péclet number
of Pe ¼ 105 this mismatch is even larger with the uncorrelated
model failing to accurately capture both observed early and late
times breakthrough curve arrivals, while the spatial Markov model
successfully replicates observed behaviors. This demonstrates that
for systems with smaller Péclet numbers, for this configuration less
than 100, effective models need not include correlation effects and
that conventional approaches may work well. Likewise though, if
Péclet numbers are larger than this, correlation effects must be
incorporated to reliably recover true behaviors. This reflects the
fact that diffusion at the small scale is the process that decorrelates
successive steps; thus larger relative diffussion effects mean less
correlation.

To conclude the paper we explain the previously unexplained
phenomenon where it has previously been observed that, for fixed
Péclet number, the magnitude of the asymptotic dispersion coeffi-
cient grows rapidly with increasing advective effects, but then sat-
urates at a more or less constant value beyond which little further
increase occurs despite continued increases in Reynolds number.
We do so using classical CTRW theory that does not incorporate
correlations. Additionally we discuss how the transition matrix
and the importance of correlation parameter can be used to
estimate the probability of successive trapping events as the
number of steps required such that correlation effects become
unimportant.

While the presented geometry is incredibly simple it provides
valuable insights into more complex systems, where both spatial
Markov and uncorrelated CTRW models have been applied in
the past. For these more complex systems it still most likely
holds true that there is a critical Péclet number below which
correlation effects may be neglected and above which they
are critical in effective model development. Identifying such
critical cutoffs will be important to improved future model
development.
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