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1. Introduction

With the ever growing awareness for a need to protect the
environment it has become increasingly important to find ways to
reduce the rapidly growing global energy consumption. About one-
third of the world’s energy is used by building services, of which a
significant portion is expended on ventilation. A better under-
standing of ventilation is necessary in order to design and operate
more efficient ventilation systems. Knowledge of the manner in
which air mixes within buildings is key to the design of better
control systems and ventilation schemes can be designed.

Many heat sources can be regarded as localised and under-
standing the manner in which they stratify a space is critical to the
design of energy efficient ventilation schemes. Localised heat
sources may often be modeled as an ideal plume (i.e. a pure source
of buoyancy, e.g. a radiator, computer, person). Several ventilation
processes can be modeled and better understood by looking at the
flow produced by such a localised source of buoyancy in a confined
space. The problem is critical for natural ventilation in buildings,
where convective flows dominate [15].

Motivated by this and similar problems, much work has been
done looking at the flow generated by a buoyant plume within a

confined space. The plume is modeled using the classical plume
theory developed by Morton et al. [19]. They model the plume with
three conservation equations for volume flux, momentum flux and
buoyancy flux. The system of equations is closed with the powerful
entrainment assumption, which assumes that the velocity of fluid
being entrained into the plume is proportional to a characteristic
vertical velocity in the plume. Baines and Turner [1] studied the
interaction of a buoyant plume and the background environment
in a closed space. They considered the flow that develops when an
isolated source of buoyancy alone issues into the closed space. This
model has come to be known as the ‘filling box’ model.

Germeles [10] developed a sophisticated, yet simple, numerical
algorithm to study the ‘filling box’ model. With this algorithm it is
possible to resolve the transient evolution of the stratification in a
space quickly and accurately with little computational expense. In
this scheme the background ambient fluid is discretized into a
finite number of layers, n, and it is assumed that the plume evolves
on a faster time-scale than the ambient. Therefore, for any given
time step, the equations associated with the plume are solved in a
quasi steady fashion assuming that the background does not vary.
Once the plume equations have been solved the background layers,
whose concentration and density remain unchanged during a
particular time-step, are advected with a velocity that can be
calculated from volume conservation. This process captures the
entrainment of fluid from each layer by the rising plume since the
advected layers reduce in thickness at each time step. At each
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timestep a new layer is added, the thickness of which is
determined by the flow rate of the plume at the top of the room
and size of the chosen time step. The density assigned to this new
layer is the same as the density of fluid in the plume at the top of
the room.

Killworth and Turner [13] studied the filling box model in an
enclosed space for a pure plume with a time varying buoyancy flux.
They noted that as long as the plume buoyancy flux at every height
is larger than the buoyancy in the background of the room the
plume can penetrate the whole way through the space and spread
at the top. However, if the source buoyancy flux is not sufficiently
large, the plume becomes a fountain above the level of zero relative
buoyancy, which stops rising at the level of zero momentum. It will
then fall back and spread horizontally at some height between
these two levels. Killworth and Turner found that modeling the
spread of the plume at the level of zero buoyancy better matched
their experimental data than at the level of zero momentum.
Similar observations were made by Kumagai [14] and Cardoso and
Woods [4], who studied the ‘filling box’ model for a room which
has some ititial background stratification.

Linden et al. [16] opened Baines and Turner’s filling box to the
ambient by placing vents in the box that allowed a flow driven by
buoyancy differences between the interior and exterior to develop
through the space. They primarily studied the steady states that
developed for constant strength point, line and vertically
distributed sources. These are extensions of the filling box model,
with the addition of a continuous exchange between the internal
and external environments. This ‘emptying filling box’ model is
often used to model natural ventilation. Their results show that a
two layer system develops in the room with ambient fluid beneath
the interface and buoyant fluid above it. For an ideal plume source,
the height of the dividing interface depends only on the area of the
vents and not the source buoyancy flux.

Kaye and Hunt [12] studied the initial transient that evolves in
the ‘emptying filling box’ when the heat source is initially turned
on. As in Linden et al. [16], they showed that the steady state flow is
characterized entirely by a dimensionless vent area. They
identified that for certain values of this vent area the depth of
the buoyant upper layer may overshoot the steady layer depth
during the initial transient. They also determined the critical value
of the dimensionless area for this overshoot to occur.

Other than Kaye and Hunt [12] most natural ventilation models
(‘emptying filling boxes’) only consider the steady states asso-
ciated with the flow. The work presented here extends these
models by considering a heat source whose buoyancy flux changes
at some time. Specifically, we consider the situation where there is
a sudden change in source buoyancy flux, which could correspond
a piece of equipment being turned on/off or people entering/
exiting a room.

Assessing the viability of natural ventilation, due to many
competing criteria such as noise, air quality and energy savings, is a
complicated task, which must consider climate, specific location
and purpose of the space in question (e.g. [9]). Potential energy
savings are often cited as being one of the main benefits of natural
ventilation, but again it is difficult to quantify without detailed
information of the space being ventilated. Many useful simulation
tools such as the US Department of Energy code EnergyPlus [7] and
[8] exist that can provide useful quantitative data. Successful use of
such codes requires the integration of accurate ventilation models.
The integration of models based on similar principles to the one
presented herein (e.g. [17,18]) has proven useful in providing more
accurate results than the use of traditional models [2]. The work
presented herein aims to provide further useful information that
could, if deemed necessary, be used as input into such ventilation
modeling programs.

In Section 2 of this paper we describe the mathematical model
applicable to the above case. We consider a case starting from
some initial steady state, then change the source buoyancy flux and
observe the transition to the next steady state. In Section 3 we
present and discuss the results from the model described in Section
2. Section 4 considers the limitations of the well-mixed assump-
tion in our model, by considering a model that does account for
stratification and comparing the results of these two models and in
Section 5 we present the results of laboratory experiments.

2. Well-mixed model

Fig. 1 is a schematic depicting a two-layer well-mixed model for
natural ventilation. A heat source is represented by a single ideal
plume (i.e. no source volume and momentum flux) located on the
floor. Linden et al. [16] showed that at steady state the
stratification has two uniform layers separated by an interface.
The height h of this interface depends only on the area of the inlet
and outlet vents and not on the source buoyancy flux of the plume.
This is one of the features of natural ventilation that is so appealing.
It is a self-controlling system that will provide the same
temperature in the lower layer regardless of the strength of the
heat source. Since typically, the lower layer is the only one that is
occupied and the temperature of the upper layer is relatively
unimportant from a comfort perspective, this property makes
natural displacement ventilation very robust.

As mentioned, all of the above assumes steady state. However,
most realistic sources are not steady. If the buoyancy flux of the
source is varying over time this will in turn cause the interface
height h to change. As the new steady state is attained the interface
will settle back to its original height. We are interested in
determining the temporal variation of this interface between these
two steady states where the initial and final interface heights are
the same.

A key assumption of the model depicted in Fig. 1 is that the
buoyant upper layer is well mixed at all times. While the layers are
uniform at steady state, a change in buoyancy flux is expected to
produce a temporary stratification in the upper layer. For the
moment we will ignore this stratification and assume that both
layers remain uniform in temperature as they evolve. From our
experimental observations it is evident that this assumption is not
strictly valid and that during the transitions from one steady state
to the next some stratification will evolve in the upper layer. Kaye

Fig. 1. Natural ventilation with a single ideal plume heat source.
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and Hunt [12] suggest that the only source of error of this
assumption should be to underpredict the buoyancy of the fluid
leaving the box, which in turn will lead to an underprediction for
the time taken for the buoyancy of the layer to reach a steady state.
They also argue that there will be some level of mixing in the upper
layer due to the finite thickness outflow from the top of the plume.

By assuming that the upper and lower layer are well mixed at all
times the system can be fully described by two conservation
equations that are coupled, nonlinear ODEs. The conserved
quantities we consider are the volume and buoyancy of the upper
layer.

2.1. Conservation of volume

The volume flow rates in and out of the room (Fig. 1) are always
equal

Q in ¼ Qout; (1)

Therefore, applying conservation of volume to the upper layer
(y>h) in the chamber leads to

dV

dt
¼ Qp � Qout; (2)

where V is the volume of the upper layer and Qp is the volume flux
of the plume at the interface height.

Using Bernoulli’s equation it can be shown that the flow rate in
and out of the room is

Qout ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðH � hÞ

q
: (3)

where A� is the weighted area of the upper and lower openings as
in [16]. A� includes the loss coefficient for both the upper and lower
openings, which links the physical size and geometry of these
ventilation openings. The reduced gravity of the upper layer is
defined as

g0 ¼ g
r� ra

ra

: (4)

Since the lower layer is uniform, Qp can be calculated using the
solution for an ideal plume in an unstratified environment
developed by Morton et al. [19]

Qp ¼ cB1=3z5=3; (5)

where B is the source buoyancy flux and c is a constant based on the
plume entrainment constant. Substituting Eqs. (5) and (3) into
Eq. (2) results in an equation for the evolution of the interface
height

dh

dt
¼ A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ðH � hÞ

p
S

� cB1=3z5=3

S
; (6)

where S is the cross-sectional area of the room.

2.2. Conservation of buoyancy

The conservation of buoyancy of the upper layer can be written
as

dg0V

dt
¼ Bp � Qoutg

0; (7)

where Bp is the buoyancy flux of the plume at the interface.
Because the lower layer is unstratified Bp and B, the source
buoyancy flux, are equal. Using this fact and substituting Eq. (3)

into Eq. (7), conservation of buoyancy can be reduced to

dg0

dt
¼ 1

SðH � hÞ ½B� cg0B1=3h5=3�: (8)

2.3. Sudden change in buoyancy

We consider a sudden discontinuous change in the source
buoyancy flux from some initial steady value B0 to a different value
B0 þDB, where DB can be positive or negative, corresponding to an
increase or a decrease in buoyancy from the heat source.

Let us introduce two dimensionless parameters

z ¼ z

H
; d ¼ g0

cH5=3

B2=3
u

: (9)

where z represents a dimensionless interface height and d a
dimensionless reduced gravity. For natural ventilation, two
important time scales are typically considered. These are the
draining, Td, and filling, T f , time scales, defined in Eq. (10) below
and are the same as the timescales defined in [12]. In this present
situation there are four time scales since there will be two draining
and two filling times, corresponding to the initial and final source
buoyancy fluxes.

For the initial buoyancy flux B0

Td1 ¼
c1=2SH4=3

A�B1=3
0

; Tf1 ¼
S

cB1=3
0 H2=3

: (10)

Similarly, for the final buoyancy flux B0 þDB

Td2 ¼
c1=2SH4=3

A�ðB0 þDBÞ1=3
; T f2 ¼

S

cðB0 þDBÞ1=3
H2=3

: (11)

When B ¼ B0, and using the dimensionless parameters introduced
in Eqs. (9), (6) and (8) reduce to the relations presented by Kaye and
Hunt [12], namely

dz
dt
¼ 1

Td1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� zÞ

q
� 1

Tf1
z5=3;

dd
dt
¼ 1

T f1

1� z5=3d
1� z

 !
: (12)

When B ¼ B0 þDB

dz
dt
¼ 1

Td1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� zÞ

q
� 1

Tf2
z5=3;

dd
dt
¼ 1

Tf2

ððB0 þDBÞ=B0Þ
2=3 � z5=3d

1� z

 !
:

(13)

We nondimensionalise time with the geometric mean of the filling
and draining timescales associated with the initial source buoy-
ancy flux. This allows any DB to be compared easily to another
since the nondimensional time depends only on the initial B, i.e.

t ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Td1Tf1

p
¼ SH1=3

c1=4A�ð1=2Þ
1

B1=3
0

 !
: (14)

When B ¼ B0 (12) becomes

dz
dt
¼

ffiffiffiffi
1

m

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� zÞ

q
� ffiffiffiffi

m
p

z5=3;
dd
dt
¼ ffiffiffiffi

m
p 1� z5=3d

1� z

 !
; (15)

and when B ¼ B0 þDB (12) becomes

dz
dt
¼

ffiffiffiffi
1

m

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð1� zÞ

q
� ffiffiffiffi

m
p

xz5=3;
dd
dt
¼ ffiffiffiffi

m
p

x
x2 � z5=3d

1� z

 !
; (16)
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where

m ¼ Tdu

T fu
¼ C3=2H2

A�
x ¼ 1þDB

B0

� �1=3

: (17)

Eq. (17) defines the system’s two governing dimensionless
parameters. The ratio m of the draining and filling time scales is
the same as that presented by Kaye and Hunt [12]. It is a
nondimensional vent area and solely determines the steady state
interface height. The second dimensionless parameter, x repre-
sents the ratio of initial and final source buoyancy fluxes. When
x>1, B increases and conversely when x<1 there is a decrease in
B.

The above model is consistent with Kaye and Hunt [12], because
as DB!0, x!1 and Kaye and Hunt’s equations are recovered.
Fig. 2 reproduces the initial overshoot that they observed when the
source of buoyancy is initially switched on. This initial overshoot
will be discussed in more detail in the following two sections.

3. Results

In this section we examine the deviations of interface height
from the steady state value during transitions from one steady
state to the next. Figs. 3 and 4 demonstrate several examples of this
deviation.

Fig. 3 illustrates the effect of changing x for a fixed value of
m ¼ 5. Fig. 3(a) corresponds to a drop in buoyancy (i.e. x<1),
which causes the interface height to rise initially and then fall back
down. Fig. 3(b) shows that for an increase in source buoyancy (i.e.
x>1) the opposite happens. As x shifts further from x ¼ 1, the
jump becomes larger. Also, increasing values of x result in a
quicker return to the steady state interface height. A physical
explanation for these behaviours is given below.

Fig. 4 illustrates the influence of m by holding x ¼ 0:5 fixed and
plotting the interface height for various values of m. The magintude
of these jumps is largest for intermediate values of m correspond-
ing to a steady state interface close to half the height of the room.
This behaviour is further illustrated in Fig. 5, which plots the
maximum deviation from steady state against m for various values
of x. Fig. 5(a) corresponds to x<1 and (b) to x>1.

Figs. 3 and 4 illustrate that as x deviates further from 1 the size
of the jump increases. It should also be noted that a smaller
deviation occurs for an increase than an equivalent reduction in B

(i.e. x ¼ x0>1 produces a smaller deviation than x ¼ ð1=x0Þ). This
is illustrated particularly well in Fig. 5 where the magnitudes in

Fig. 5(a) are much larger than those in Fig. 5(b). In particular, it
becomes increasingly difficult to push the interface down with
increasing x. For example x ¼ 10, which corresponds roughly to a
1000 times increase in source buoyancy flux only produces a minor
change in the amplitude of deviation compared with x ¼ 4, which
corresponds only to a 64-fold increase in source buoyancy.

Now we give some physical insight into the above observations.
The adjustment between two steady state interface heights can be
explained by referring to [19] and their solution for the volume flux
Q of an ideal plume in an unstratified environment given in Eq. (5)

We first consider the situation where the source buoyancy flux
is increased. From equation Eq. (5) it is evident that once B is
increased the volume flux at the interface will also increase. This
causes an imbalance between the flow rate into the upper layer
and out of the room, forcing the upper layer to ‘fill’ and thus the
interface to fall. This drop in interface height in turn causes the
plume volume flux into the upper layer to decrease. From Eq. (8)
we can see that the volume flux out of the space depends on two

Fig. 2. Initial overshoot beyond steady state predicted by Kaye and Hunt [12] when

the source of buoyancy is first turned on for various values of m. From top to bottom

m ¼ 0:75, 4, 7.5 and 50.

Fig. 3. Interface height for various values of x and m ¼ 5: (a) decrease in source

buoyancy (x<1) and (b) increase in source buoyancy (x>1).

Fig. 4. Interface height for various values of m ¼ 0:5, 2, 5, 20 and 50 and x ¼ 0:5.

D. Bolster et al. / Energy and Buildings 40 (2008) 2099–21102102
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things, the buoyancy and depth of the upper layer. Since both
these are increasing the volume flux exiting the top of the room
will also increase. This, in turn, causes the interface to rise again
to its steady state value. It is important to note that the final flow
rate through the room is larger than its initial value, now that the
source buoyancy flux is higher. The opposite occurs when there is
a decrease in B, causing the interface to rise and subsequently
fall.

From a mathematical perspective, the second term on the right
hand side of Eq. (6) changes when the source buoyancy flux
changes. If the source buoyancy flux increases then the left hand
side becomes negative, causing the interface to drop and vice versa
for a decrease in B.

A typical plot of dimensionless flow rates through the room, qout

and qp, against time in Fig. 6 helps illustrates this phenomenon.
When the buoyancy changes there is a sharp change in qp, while
these is some delay in qout reaching its new steady state values. The
points where qp and qout intersect correspond to the turning points
(i.e. maximum and minimum overshoot). It is worth noting that
the change in qp is nonmonotonic while that in qout is monotonic.
This is because qp depends on the interface height, which changes
nonmonotonically during the transition between steady states (i.e.
for an increase in source buoyancy the interface descends and then
rises and vice versa for a decrease), while qout depends on the total
buoyancy in the upper layer, which varies monotonically from its
initial to its next steady state value. Another way to think of this is

that while the steady state interface height is always the same,
regardless of the source buoyancy flux, the steady state value of the
upper layer buoyancy depends on the strength of the source and is
proportional to B2=3.

Another important question is why, for an equivalent change in
B, the jump from steady state is always larger when the source
buoyancy is decreased compared to when it is increased? This
behaviour results from the fact that Qp increases nonlinearly with
height (/ z5=3) (see Eq. (5)). Therefore, the imbalance in Qp and
Qout is larger when the interface rises than when it falls, leading to
a larger deviation from the state state value.

3.1. No overshoot on the return

As shown in Fig. 2 and first noted by Kaye and Hunt [12], when
the source is first turned on the interface descends from the ceiling
and ‘overshoots’ to a point below its ultimate steady state height.
When the interface height deviates from its steady state value due
to a sudden change in B as studied in this paper, we note that there
is no overshoot beyond the steady value when the interface
returns. In this section we illustrate mathematically why this
happens and subsequently interpret this phenomenon physically.
We also discuss the initial overshoot.

When a deviation from the steady state height, zss occurs there
must be a maximum/minimum after which it returns to zss. Thus
there exists a point, zm where ðdz=dtÞ ¼ 0 which, from Eq. (16) is
given by

z10=3
m

1� zm

¼ d
m2x2

: (18)

Based on observations of many simulations we assume that d, the
dimensionless reduced gravity, is bounded between its initial and
final value (i.e. it changes monotonically from its initial to final
value with no overshoot beyond its final state). This behaviour is to
be expected since the upper layer has a larger steady state
buoyancy when B increases and vice versa. From Eqs. (15) and (16)
we note that the initial and final steady state nondimensional
buoyancies of the upper layer are

dinitial ¼ z�5=3; dfinal ¼ x2z�5=3; (19)

Fig. 5. Maximum deviation of interface from steady state value: (a) x<1 (from top

to bottom x ¼ 0:1;0:25;0:5;0:75 and 0.9) and (b) x>1 (from top to bottom x ¼ 10,

4, 2, 1.5 and 1.1) for a range of m.

Fig. 6. Flowrates out of the box, qout and flowrate of the plume, qp across interface

against time. The plume is turned on at t ¼ 0, the the initial steady state is indicated

by the constant and equal values of qp and qout, attained around t ¼ 4. The

buoyancy flux is increased at t ¼ 12 and the new staey state is achievd at t�15.

Finally, the buoyancy flux is decreased at t ¼ 24 with the original steady state

attained at t ¼ 30.

D. Bolster et al. / Energy and Buildings 40 (2008) 2099–2110 2103
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where x is greater or less than one depending on whether there is a
jump or drop in buoyancy, respectively, i.e.

DB>0) z�5=3 < d<x2z�5=3;

DB<0)x2z�5=3 < d< z�5=3:
(20)

During the transient, ðd=ðm2x2ÞÞ the right hand side of Eq. (18),
varies from ð1=ðm2x2z5=3ÞÞ! ð1=ðm2z5=3ÞÞ. At the turning point
ðdz=dtÞ ¼ 0, but ðdd=dtÞ 6¼0. Otherwise some other steady state
could exist.

For DB>0, ðdd=dtÞ>0, which from Eq. (16) implies

d
x2

< z�5=3: (21)

and vice versa for DB<0.
Combining Eqs. (21) and (18) we obtain

DB>0) z15=3

1� z
<

1

m2
; (22)

DB<0) z15=3

1� z
>

1

m2
: (23)

The left hand side, ððz15=3Þ=1� zÞ, of the inequalities Eqs. (22) and
(23) is a monotonically increasing function in z. This explains why
a turning point below zss is observed for an increase in buoyancy
and vice versa for a drop in buoyancy.

The maximum/minimum value of interface height zm that can
be reached during a change in buoyancy can be bounded. For
DB>0, combining Eqs. (20) and (18) it can be shown that

1

m2x2
<

z15=3
m

1� zm

<
1

m2
: (24)

A similar inequality exists for DB<0

1

m2x2
>

z15=3

1� z
>

1

m2
: (25)

So, for an increase in buoyancy, (24), shows that z is always greater
than some steady interface height associated with an equivalent
m̂ ¼ m2x2, and always less than the steady state value associated
with m, thus explaining why the steady height is never overshot.
Similarly, Eq. (25) bounds z to remain above the steady height for a
drop in buoyancy.

Now that we have answered why no overshoot is observed
when settling back to the steady state interface height as a result of
a sudden change in buoyancy, it is also important to understand
why an overshoot can take place during the establishment of the
initial steady state. First, we should note that physically the
transition between steady states and the initial overshoot are quite
different. The initial ‘overshoot’ occurs when a source of buoyancy
is initially turned on. This corresponds to DB>0. Consequently,
from the discussion above, if a turning point does exist, it must
exist at a height below the steady state interface height. Therefore,
the initial overshoot is similar to the deviation from the steady
state height during a sudden increase in source buoyancy as shown
in Fig. 7. The main difference is that the initial condition for the
interface height is not the steady state value, but rather z ¼ 1. In a
similar fashion to above we assume d varies only between its initial
and final value

1< d< z�
5
3: (26)

Combining Eqs. (26) and (18) the following inequality is obtained

1

m2
<

z10=3

1� z
<

z�5=3

m2
: (27)

Note that ðz10=3=1� zÞ is also a monotonically increasing function,
which is always greater than ðz15=3=1� zÞ. Therefore the solution
to ð1=m2Þ ¼ ððz10=3Þ=1� zÞ lies below zss, allowing z to fall below
its steady hieght.

4. Comparison with stratified model

A key assumption of the model presented in Section 2 and
Section 3 is that the upper layer is considered to be well mixed. In
practice, this is not true as the plume will generate a ‘filling box’
stratification when its buoyancy at the interface is different from
the upper layer buoyancy. In this section we develop a Germeles-
type model to account for the upper layer stratification and
compare the results with those of the well-mixed model.

4.1. Theory

The conservation Eqs. (6) and (8) can be modified to account for
the fact that the upper layer is not well mixed. The corresponding
conservation equations are

dh

dt
¼ A

ffiffi
I
p

S
� CB1=3h5=3

S
; (28)

dI

dt
¼ B

S
� I

ffiffi
I
p

g0ðz ¼ H; tÞ
S

; (29)

where I ¼
RH

h g0dz is the integrated buoyancy in the upper layer.
Defining the average buoyancy of the upper layer ḡ0 ¼ I

ðH�hÞ and
non dimensionalizing as before leads to

dz
dt
¼ 1ffiffiffiffi

m
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d̄ð1� zÞ

q
� ffiffiffiffi

m
p

z5=3; (30)

dd̄
dt
¼ ffiffiffiffi

m
p 1� d̄z5=3

1� z

 !
þ 1ffiffiffiffi

m
p

ffiffiffiffiffiffiffiffiffiffiffiffi
d̄

1� z

s
ðd̄� dðz ¼ 1ÞÞ: (31)

The only significant difference for the stratified system is the
second term in the buoyancy equation
Eq. (31) ð1= ffiffiffiffi

m
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd̄=1� zÞ

q
ðd̄� dðz ¼ 1ÞÞ

� �
. We now ask when

this term will be important and when it may be neglected?
Assuming that all other terms are the same order for the well

mixed and stratified cases, which does not seem unreasonable, the
most important parameter in the above equations is m. The ratio of
the first to second terms in the buoyancy equation Eq. (31) is
proportional to m. As such, for larger values of m the first term
should dominate and the second term becomes negligible, which is
indeed what we observe in our simulations below. Large values of
m correspond to small dimensionless vent areas Eq. (17), in which
case the upper layer is large. For deep upper layers the contribution
of buoyancy from the plume at any given time is small compared to
the total amount of buoyancy in the upper layer, whereas for
shallow layers this contribution can be significant. As such the
effect of stratification becomes less important for large m.

Fig. 7. The initial overshoot is physically similar to the situation where there is a

sudden increase in source buoyancy flux.
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In terms of the time taken to return to steady state, the mixed
and stratified systems will also behave differently. For the
stratified case the buoyancy extracted from the top of the room
will always be the highest. Therefore, if B is increased we expect
the system to adjust more slowly for a stratified system than for
the mixed case. Conversely, a stratified system should respond
more quickly to a decrease in buoyancy. Mathematically, this is
represented by the additional term in Eq. (31), which is always

negative or zero thus increasing the adjustment time for an
increase in buoyancy and decreasing it for a drop.

4.2. Numerical model

In order to determine the impact of this additional term in the
buoyancy conservation equation we solve the problem using a
Germeles algorithm, which allows a stratification to evolve in the
upper layer (see [10] and [5]). A brief description is given here.

The Germeles algorithm is a numerical method that discretizes
the ambient density into a finite number of layers. It is assumed
that the plume evolves far more rapidly than the ambient density
field. Therefore, for any given time step, the plume equations
developed by Morton et al. [19] are solved assuming a background
density gradient that remains constant over that time step. The
equations are solved through the entire height of the room using a
4th order Runge–Kutta algorithm.

Once the plume equations have been solved up to the top of the
room, each of the layers in the background is advected downwards
with a velocity calculated using the slightly modified version of the
Baines and Turner [1] model accounting for the effect of the vent at
the top of the room.

At each time step a new layer is added to the room. If the plume
has sufficient buoyancy to rise the whole way to the top of the
room the new layer is added there. If the plume becomes
negatively buoyant at some point the new layer is added at this
level of zero buoyancy [13]. In order to account for inflow through
the lower vent an additional layer of ambient density is introduced
into the bottom of the box at each time step.

Fig. 8. The size of the initial overshoot beyond steady over a range of m predicted by

the well-mixed model (- -) and the Germeles model (–).

Fig. 9. The maximum deviation from steady state for a rise in B for the well-mixed (- -) vs stratified (–) models for various values of x>1.
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4.3. Initial overshoot

In this section we examine the initial overshoot when a source
of buoyancy is turned on in an initially unstratified box as
considered by Kaye and Hunt [12]. Fig. 8 shows the magnitude of
the overshoot beyond steady state against m for both the well-
mixed and Germeles models. For all values of m the overshoot is
larger for the stratified case. At large values of m there is little
difference in the size of overshoot since the upper layer is deep as
we predicted from the discussion on Eq. (31). For very small values

of m there is almost no overshoot at all. Kaye and Hunt [12] showed
that for the well-mixed case no overshoot will occur for m<0:25,
which we also observe. However for the stratified case an
overshoot will exist for even smaller values of m. Finally, at
intermediate values of m the biggest difference in overshoot
occurs. Even so, the largest difference is less than 1% of the height of
the room.

4.4. Jump in buoyancy

In this section we consider an increase in source buoyancy flux.
The system is allowed to evolve to steady state for some initial
buoyancy flux. There is a sudden increase in the buoyancy to a
value x3 times larger than the initial one. The interface height is
compared for the well-mixed and Germeles models.

Fig. 9 shows the magnitude of the overshoot beyond the steady
state value for both models over a range of m and for various values
of x. As with the initial overshoot we observe that the difference in
predicted overshoot by the well-mixed and Germeles model are
insignificant for m>100. A difference for values of m smaller than
this does exist. Once again these differences are very small. The
maximum overshoot occurs for values of m�Oð1Þ,1 which
corresponds to a steady interface height near the middle of the
room. Note also that the magnitude of the overshoot does not
appear to change siginificantly for values of x greater than 5. No
matter how much harder the system is forced the interface will not
descend further.

Fig. 10. The maximum deviation from steady state for a drop in B for the well-mixed (- -) vs stratified (–) models for various values of x.

Fig. 11. A schematic of the experiments, showing the ventilated box placed in the

large environmental tank. The different buoyancy fluxes are obtained by switching

between the two supply tanks. 1 close to 5.
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4.5. Reduction in buoyancy

Here we examine a reduction in source buoyancy flux in the
same manner as the last section. Fig. 10 shows the maximum
amplitude in the deviation from the steady state interface height
for the well-mixed and Germeles model over a range of m and for

various values of x. Once again we observe a negligible difference
in overshoot between the two models for values of m>100. Any
differences that are observed for smaller values of m are small, with
the largest again occurring around m ¼ 5. In contrast to the
increase in buoyancy flux, the amplitudes do vary significantly
with x.

Fig. 12. Interface height vs time for various values of x at z ¼ 0:25. Well mixed (–), stratified (- -), experiment(�). The error bars on the experimental data correspond to typical

interface thicknesses.

Fig. 13. Interface height vs time for various values of x at z ¼ 0:5. Well mixed (–), stratified (- -), experiment(�). The error bars on the experimental data correspond to typical

interface thicknesses.
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5. Experiments

A sequence of experiments was conducted in order to compare
the results to the models described in this paper. The room is
represented by a plexiglass tank of dimensions 30 cm� 30 cm�40
cm, which is submerged in a larger tank that represents the
atmosphere (2:4 m� 1:2 m� 1:2 m). The large environmental tank
is filled with fresh water. Rather than using heat to change the
buoyancy of the fluid we used salt added to water (see Linden [15]
for details). Several holes are drilled into the top and bottom of the
smaller tank to provide vents to connect the tank to the exterior.
Two plume sources, based on the design of Dr. Paul Cooper (see
[20]) are placed at the centre of the top of the tank. Since the source
in the experiments injects negatively buoyant fluid from the top of
the tank it represents an inverted form of the model described so
far (Fig. 11).

Two supply tanks, each with fluid of different density can feed
one of the plume sources. We switch between the two supplies
thus generating a step up or down in source buoyancy flux. Food
dye was added to each batch of salt water with a different colour so
as to distinguish between the two cases.

From one side of the large tank the apparatus was lit uniformly
while recording from the other side using a digital monochrome
ccd camera. By measuring the light intensity of the recorded
images using the image analysis software, DigImage (see [6]), the
interface can be detected as a jump from the light intensity
associated with zero dye to that associated with the buoyant layer.
Since in practice, the interface is not completely sharp due to finite
Peclet number and small disturbances that may exist, a horizontal
average, excluding the plume region, of each time frame was taken.
The interface is then taken as the point of steepest gradient in light
intensity, which is consistent with the method used by Kaye and
Hunt [12].

Since the plume sources generate nonideal plumes, virtual
origin corrections were calculated with the formulas developed by

Kaye and Hunt [11] and then adjusted so that, for each experiment,
both plume sources resulted in the same steady interface height.

Figs. 12–14 display the results of these experiments. In all cases
the agreement between theory and experiments is good. As
predicted in Section 4, values of x<1 imply that the Germeles
model will reach steady state before the well-mixed model.
Conversely for x>1 the well mixed model adjusts more quickly.
Since in the experiments we neither obtain perfect stratification
nor perfect mixing we expect the experimental curves to lie
somewhere between the two models, which is, broadly speaking,
what we observe.

A measure we use to compare the models to experiments is the
prediction of the maximum deviation from the steady state
interface (i.e. zm � zss). Most of the values predicted by the well
mixed and stratified models are within 	15% of the experimental
values. Larger discrepancies are observed for the zss ¼ 0:66 case
and small x, where the well-mixed model overpredicts the
overshoot by close to 50%. This is probably because when there is a
decrease in source buoyancy flux there typically little mixing in the
upper layer, particularly so for values of x<0:5 as shown by Bower
[3]. When the plume reaches its level of zero relative buoyancy it
becomes a fountain, continues to rise and then falls back before
spreading horizontally. Smaller values of x<1 (i.e. larger
differences in source buoyancy flux) mean that the fountain will
have less momentum, rise a smaller height into the region above
the level of zero buoyancy and thus cause less mixing, invalidating
the well-mixed assumption for the upper layer.

Another region where the differences between theory and
experiment were large (between 10 and 40% for both the Germeles
and well-mixed models) is when the value of x is closest to 1 (i.e.
x ¼ 0:77 and x ¼ 1:33). This is due to the fact that the deviations of
the interface from its steady state value tend to be so small as to be
close to or even less than the actual thickness of experimental
interface as shown by the error bars in Figs. 12–14. In these
experiments the thickness of the interface is typically 4–10% of the

Fig. 14. Interface height vs time for various values of x at z ¼ 0:66. Well mixed (–), stratified (- -), experiment(�). The error bars on the experimental data correspond to typical

interface thicknesses.
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total height of the box. This makes it difficult to pinpoint/define the
precise location of the interface during the transient.

Outside these two regions the average error for the well-mixed
model was 8.25% with a standard deviation of 4.5%. Excluding only
the intermediate values of x the average error for the Germeles
model was 7.8% with a standard deviation of 4%. These values
display the good agreement between models and experiments.

Another measure we can use is the time it takes for the interface
to return to its steady state value. For x<1 the Germeles model
predicts this time well-within 	11%. However, the well-mixed
model performs poorly, overpredicting the time to steady state by
as much as 100% for the x ¼ 0:2 case. Similarly for x>1 the well-
mixed model predicts this time well-within 	9:5%. However, the
Germeles model performs poorly the larger x gets, overpredicting
the time to steady state by 80% for the x ¼ 0:33 case.

It appears that the well-mixed model works better at predicting
the interface location when there is an increase in source buoyancy
flux, particularly for larger values of x. This is because when
buoyancy is increased, larger values of x lead to larger volume flow
rates and momentum fluxes, causing more mixing in the upper
layer, thus strengthening the well mixed approximation. Similarly
the Germeles model works best for decreases in buoyancy flux,
particularly for smaller values of x. The reason for this is the lack of
mixing that occurs when the plume becomes a fountain as
described previously.

6. Summary and conclusions

In this paper we considered a naturally ventilated space
containing an isolated source of buoyancy. We developed a
mathematical model based on two well-mixed layers and tracked
the interface height and buoyancy of the upper layer. The initial
descent of the interface height to its steady state value for this
model had been previously discussed by [12]. We focused our
attention on the affects of a sudden change in buoyancy. We
observed a rise and fall back to its steady height of the interface for
a decrease in source buoyancy flux. Similarly, we observed a drop
and corresponding rise when the source buoyancy flux is
increased. After the jump/drop the interface always settles back
to the initial steady state height, agreeing with Linden et al. [16]’s
observation that the steady interface height is independent of the
source buoyancy flux.

We then changed the focus to the assumption that the upper
layer is always well mixed. By considering a model that captures
stratification (the Germeles model) we compared the predicted
deviations of the interface in an attempt to find out what
information we lose with this well-mixed assumption. We found
that over a wide range of parameters there is very little
difference between the two models in terms of predicting the
height of the interface. There is a difference in the readjustment
timescale depending on whether the heat load is increased or
decreased. The stratified system returns to steady state more
quickly when there is a decrease in source buoyancy flux,
while the well-mixed model will predict a faster time for an
increase.

A set of laboratory experiments were conducted to validate our
models. In all cases both the well-mixed and Germeles models
agreed well with the experiments. Since in the experiments there
is neither perfect mixing nor idealised stratification, we expected
the interface to lie between the two models, which is generally
what was observed. Consequently, since it is both easier and
computationally cheaper, we suggest that the well-mixed model is
adequate for most practical applications. However, it should not be
used in situations where the fine detail of the stratification may be
of interest.

In conclusion, we would like to point out that natural
displacement ventilation offers several very appealing features.

(1) Natural displacement ventilation is a self-controlling system.
As Linden et al. [16] showed the steady state interface location
is independent of the strength of heat source. As the amount of
heat from sources is increased the flow rate through the space
automatically increases.

(2) While we studied both the cases where there is a increase or
decrease in source buoyancy flux, from a practical perspective
the increasing buoyancy flux scenario is far more interesting.
First, most realistic concerns typically arise in situations where
there is an increase in the heat load into a room. Second, since
in the situation where B is decreased the interface rises and
never falls back below the steady height, there is really little
need for concern as long as the steady interface height is
designed to be at an appropriate level above occupants.
Therefore, as long as steady state conditions satisfy any
imposed requirements, these requirements will also be
satisfied during any transients when the heat load is decreased.

(3) Not only is natural ventilation self-controlling, but additionally
the timescale associated with readjustment acts in a favorable
manner too. In Section 3 we showed that the larger the increase
in source buoyancy flux is, the faster the interface returns to the
steady state height. Therefore, in situations where the heat load
is increased, there will be a transient during which the interface
height can fall into the ‘occupied’ level. However, the duration
of this transient will be shorter that the timescale of the system
defined in (14) and will, in fact, be shorter the larger the jump in
heat load is.

(4) As mentioned, the only situation which really poses any
concern is an increase in heat load. Reassuringly, the amplitude
of the deviation from steady state is typically small for
situations where this occurs. In Section 4 we showed that the
maximum deviation for x ¼ 10, which corresponds to a 1000-
fold increase in source buoyancy flux, is less than 10% of the
total height of the room. Therefore any descent of the interface
into the occupied layer will not only readjust quickly, but also
not penetrate very far.
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