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The ability for reactive constituents to mix is often the key limiting factor for the completion of reactions
across a huge range of scales in a variety of media. In flowing systems, deformation and shear enhance mixing
by bringing constituents into closer proximity, thus increasing reaction potential. Accurately quantifying this
enhanced mixing is key to predicting reactions and typically is done by observing or simulating scalar transport.
To eliminate this computationally expensive step, we use a Lagrangian stochastic framework to derive the
enhancement to reaction potential by calculating the collocation probability of particle pairs in a heterogeneous
flow field accounting for deformations. We relate the enhanced reaction potential to three well known flow
topology metrics and demonstrate that it is best correlated to (and asymptotically linear with) one: the largest
eigenvalue of the (right) Cauchy-Green tensor.
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Mixing-driven reactions are ubiquitous in physical systems
because they represent the general process where two or
more species come into contact and with some probability,
or rate, produce something different. While many studies
relate specifically to chemical reactions across a wide range
of scales within different media including carbon nanotubes
[1], porous media [2], intracellular biochemistry [3], and
atmospheric flows [4], to name a few, the principles have
broad application to other disciplines including mathematical
biology [5,6], ecology [7], economics [8,9], natural and social
sciences [10], and general chemical physics [11]. In all cases,
a key feature is that reactions only occur when constituents
come into contact; random motions at small scales make
this a stochastic process. Thus an accurate representation of
contact processes is key to successful prediction of reactions
[12]. This is particularly challenging in flowing systems,
where heterogeneities in deterministic transport processes can
separate or bring reactants into closer proximity.

Inaccuracies in models for the rate at which reactants
are brought together via mixing can compound over time,
resulting in mismatches between measured and predicted rates
of reaction [2,13–15]. Because direct simulation of large-scale
transport in nonuniform flows with small-scale reactions is
computationally expensive, surrogate relationships between
mixing and reactions have been explored using a variety of
tools, including metrics based on entropy [16], scalar dissipa-
tion rates [17–19], and concentration probability distributions
[20,21]. However, none of those studies have shown the exact
link between reactions and the fluid deformation that leads to
enhanced mixing. Furthermore, quantifying these metrics still
requires prior knowledge of scalar transport. This must be ob-
tained numerically or experimentally, which can be costly and
difficult to measure adequately for reasons including numerical
dispersion or noise [17] and experimental error or resolution
[22]. An alternative is to identify reliable measures of reaction

enhancement based directly on the flow field, which is easier to
calculate or measure. In this Rapid Communication we derive
the relationship between reactions and the underlying flow
structure, based on how changes in collocation probabilities
can be inferred from the flow’s strain field.

Theory: collocation and reactions. A growing body of
evidence shows that mixing is a primary limiting factor in the
progress of reactions across a huge range of scales, from carbon
nanotubes to the very early expanding universe [1,13,23–25].
Here we show that the problem can be reduced to calculating
the likelihood that reactive particles collocate, which can be
quantified by a collocation density (CLD). The importance of
mixing is evident in the classical chemical Langevin equation
[26] for reactions between sets of perfectly mixed particles.
This equation shows that the propensity for a reaction to
occur is given by the product of two probabilities: The first
is the probability that reacting particles are collocated and the
second is the thermodynamic probability that a reaction will
happen, given collocation. Perfect mixing assumes that the
collocation probability is uniform for all particle combinations.
We can generalize this classical picture by considering the true
collocation probabilities for particle combinations [27–29].
Over a finite-time interval �t , a bimolecular reaction will
occur with probability

P (s|�t) = ξν(s)ds, (1)

where two reactive particles are initially separated by displace-
ment s, ξ = mpk�t is the thermodynamic probability, given
the well-mixed reaction rate k, that the reaction occurs given
collocation of reactant particles of mass mp, and ν(s)ds is
the probability that the particles collocate within �t . Previous
work has show that (1) is applicable to general reactions and
that it recovers the correct continuum scale equations [29–31].
The probability ξ may be treated as a constant if it is much
larger than ν(s)ds, defining the mixing-limited condition, and
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the reaction probability depends most sensitively on and is
linear with the CLD ν(s). Estimation of reaction rates is now
reduced to calculating the CLD, which has traditionally been
done using particle tracking or other numerical techniques.

The CLD is a direct analog for mixing-limited reaction rates
for an arbitrary number of constituents, because all reactions
are combinations of monomolecular and bimolecular reactions
[26]. All particle pairs for any reaction will have some finite
CLD and the values of the CLD can be affected significantly by
a spatially heterogeneous velocity field. Consider two particles
initially separated by displacement s. Over a time �t , these
particles will move and their new positions will be described
by a set of probability density functions, reflecting both the
underlying deterministic and stochastic transport processes.
The CLD for this particle pair can be calculated as the
convolution of these probability density functions [27–29].
Assuming multi-Gaussian distributions of particle positions,
consistent with Fickian transport in d dimensions [32], the
probability density that the two particles will occupy the same
position after �t is

ν(s) = 1√
(2π )ddet[κA + κB]

exp

[
−1

2
sT (κA + κB)−1s

]
, (2)

where κi is the covariance matrix associated with each
particle’s d-dimensional motion, which along with diffusion
can account for shear, rotation, and dilation and compression
[32,33]. Note that (2) can be generalized to non-Fickian
transport if anomalous diffusion is observed [34]. The CLD (2)
quantifies how changes in proximity s or dispersive magnitudes
κ lead to changes in reaction probability.

The CLD and fluid deformation. A significant benefit of the
CLD is that it can be estimated without the need to measure
or explicitly simulate transport. Changes in the CLD due to
heterogeneous flow can be inferred from the flow’s strain field.
The Lagrangian deformation-gradient tensor F quantifies the
sensitivity of a particle’s final position to small perturbations
in its initial position over a specific interval of time [35].
However, because the changes in position for steady-state
incompressible flows are caused by velocity gradients, we
write the deformation-gradient tensor for these conditions to
leading order using the flow strain tensor E = ∇u as

F(x) = �tE + O(�t2), (3)

where u is the velocity vector, which in two dimensions
has components (ux,uy). For small time scales �t , the
first-order approximation of the changes in position is valid.
The diagonal terms of F may be regarded as dilation and
compression and the off-diagonals as shear and/or rotation.
The deformation-gradient tensor quantifies how an initially
d-dimensional volume element will be reshaped by the flow
field. The significance of F is that it is a direct indication of
the forces acting on a material element that change the CLD
and modify reaction rates. For any incompressible flow, the
deformation of a fluid parcel will bring some enclosed particles
into closer proximity, directly changing the CLD relative to an
equivalent undeformed parcel.

Traditional flow topology metrics. Let us consider three
other classical flow topology metrics that are often used to
study flowing systems in nonuniform velocity fields and com-

pare them to the CLD. The Okubo-Weiss parameter �(x) =
−4 det(E) is a common measure of the overall strength of flow
deformation [33]. For two-dimensional (2D) incompressible
flow, � = 4[E2

11 + E12E21], emphasizing the balance between
shear, rotation, and dilatation and compression. Another
common measure of flow deformation is based on the (right)
Cauchy-Green strain tensor, which removes rotation [35]:

C(x) = [F]T F. (4)

The eigenvalues and eigenvectors of C(x) give the intensity
and direction of the dominant deformations, respectively.
For 2D incompressible flow the eigenvectors are orthogonal.
The strength of the deformation can be quantified from the
largest eigenvalue of C(x), denoted by λC. A third common
metric for quantifying deformation is the finite-time Lyapunov
exponent (FTLE) [36,37], defined by 	(x) = ln[λC(x)]/2�t .
Here we show that these common flow topology measures �,
λC, and 	 can be related (some more directly than others)
to changes in reaction rates, because changes in relative
particle positions are proportional to the intensity of the local
deformations. However, it should be noted that because they
are independent of problem-specific initial conditions, the
fields of the deformation metrics represent unconditional maps
of the potential for reaction rates in mixing-limited systems
and represent the maximum possible enhancement that will
occur due to deformation. Estimation of actual reaction rates
will require integration of the deformation metrics along
fluid pathways and consideration of the local arrangement of
multiple chemical species.

For a more quantitative link to reaction, we define the
local maximum relative change in reaction rate as the ratio
of CLD after some motion that may incur deformation (and
deformation-related dispersion) to the undeformed (premo-
tion) CLD

νE(s) = ν(s)

ν(s0)
. (5)

The ratio νE(s) quantifies the maximum increase in CLD due to
fluid deformation associated with the underlying velocity field
relative to a system where no such deformation has occurred.
The values of s and κi in (2) for any particle pair must be
estimated before and after a small amount of time to make
this calculation. The diffusive properties will change slowly
relative to advection over a small time step �t , consistent
with the idea that the system is mixing limited. Therefore,
the change in CLD depends primarily on the mean motion
of the particles relative to each other, the effect of which is
quantified by the velocity gradients. Because rotation does not
bring particles in a volume any closer to each other, we use
the common decomposition of E into strain ε and rotation ω

tensors, respectively (in two dimensions):

E = ε + ω = 1
2

[
α σ

σ −α

]
+ 1

2

[
0 −ω

ω 0

]
, (6)

where α = 2∂ux/∂x, σ = ∂uy/∂x + ∂ux/∂y, and ω =
∂uy/∂x − ∂ux/∂y. Rather than calculate the potential dis-
placement changes for all particle pairs in a small volume,
we use a measure of the maximum changes held in the largest
magnitude eigenvalue of the strain matrix ε that we denote
by λε = 1

2

√
α2 + σ 2. It can be shown that, to first order, the
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change in CLD will be proportional to this eigenvalue, so for
small �t ,

�s = s0 − s ≈ s0�tλε, (7)

where s0 is the initial separation vector.
The covariance matrix of dispersion κ is determined from E

and the local isotropic diffusion coefficient Dm [32,33]. In the
rotation-removed (ω = 0) reference frame, κ has eigenvalues
λκ1 and λκ2 given by

λκ1,2 = ±2Dm

λε

[exp(±λε�t) − 1]. (8)

In the case of uniform or simple rotating flow, λε → 0 and
dispersion is by normal diffusion (λκ1 = λκ2 = 2Dm�t).

With (7) and (8), the changes in CLD can be found by
specifying an appropriate time scale �t , diffusion coefficient
Dm, initial separation distance s0, and the magnitude of the
velocity gradients. For steady flow, these calculations are made
only once. This approach gives an estimation of the distribution
of potential reaction rates within any domain without needing
to explicitly simulate transport or reactions.

A simple example. Consider 2D flow with compression
along the x axis and no shear so that ∂ux/∂x = −α and
∂uy/∂y = α. Then F = (�t/2)diag(−α,α) and λε = α/2. The
CLD after motion is Gaussian with s = s0(1 − �tα/2) and
variances along the y and x axes given by (8). The deformation
metrics for this example are � = α2, λC = (�tα/2)2, and
	 = ln(�tα/4)/�t . In this case, the descriptions of the
Okubo-Weiss parameter, the FTLE, and the largest eigenvalue
of Cauchy-Green tensor are scaled variations of each other
because of the simplicity of the assumed flow field, although
the FTLE is weighted logarithmically rather than linearly
with α, which highlights a different sensitivity. The change
in reactivity νE(s) can be calculated for this simple case using
(2) in (5), which gives νE = exp[(−s · s + s0 · s0)/8Dm�t],
assuming the changes in s overshadow changes in κ . Then
choosing a representative separation distance s0 for the vol-
ume, in the small-�t limit the exponential using (7) expands
to νE ≈ 1 + s2

0�tα2/32Dm. In a practical sense, �t and Dm

are fixed values and in this simple compressional regime,
the reaction increase is linear with λC and �. As α → 0
or κ → ∞, there is no reaction enhancement. The former is
uniform flow and the latter is already perfectly mixed.

If the gradients of the velocity field from the previous
example are rotated 90◦ so that ∂ux/∂x = α and ∂uy/∂y =
−α, this changes the deformation from compression to an
extensional regime, but it is trivial to show that λC, 	, and �

are unchanged by this alteration, as is νE(s). This illustrates
that the unconditional CLD (independent of initial conditions)
in a heterogeneous velocity field will always be greater than the
CLD for diffusion in uniform flow, regardless of the direction
of the deformations. In incompressible flow, any extension that
separates some particles is balanced by compression normal
to the extension that brings other particles together.

A synthetic heterogeneous example. The connection be-
tween the changes in reaction potential νE(s) and the classical
deformation metrics is now illustrated using an example of 2D
steady flow through a heterogeneous flow field. The field is
generated from Darcy flow through a synthetic porous medium
with a fractal hydraulic conductivity K , which varies over five
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FIG. 1. (Color online) Magnitude of the velocity field and pres-
sure equipotentials (dark solid lines). Flow is from left to right and
velocities are in m/d .

orders of magnitude. Flow is from left to right with no flow at
the upper and lower vertical boundaries (Fig. 1). Local Fickian
dispersion is modeled with an isotropic dispersion coefficient
Dm = 0.1 m2/d.

The flow topology metrics (�,	, and λC) and relative CLD
νE are calculated at each grid point (Figs. 2 and 3). The square
root of � is plotted to improve visual contrast. Recall that in a
uniform velocity field with identical diffusion coefficients, by
the principle of Galilean invariance, there would be no changes
in CLD since all particles would be translated equally and have
the same chance for random diffusion and collision. Clearly,
all the deformation metrics contain some information about
how the velocity field affects the CLD, but � and FTLE give,
respectively, noisy and overly smooth views of the areas that
will have the most intense mixing. In contrast, λC gives an
almost identical rescaled map of the relative changes in CLD
and shows areas of up to 40% increased reaction potential due
to fluid deformation [Fig. 3(a)].

An analysis of the pointwise correlation of each topology
metric (Table I) shows that λC is very nearly linearly related
to νE , similar to the simple example above. Both the FTLE
and � showed positive correlations with νE , but root-mean-
square errors of both were an order of magnitude greater than
that of λC, demonstrating the robustness of λC as a surrogate
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FIG. 2. (Color online) (a) Square root of the Okubo-Weiss pa-
rameter

√
� and (b) finite-time Lyapunov exponent. The complex

nature of the velocity field causes significant noise in �.
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FIG. 3. (Color online) (a) Largest eigenvalue of the Cauchy-
Green tensor λC and (b) relative enhancement of the CLD νE(s). The
areas with the highest changes in CLD are predicted very accurately
from λC (Table I).

for CLD and thus best for informing mixing and reaction
rates.

Discussion. Flow deformation metrics have a clear link to
mixing-limited reactive transport. The nearly identical patterns
of λC and the CLD enhancement (Fig. 3) show precisely
where the highest reaction rates within the domain are likely
to occur, assuming a mixing-limited reaction. Actual reaction
rates will depend on the initial conditions of the reactants
and their transport properties, so it is necessary to consider
changes in CLD conditional to these factors, but the CLD
conditional to a specific problem cannot exceed the uncondi-
tional CLD [i.e., Fig. 3(b)] and is thus an end member of the
problem.

Neither the Okubo-Weiss parameter nor the FTLE, while
clearly able to qualitatively capture the behavior, produces
an ideal map of the enhanced CLD. The Okubo-Weiss
parameter overemphasizes rotation, a factor that does not
contribute to mixing and reaction. The logarithmic scaling
of the FTLE penalizes higher values of λC. Another analytic
example of the Okubo-Weiss parameter poorly reflecting
reaction is in a shear flow with E11 = E22 = E12 = 0 and
E21 = σ/2, which must increase the reactions by changing
particle proximity (and dispersion variance) but for which

TABLE I. Summary statistics of the linear regression of the
correlation of �, FTLE, and λC to the actual CLD; RMSE is
root-mean-square error and SSE is the sum of squared errors.

Metric R2 RMSE SSE

� 0.68 4.90 × 10−2 740.70
FTLE 0.95 1.76 × 10−2 94.89
λC 0.99 1.80 × 10−3 1.03

� = 0. However, it is noteworthy that both �(x) and 	(x) give
good predictions of the regions where the CLD does not change
where the flow is relatively uniform. Deformation metrics
based on the Cauchy-Green tensor are less sensitive to the
complex velocity field because they are rotationally invariant
to the reference frame [35]. In other words, they represent
Lagrangian deformations, which is precisely why they relate
so well to changes in CLD, which are also purely Lagrangian.
The mathematical relationship for this more general case can
be shown for small �t , when νE ≈ 1 + s2

0�tλ2
ε/8Dm. For

rotation-free flow, λ2
ε = λC/�t2 and the reaction rate potential

remains approximately linear with the largest eigenvalue of the
Cauchy-Green tensor, as reflected in Fig. 3. Note that while
we have chosen to work with the (right) Cauchy-Green tensor,
we could also have chosen to work with another common
symmetric and rotationless metric, the (left) Cauchy-Green
tensor, and obtained the same results as the eigenvalues of
both Cauchy-Green tensors are the same. We chose to work
with the (right) Cauchy-Green tensor due to its widespread use
across disciplines [35].

This Rapid Communication highlights three main points
about mixing and reactions. First, the framework for simulat-
ing mixing and reactions provided by collocation probabilities
avoids difficulties presented by concentration-based mixing
measures and maintains a direct connection to the underlying
physics of reactions as stochastic processes. Second, changes
in collocation relative to a purely diffusive case represent
an unconditional map of the maximum possible reaction
rates within the domain and these areas can be accurately
inferred directly from the velocity field. Finally, we show
that the largest eigenvalue of the Cauchy-Green tensor is
approximately linear with the relative CLD, which clearly
shows that the areas of highest enhanced reaction potential
occur where the nonrotational deformations are the strongest.
These ideas, while directly relevant to fluid systems, are
applicable to any reactive system with heterogeneous flows.
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[7] J. Knebel, T. Krüger, M. F. Weber, and E. Frey, Phys. Rev. Lett.
110, 168106 (2013).

[8] J. Fort and V. Méndez, Phys. Rev. E 60, 5894 (1999).
[9] D. Becherer and M. Schweizer, Ann. Appl. Probab. 15, 1111

(2005).

051001-4

http://dx.doi.org/10.1103/PhysRevLett.111.197401
http://dx.doi.org/10.1103/PhysRevLett.111.197401
http://dx.doi.org/10.1103/PhysRevLett.111.197401
http://dx.doi.org/10.1103/PhysRevLett.111.197401
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.101.044502
http://dx.doi.org/10.1103/PhysRevLett.105.048103
http://dx.doi.org/10.1103/PhysRevLett.105.048103
http://dx.doi.org/10.1103/PhysRevLett.105.048103
http://dx.doi.org/10.1103/PhysRevLett.105.048103
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1103/PhysRevLett.110.168106
http://dx.doi.org/10.1103/PhysRevLett.110.168106
http://dx.doi.org/10.1103/PhysRevLett.110.168106
http://dx.doi.org/10.1103/PhysRevLett.110.168106
http://dx.doi.org/10.1103/PhysRevE.60.5894
http://dx.doi.org/10.1103/PhysRevE.60.5894
http://dx.doi.org/10.1103/PhysRevE.60.5894
http://dx.doi.org/10.1103/PhysRevE.60.5894
http://dx.doi.org/10.1214/105051604000000846
http://dx.doi.org/10.1214/105051604000000846
http://dx.doi.org/10.1214/105051604000000846
http://dx.doi.org/10.1214/105051604000000846


RAPID COMMUNICATIONS

PREDICTING THE ENHANCEMENT OF MIXING-DRIVEN . . . PHYSICAL REVIEW E 90, 051001(R) (2014)

[10] F. Schweitzer, Brownian Agents and Active Particles: Collective
Dynamics in the Natural and Social Sciences (Springer, Berlin,
2007).

[11] E. Kotomin and V. Kuzovkov, Modern Aspects of Diffusion-
Controlled Reactions: Cooperative Phenomena in Bimolecular
Processes (Elsevier, Amsterdam, 1996).

[12] O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez,
Nat. Chem. 2, 472 (2010).

[13] E. Monson and R. Kopelman, Phys. Rev. Lett. 85, 666 (2000).
[14] S. Atis, S. Saha, H. Auradou, D. Salin, and L. Talon, Phys. Rev.

Lett. 110, 148301 (2013).
[15] C. M. Gramling, C. F. Harvey, and L. C. Meigs, Environ. Sci.

Technol. 36, 2508 (2002).
[16] P. K. Kitanidis, Water Resour. Res. 30, 2011 (1994).
[17] T. Le Borgne, M. Dentz, D. Bolster, J. Carrera, J.-R. De Dreuzy,

and P. Davy, Adv. Water Resour. 33, 1468 (2010).
[18] B. Jha, L. Cueto-Felgueroso, and R. Juanes, Phys. Rev. Lett.

106, 194502 (2011).
[19] J. J. Hidalgo, J. Fe, L. Cueto-Felgueroso, and R. Juanes, Phys.

Rev. Lett. 109, 264503 (2012).
[20] E. Villermaux and J. Duplat, Phys. Rev. Lett. 91, 184501 (2003).
[21] T. Le Borgne, M. Dentz, and E. Villermaux, Phys. Rev. Lett.

110, 204501 (2013).
[22] E. Castro-Alcala, D. Fernandez-Garcia, J. Carrera, and

D. Bolster, Environ. Sci. Technol. 46, 3228 (2012).
[23] T. Le Borgne, M. Dentz, P. Davy, D. Bolster, J. Carrera, J.-R.

de Dreuzy, and O. Bour, Phys. Rev. E 84, 015301 (2011).
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