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Abstract In most classical formulations of flow and transport through porous media
Reynolds numbers are assumed to be small (Re < 1), meaning that the role of inertia is
considered negligible. However, many examples of practical relevance exist where this is
not the case and inertial effects can be important leading to changes in flow structure and
even giving rise to unsteady and turbulent flows as Reynolds numbers become larger. This
change in flow structure can have a profound impact on how solutes are transported through
the porous medium, influencing how effective large-scale transport should be modeled. Here
we simulate, using high-resolution numerical models, flow and transport through an ideal-
ized porous medium for flow conditions over a range of Reynolds numbers, including steady
and unsteady flows. For all these conditions we propose and test three upscaled models for
transport—an advection dispersion equation, an uncorrelated spatial model (USM) and a spa-
tial Markov model (SMM). The USM and SMM fall into the wider and more general family
of continuous time random walk models. We test these models by their ability to reproduce
pre-asymptotic and asymptotic plume second centered moments and breakthrough curves.
We demonstrate that for steady flows where inertial effects are strong, the spatial Markov
model outperforms the other two, faithfully capturing many of the non-Fickian features of
transport, while for unsteady flows the uncorrelated spatial model performs best, due to the
fact that unsteadiness in the flow field dampens the role of correlation on large scale transport.
We conclude that correlation must be accounted for to properly upscale transport in steady
flows, while it can be neglected in unsteady flows.
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1 Introduction

While much research on flow and transport in porous media has focused on low Reynolds
number regimes, there are many examples where higher Reynolds number flows are impor-
tant. Common examples can include flow through fractured systems (Cardenas et al. 2009),
CO; sequestration in geologic media (Bachu 2003; Vilarrasa et al. 2010), flow through indus-
trial porous reactors (Freund et al. 2003), flow in close proximity of wells (Wen et al. 2006)
and flow through wetlands where plants act as the solid phase of an effective porous medium
(Nepf et al. 1997). At low Reynolds numbers, Re << 1, flow at the pore scale can be
described by Stokes flow equations and upscaled effectively to Darcy’s law. As Reynolds
numbers become sufficiently large for inertial effects to play a role (i.e., Re = O(1)), this
no longer holds and alternative effective models, such as Darcy—Forchheimer, are needed
(Chaudhary et al. 2011, 2013). At the pore scale the streamline structure of the flow changes
and features such as recirculation zones can emerge. As Reynolds numbers become even
larger, the flow can become unsteady, and at even higher values, the flow becomes turbulent.

In addition to influencing the flow field, inertial effects, which become important as the
Reynolds number becomes greater than one, can have an impact on transport (Bouquain et al.
2012; Richmond et al. 2013; Cardenas 2008; Wood 2007). In fact, soluble contaminants in
water most commonly have Peclet numbers that are O(1000 x Reynolds number), meaning
that advective effects can play an important role on transport, even when they do not on flow.
As the Reynolds number becomes larger and larger, the flow can become unsteady and even
turbulent, which is known to affect mass transfer by decreasing dispersive spreading, in such
systems (White and Nepf 2003; Richmond et al. 2013). This potentially poses a significant
challenge in developing upscaled models for transport in flows through porous media at large
Reynolds numbers.

The pioneering works of Taylor (1953) and Aris (1956) show that transport in a tube can,
at asymptotic times, be described by an effective one-dimensional advection dispersion equa-
tion (ADE), where an effective constant dispersion coefficient quantifies the growth of the
second centered spatial moment (variance) of the plume. These ideas were later generalized
to more complex flow configurations using a variety of methods including empirical corre-
lations (Delgado 2007), homogenization (Hornung 1997), the method of volume averaging
(Whitaker 1998) and the method of moments (Brenner 1980). Such models are ubiquitously
applied in transport studies through porous media, and while incredibly powerful, a key lim-
itation of such approaches is that they are, strictly speaking, only valid at asymptotic times,
meaning after times when the solute has had time to sample the full distribution of velocities.
This is quantified by timescale rp = [?/D, where [ is a characteristic length scale of the
system in question and D is the diffusion coefficient of the solute. Depending on the specific
application this timescale may be prohibitively long to make predictions over time and length
scales of interest.

At pre-asymptotic times, or times less than tp, it is typically observed that the second cen-
tered moment grows superdiffusively in time (faster than linear in time), an observation that
cannot be reproduced by an effective advection dispersion equation with constant dispersion
coefficient. To rectify this, many of the above-mentioned approaches have been generalized
to include transient dispersion coefficients that change in time and can successfully match the
superdiffusive growth of a plume’s second centered moment (Dentz et al. 2000). However,
matching the growth of the second centered moment of a plume is not a sufficient condition
for proper upscaling of solute transport as it may yield inaccurate predictions of downstream
arrival times and spatial distributions of mean concentration (Dentz and Bolster 2010; Fitts
1996).
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Heterogeneity in the flow field due to the presence of the solid phases gives rise to fea-
tures such as no-slip boundaries, dead-end pores, recirculation zones and preferential flow
pathways. These all result in a broad distribution of velocities and associated time scales, a
feature that is difficult to include properly in conventional models at pre-asymptotic times.
However, a rich class of nonlocal models has emerged that are able to capture observed
non-Fickian behavior. These include multi-rate mass transfer models (Haggerty and Gore-
lick 1995), fractional advection dispersion equation (Benson et al. 2000; Cushman and Ginn
2000) and continuous time random walk models (CTRW) (Montroll and Weiss 1965; Scher
and Lax 1973; Berkowitz et al. 2006; Edery et al. 2014). With appropriate implementation
these models can naturally transit from pre-asymptotic superdiffusive to asymptotic diffu-
sive behavior (Dentz et al. 2004; Meerschaert et al. 2008). While conceptually distinct, these
models can be related to one another (e.g., Margolin et al. 2003; Neuman and Tartakovsky
2009; Berkowitz et al. 2002; Schumer et al. 2003; Dentz and Berkowitz 2003).

To account for cases in which correlation effects are significant, Le Borgne et al. (2008b)
proposed a spatial Markov model that allows for the inclusion of correlation effects. It should
be noted that this model is a specific implementation of and falls into the family of more
general CTRW models. This model has been successfully applied to transport through het-
erogeneous porous media (Le Borgne et al. 2008a, b), a fracture network (Kang et al. 2011),
low Reynolds number pore scale transport through a porous medium (Le Borgne et al. 2011;
de Anna et al. 2013) and transport through a wavy channel, where inertial effects were large,
but flow remained steady (1 < Re < 100) (Bolster et al. 2014). In particular Bolster et al.
(2014) showed that correlation effects must be included when Pe > O (100). Below this
critical Peclet number, an uncorrelated spatial model worked well, but above it only the spa-
tial Markov model was successfully able to upscale transport. Given that for many solutes
of interest in water, Pe = O(1000Re), once inertial effects are important for flow (i.e.,
Re > O(1)), it may be critical to include correlation in effective transport models. How-
ever, once the Reynolds number becomes sufficiently large that the flow becomes unsteady,
the unsteadiness in the flow may act in such a way as to reduce correlation effects, as sug-
gested by observations that unsteady and turbulent flows through porous media may actually
reduce effective solute dispersion (White and Nepf 2003; Nepf et al. 1997; Richmond et al.
2013).

In this work, we explore the ability of the spatial Markov model, the uncorrelated spa-
tial model and the ADE, with both constant and transient dispersion coefficients, to predict
transport through an idealized porous medium with Reynolds numbers ranging from 15 to
280. This range of Reynolds numbers spans the steady inertial flow regime and the unsteady
flow regime. We begin by describing the high-resolution microscale flow (Sect. 2) and trans-
port (Sect. 3) simulations. The microscale transport simulations are used as benchmarks for
comparison to the upscaled models as well as to parameterize the upscaled models. We then
describe the upscaled models (Sect. 4) and how they were implemented. We finally discuss
results (Sect. 5) and concluding remarks (Sect. 6).

2 Microscale Flow

We consider flow through a two-dimensional periodic domain as depicted in Fig. 1. The
domain is rectangular and of size L x L with circular solid obstacles of diameter L /2
included. To obtain the flow field we solve the full Navier—Stokes equations with a dynamic
Smagorinsky turbulence model,

@ Springer



N. Sund et al.
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where u(x, ¢) is the fluid velocity, P (x, t) is the pressure field, p is the density of the fluid, v
is the kinematic viscosity of the fluid, v, is the turbulent viscosity, and f = [ f, 017 is a con-
stant horizontal body force. The turbulent viscosity is defined using a dynamic Smagorinsky
model,

v = (CsA0)* /2SS, 2)

where A, is the grid size, Cs is the Smagorinsky coefficient, and §;; = % (g?’/ + g:;{ ) is
the strain-rate tensor. Cy is calculated on each grid cell at each time step according to a sim-
plification of the dynamic model from Germano et al. (1991) developed by Voke (1996) and
Meneveau and Lund (1997). This turbulence closure model is designed to model turbulence
from laminar (Cs; = 0), transitional and fully turbulent flow and is discussed thoroughly by
Mattis et al. (2012).

We use a no-slip boundary condition on the obstacle boundary (/7,) and periodic boundary

conditions on the edges of the domain

u(x,t) =0on I,
ulx =0,y,t)=u(x=0L,y,t)
ux,y=0,¢t)=ulx,y=1L,1) 3)
P(x,y=0,t)=P(x,y=0L,t)
P(x=0,y,t)=P(x=L,y,t).

We impose a constant horizontal forcing term f, over the domain to drive the flow. The equa-
tions are solved on an unstructured mesh using triangular elements with linear basis functions.
We use a locally conservative, stabilized finite element method outlined by Kees et al. (2009)
using the Proteus Computational Methods and Simulation Toolkit (http://proteus.asace.army.
mil). The backward Euler implicit time integration method is used for time stepping. Details
of the numerical method are available in Mattis et al. (2012). We consider several cases with
a range of Reynolds numbers from 15 to 280. Here we define the Reynolds number as

Re = ﬂ 4)

v

where u is the mean flow velocity, d is the diameter of the obstacles, and v is the kinematic
viscosity. The Reynolds number quantifies the relative influence of advective (inertial) effects
against viscous effects in the flow.
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Fig. 2 Velocity field snapshots for a Re = 15, b Re = 80, ¢ Re = 145, and d Re = 280. The white lines
are streamlines, and the color indicates the velocity in the x-direction. For the steady flows (a) and (b) the
streamlines are the same at all times, while for the unsteady flows (¢) and (d) they change in time and these
figures depict an instantaneous snapshot at one particular time

The model was run with different forcing terms to obtain velocity fields for different
Reynolds numbers. Figure 2 shows snapshots in time of velocity fields for various Reynolds
numbers along with streamlines. For the lowest Reynolds number (a), the velocity field is
symmetric with respect to the line y = L/2 and we can just begin to see the formation of
recirculation zones behind the obstacles. As the Reynolds number increases to 80 (b), the
velocity field is still symmetric, but the recirculation zones are much larger and clearly visible.
For higher Reynolds numbers (c) and (d), the symmetry is gone and the flow field is unsteady,
as the recirculation zones continually shed from the obstacles. Also note that the range of
velocities increases with Reynolds number. Increasing inertial effects, causing the change in
structure of the streamlines and the broadening of velocity scales are likely to lead to greater
longitudinal dispersion of solutes as well as greater non-Fickian behavior. Additionally, the
eventual transition to unsteady flow is likely to influence transport in a significant manner.

3 Microscale Transport

We consider transport at the pore scale as governed by the advection—diffusion equation,

aC(x, 1)

5 U VO = DV*C(x,1) 6)
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where C is the concentration of a conservative solute, u(x, ¢) is the velocity given by the
pore scale flow simulations, and D is a constant representing molecular diffusion. We use
a no-flux boundary condition on the obstacles (I,) and periodic boundaries at the edges of
the domain. We use a flux-weighted delta pulse initial condition distributed across the entire
vertical length of the inflow boundary.

aC(x, 1)
on
Cx=0,y,t)=C(x=0L,y,t) (6)
Cx,y=0,1)=C(x,y=1L,1)
C(x,0) xu(x,0)§(x).

=0on I},

We solve this equation using a classical random walk method (Risken 1984). The solute
plume is discretized into a large, but finite number (N) of particles. Each particle’s motion
is then governed by the Langevin equation

Xp+1 = Xy + WAt + V2D At§,

(N
Iny1 =1th + At

where &, ~ N (0, I) is atwo-dimensional vector consisting of independent random Gaussian
variables with zero mean and unit variance and u is the velocity from the pore scale flow
simulation, which is calculated by finding which element the particle is located within and
then interpolating the velocity exactly using the nodal basis functions. To obey the no-flux
boundary condition, the obstacle boundaries are modeled as elastic reflection boundaries,
that is, if x,, 1| lies across an obstacle boundary, then its reflected position is x], = 2(x, +
projr;, (Xn+1 — Xn)) — Xn+1 Where proj - is the projection onto the obstacle boundary I75.
For transport the dimensionless number of interest is the Peclet number,

ud
D

which is similar in structure to the Reynolds number and quantifies the relative influence
of advective effects to diffusive effects on transport. Note that we can define the Schmidt
number as the ratio of Peclet to Reynolds numbers,

Pe = s ®)

Pe v 9
"~ Re D’ ®
which is also the ratio of fluid viscosity to solute diffusivity. The diffusion coefficient, D,
is chosen so that in all simulations the Schmidt number is 500, which is characteristic of
many solutes in water (Mills 1999). Since we fix the Schmidt number, for the chosen range
of Reynolds numbers, the Peclet number ranges from 7.5 x 103 to 1.4 x 10°. A sample
snapshot of the spatial distribution of particles at a fixed time is shown in Fig. 3 for four of
the Reynolds numbers simulated. For the steady flows (a) and (b), we can visually see the
effect of large Peclet number, where particles closely follow the streamlines they start on, with
a small amount of dispersion. On the other hand the particles in unsteady flows (c) and (d)
show no memory of their initial condition, appearing more mixed across the domain. We also
see, though, that particles are being caught in the shedding vortices and swept downstream
in clusters.

In order to assess the ability of the effective upscaled models, presented in the following
section, to replicate the behavior of the microscale simulations we will focus on measuring
and comparing two common transport metrics:

Sc
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0 L oL 3L 4 o L 2L 3L aL

Fig. 3 Spatial distribution of particles at the moment when a single particle crosses the unit cell four times
for different Reynolds numbers. Steady flows: a Re = 15,Pe = 7.5 x 103 and b Re = 80, Pe = 4.0 x 104,
Unsteady flows: ¢ Re = 145, Pe = 7.3 x 10% and d Re = 280,Pe = 1.4 x 10°

e Second centered moment of the plume The second centered moment of a plume is a
common measure of the rate of spreading around the center of mass. It is defined as

00 o0 2
a2(1) :/ x2C(x, t)dx — (/ xC(x, t)dx) , 10)

—0o0 —0o0

or in terms of particle locations

1 N 1 N 2
ot =5 D %)’ — (ﬁ in(n) : (11)

i=1 i=1

e Breakthrough curves Breakthrough curves are a measure of the concentration arriving
at a fixed downstream location over time. In this work we will focus on breakthrough
curves at distances of 10L, 100L and 1000L downstream from the injection location.

As highlighted in the work of Dentz and Bolster (2010) it is necessary to check at least
both of these metrics for model validation, as it is possible for a model to adequately match
one of the metrics, while failing to capture the other. This will be demonstrated for some of
the upscaled models in Sect. 4. Successfully matching both of these metrics suggests greater
strength of the upscaled model to capture the spatio-temporal dynamics that evolve due to
microscale physics.

4 Upscaled Models

Using the microscale flow and transport simulations, we parameterized three upscaled mod-
els: the conventional ADE model (4.1), an uncorrelated spatial model (4.2) and the spatial
Markov model (4.3). Each model can be run a number of ways, so here we compare some of
the options of each model in order to ultimately select models to be used in an inter-model
comparison shown in Sect. 5. Throughout subsequent sections, the following notation will
be used:
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f«(t) = distribution of * as measured in the microscale simulations,

7; = time it took a microscale particle to travel fromx = (i — 1)Ltox =iL,

3 (12)
Sg = Z 7; = time it took a particle to travel fromx = Otox = £L.
i=1

4.1 ADE

The first model that we consider is an upscaled one-dimensional ADE, described by
aC _acC 3*C
— +u— =Dyt 13
oy TES L (1) 952 13)

Note this equation is similar in structure to (5), but is only in 1-d and does not resolve
the flow field, but rather aims to capture subscale variations through an effective longitudinal
dispersion coefficient, Dy (¢). Two variants of this model are considered, one where Dy ()
is allowed to evolve in time, and another where Dy is constant and given by the asymptotic
Taylor dispersion coefficient. Specifically

b 1 do?(1)

L(1) = T
where o2(1) is the variance of the microscale particle positions. In this case we directly use
o%(t) as measured from the microscale simulations, rather than developing a model for it
using an upscaling approach, such as volume averaging (for example Richmond et al. 2013).
Our goal here is not to develop a model for the transient effective dispersion coefficient, but
rather to show the results that would emerge from implementing one. The asymptotic value
of Dy comes from taking the late time limit of (14). The models are called the pre-asymptotic
and asymptotic ADE models, respectively.

Figure 4 compares the asymptotic and pre-asymptotic ADE models’ predictions of o2 (t) to
the actual microscale simulation data. By design, the pre-asymptotic ADE is a perfect match,
since this is the data used to parameterize the model. The asymptotic ADE, on the other hand,

(14)

)

(a)q0° (b)10°
m— Actual m— Actual
= = = Asymptotic ADE = = = Asymptotic ADE
= = =Pre-asymptotic ADE = = =Pre-asymptotic ADE
10* 10*
= 2 -
=10 T 10
b S
10° 10°
107 b — \ 102k :
10 10 10 10° 107 10*
t t

Fig. 4 ADE predictions using asymptotic and pre-asymptotic dispersion coefficients of o2(r) foraRe = 15
(steady flow) and b Re = 280 (unsteady flow)
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(@)4¢° ()0
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=
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-~
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:
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) 10 .
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t t

Fig.5 ADE predictions using asymptotic and pre-asymptotic dispersion coefficients of breakthrough curves,
fSE (1), atx = &EL for & = 10, 100, and 1000 for a Re = 15 (steady flow) and b Re = 280 (unsteady flow)

is only able to match o2 (¢) at late times and significantly overpredicts spreading at early times.
Figure 5 compares breakthrough curves of the asymptotic and pre-asymptotic ADE models to
the actual microscale simulation data at three downstream locations, x = 10L,x = 100L and
x = 1000L. The pre-asymptotic ADE again performs better, as the breakthrough curves of
the asymptotic ADE are severely over spread. However, other than at late times, this is hardly
a good match, particularly for the steady flow field case. These results highlight and verify
that having a model matching the second centered moment of a plume does not guarantee
that the spatio-temporal dynamics of the plume are accurately described (Fitts 1996; Dentz
and Bolster 2010).

4.2 Uncorrelated Spatial Model

From the microscale model described in Sect. 3, we measure the amount of time it takes
each particle to traverse the first unit cell (77) and also how long it takes the same particle
to traverse the second unit cell (7). This allows us to calculate the joint distribution for ;
and 12, f7, &, (), which is all of the information we need for both of the spatial models. For
the spatial models we discretize the solute plume into N particles of equal mass. Then each

particle at step n is moved according to:
Xpa1 = X + &L
n+ n 5* (15)
Iny1 =1th + Aty

where &, is a natural number and the Az,’s are samples from a chosen distribution f(At).
In the uncorrelated spatial model,

f(Ar) = [, (1), (16)

where fs, (¢) is the distribution of travel times from x = 0 to x = &L obtained from the
microscale simulations.

The uncorrelated spatial model is equivalent to a very specific form of more general CTRW
models, that is, one with fixed spatial increment and independent identically distributed time
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Fig. 6 S distributions, fgs (1), for various Reynolds numbers with (left) £ = 1 and (right) § =2
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10
T
()
10°
107 107

10°
t

Fig. 7 Uncorrelated spatial model predictions using & = 1,2 of o2(t) foraRe = 15 (steady flow) and b
Re = 280 (unsteady flow)

increments. Figure 6 shows fs, (¢) and fs, (¢) for various Reynolds numbers. Note the sharp
peaks and non-monotonically decreasing tails, which are consistent with observations from
Bolster et al. (2014) and indicative of the fact that a Fickian ADE model, such as those
presented in the previous subsection, will not be able to capture early time dynamics well.
The distribution f, (¢) is wider and smoother than fg, (¢) but still displays non-monotonic
behavior, a feature an ADE model cannot capture.

Since for the spatial Markov model, described in detail below, we will use information
about the travel times across both the first and second periodic element, we will also consider
both options for the uncorrelated spatial model, in order to create a fair ultimate inter-model
comparison. Figure 7 shows the uncorrelated spatial models’ predictions of the second cen-
tered moment of the solute plume, o2(¢), and compares them to the actual data from the
microscale simulations. Figure 8 shows the models’ predictions of breakthrough curves,
Ss: (1) for & = 10, 100, and 1000. Although both models yield relatively similar results,
it comes as no surprise that using a larger &, gives slightly better results. As & increases,
correlation effects become less important as will be discussed in greater detail below. In fact
Bolster et al. (2014) showed that if &, is chosen large enough, an uncorrelated spatial model
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Fig. 8 Uncorrelated spatial model predictions using &; = 1, 2 of breakthrough curves, f Se (t),atx = &L for

£ =10, 100, and 1000 for a Re = 15 (steady flow) and b Re = 280 (unsteady flow)

should perform well. It is only at this asymptotic length scale that the uncorrelated spatial
model is truly valid. Choosing &, with &, L smaller than the asymptotic length scale creates a
tendency for the uncorrelated spatial model to underpredict the spreading of the solute plume
as seen for the steady flow case in Fig. 7a, where the models underpredict o%(¢) by more
than an order of magnitude and are unable to capture the shape of the breakthrough curves
(Fig. 8). However, for the unsteady flow, the uncorrelated spatial model appears to capture
the evolution of the second centered moment and the breakthrough curves well. The reason
for this will be discussed in greater detail below.

4.3 Spatial Markov model

In the spatial Markov model we set &, = 1 in Eq. 15 and choose At from

Fan - lf,l (t) forn = 1

17
f(At|Aty,—1) forn=2,... 17

where we approximate f(At,|At,—1) by discretizing fr, (¢) into B travel time classes, or
bins. If 8 = 1, then the model reduces to the uncorrelated spatial model. If B > 1, the
spatial Markov model is equivalent to another specific form of more general CTRW models,
that is, one with fixed spatial increment and correlated time increments. Using the joint
distribution fr, &+, (t), for each microscale particle we assign an initial class (given by 71)
and its new class (given by 17). From these statistics we arrive at the discrete joint distribution
P (71 € bin i&7; € bin j). From this we can get P(t; € bin j|71 € bin i) given by
P(t1 e bini&t, € bin j)

P (1> € bin j|1; € bini) = ey € bin ) . (18)

Further details of this procedure are available in Le Borgne et al. (2008a, 2011) and Bolster
etal. (2014). We then model the steps of the spatial Markov model as a spatially homogeneous
Markov process with 8 discrete states, which can be described with a transition probability
matrix, T};, defined as,
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Fig.9 Log of transition matrices, log1o(T’j;), for (top) steady flow and (bottom) unsteady flow using g = 25
bins

Tji = P(t,41 € bin j|z, € bini) = P(z2 € bin j|7; € bini). (19)

This assumes that between any two adjacent jumps, the correlation structure is the same.
In steady velocity fields this assumption should be satisfied, as the streamline structure is
the same in each unit cell (Bolster et al. 2014). In the unsteady velocity fields, this need
not be true, but despite this we test the model anyway. Note that, as currently implemented,
the SMM has the limitation that it requires full information of the velocity field to measure
transition time distributions and transition matrices.

Figure 9 shows the transition matrices for steady and unsteady flows with 25 bins. When
the flow is steady, the transition matrix is a diagonally dominant banded matrix with a
bandwidth that decreases as the Peclet number increases. This is consistent with previous
studies Le Borgne et al. (2008a, 2011), Bolster et al. (2014) and de Anna et al. (2013). This
is due to increased transition time correlation with increasing Peclet number. Physically this
is because particles with low diffusion tend to stay on the same or similar streamlines as they
pass through successive periodic elements. For the steady fields, there is stronger correlation
of the particles in the higher bin numbers, which correspond to the longest times, or the
lowest velocities.
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(a) (b)
L L

N N AN

0 L 2L 0 L 2L

Fig. 10 Sample particle paths for a steady and b unsteady velocity fields. Note that in the steady field the
particles follow an almost identical path over the first and second periodic element, while the paths are quite
different for the unsteady flow

On the other hand, for the unsteady flows, there appears to be little definable structure to
the transition matrices as measured, that is, from a pulse initial condition at the inlet of the
domain, an issue that will be discussed in further detail below. This is due to the fact that
in unsteady flows, a particle’s travel time depends not only on which streamline it is on, but
also on the changing structure of that streamline over the measured time period. To highlight
this, Fig. 10 depicts the path line of two particles in both a steady and unsteady flow, clearly
showing that the path followed over the first and second periodic element is almost identical
for the low Reynolds number case, while the paths are quite distinct in the larger Reynolds
number flow. That being said there is one feature of the transition matrices that stands out.
There is a strong correlation of the particles in the lower bin numbers, which correspond to
the shortest transit times, or highest velocities.

While for steady flows it is known that increasing the number of bins § in the transi-
tion matrix will yield improved results given a sufficient number of particles (Le Borgne
et al. 2011), this may not hold true for the unsteady flows due to the unstructured nature of
the perhaps insufficiently resolved transition matrix (again see discussion below for further
details). Due to the fact that the high-velocity bins in the unsteady flows appear to show
an important structure, we will explore two values of 8: § = 2 and 25. 8 = 2 is chosen
to capture the high-velocity correlation effects in the unsteady flow and can be thought of
as a model that distinguishes between highly mobile and highly immobile particles, similar
to a multi-rate mass transfer model (Haggerty and Gorelick 1995). = 25 is chosen as it
adequately resolves the correlation for the steady flow cases (i.e., doubling the number of
bins to 50 does not improve the model predictions). The transition matrices for § = 2 are
shown in Fig. 11, which, in all cases, show a diagonal dominance.

Figure 12 compares the spatial Markov model’s predictions of the second centered moment
of the solute plume using 8 = 2, 25 to the actual data from the microscale simulations.
Figure 13 compares the same models’ predictions of breakthrough curves, fs, (¢) for § =
10, 100, and 1000 to the actual data. For the steady flow the model with the larger number
of bins appears to adequately capture behavior of both the second centered moment and
the breakthrough curves. On the other hand, for the unsteady flow the model with the lower
number of bins outperforms the larger bin model. In fact the larger bin model completely fails
to capture the evolution of the second centered moment at late times and yields unphysical
results, suggesting that it is imposing an artificial and inaccurate correlation structure. This is
reflected in the breakthrough curves where the plume seems to be arriving much faster and is
much less disperse than the observations. Based on these results, for inter-model comparison
in the following section, we will use 8 = 2 for unsteady flows and g = 25 for steady flows
for the spatial Markov model.
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Fig. 11 Log of transition matrices, log10(7j;), for (top) steady flow and (botrom) unsteady flow using = 2
bins

The so-called artificial correlation that we mention above for the unsteady flows and
B = 25 case appears to be an artifact of how the correlation matrix is measured. Specifically,
as in previous studies, the correlation matrix is measured using a pulse initial condition
and then tracking travel times across two elements. For a steady flow this appears to be
a reasonable manner in which to measure the transition matrix, given how well it works
here and in previous studies. However, for unsteady flows, it may not be adequate. Due the
fact that the flow field is changing in time, by tracking a pulse initial condition one is only
measuring correlations associated with the field for that particular initial condition, which
may not reflect the full array of dynamics in the system. Indeed if we choose a different
time at which to inject the pulse, we measure quite a different transition matrix from the one
presented in Fig. 9. When, instead of measuring the transition time distribution from a single
pulse, we measure the transition matrix from various pulses, each injected at different times,
the transition matrix becomes more uniform. As this number of pulses increases the transition
matrix homogenizes more and more, explaining why the USM appears to work so well as
it can be thought of as corresponding to a transition matrix that is completely uniform (i.e.,
all particles have equal access to any other bin regardless of their previous transition time).
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Fig. 12 Spatial Markov model predictions using g = 2,25 of o2(t) foraRe = 15 (steady flow) and b
Re = 280 (unsteady flow)
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Fig. 13 Spatial Markov model predictions using f = 2, 25 of breakthrough curves, fSS (1), at x = EL for
& =10, 100, and 1000 for a Re = 15 (steady flow) and b Re = 280 (unsteady flow)

This suggests that the traditional manner of measuring the transition matrix, from a single
pulse, is not adequate and presents a potentially significant shortfall of the SMM for unsteady
flows. In particular, measuring the ‘true’ transition matrix, that is, the one that homogenizes
as more and more pulses are included, is very computationally expensive as it requires high-
resolution simulations that track many particles across many initial conditions. This becomes
so computationally expensive that its effort compares to running a direct numerical simulation
of the full microscale system, thus somewhat defeating the purpose of an upscaled model,
particularly given that the USM appears to work quite well.
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5 Results

In the previous section we focused on parameterizing variants of the ADE, uncorrelated
spatial model and spatial Markov models looking at results from the lowest and highest
Reynolds number that we considered (Re = 15 and Re = 280). Here we focus on the
best variants of each model and compare results from each model for a variety of Reynolds
numbers spanning this range. Recall that the best variants of the models were: the ADE with
a transient dispersion coefficient, the USM with &, = 2, and the SMM with g = 25 for
steady flow and 8 = 2 for unsteady flow.

Figure 14 compares the three models’ predictions of the second centered moment of the
solute plume to the actual data from the microscale simulations. As before, since we used
o2(1) to parameterize the ADE, the model predicts plume spreading perfectly in both steady
and unsteady flows. For the steady flows the spatial Markov model (recall with 25 bins)
significantly outperforms the uncorrelated spatial model and is close to the result from the
microscale simulation. For the unsteady flows, however, the uncorrelated spatial model gives
similar predictions to the other two models, outperforming the spatial Markov model in the
highest Reynolds number case. Recall that for unsteady flows the spatial Markov model only
uses 2 bins as the higher bin case fails completely.

Figure 15 compares the same three models’ predictions of breakthrough curves, fs, (1)
for £ = 10, 100, and 1000 to the microscale data. For the steady flows, the ADE model
underpredicts the peak concentration at pre-asymptotic spatial locations and significantly
overpredicts the width of the breakthrough curves, while the uncorrelated spatial model
does the opposite—it overpredicts the peak concentration and underpredicts the width of the
breakthrough curves. In all three steady cases the spatial Markov model appears to outper-

(@), (b)), (©) 40

2

10
t t t

Fig. 14 ADE, uncorrelated spatial model and Spatial Markov model predictions of o2(r) for steady flow: a
Re = 15, b Re = 60, ¢ Re = 80 and unsteady flow: d Re = 115, e Re = 145, f Re = 280
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Fig. 15 ADE, uncorrelated spatial model and spatial Markov model predictions of breakthrough curves,
sz (1), atx = &L for & = 10, 100, and 1000 for steady flow: a Re = 15, b Re = 60, ¢ Re = 80 and unsteady
flow: d Re = 115, e Re = 145, f Re = 280

form the other two models, closely matching the breakthrough curves, including features
such as non-monotonically decreasing tails, except perhaps at the greatest downstream dis-
tances where the ADE appears to perform quite well, as one might expect given that at
asymptotic times it is a valid upscaled model. This suggests that the inclusion of correlation
is critical to the accurate upscaling of transport through these domains under steady flow
conditions.

The unsteady flow cases tell a different story. Here both of the spatial models do a similar
job in matching the measured breakthrough curves, including matching peak concentrations
and tails. Arguably even the ADE does a relatively good job, although it fails to capture
tails in the breakthrough curves at the smaller distances. Thus, for these cases, depending on
the application and question in mind (e.g., if short distance tails are deemed unimportant),
the ADE may be well suited as an upscaled model as long as the transient evolution of the
dispersion coefficient can be modeled adequately. If such features are deemed important, an
uncorrelated spatial model, which is easier to implement than its Markovian counterpart, will
suffice.

To put a more quantitative measure on these more qualitative descriptions Table 1 ranks
each of the upscaled models ability to reproduce the breakthrough curves measured from the
fully resolved simulations, relative to one another. Results for all of the Reynolds numbers
and three downstream distances are shown. The ranking is based on mean absolute error of
the cumulative breakthrough MAE = % ZZN=1 |modeled; — actual;|. Other measures were
also considered, resulting in a similar ranking. Table 1 clearly shows that in all but one of
the steady flow cases (Re = 15, 60 and 80) the spatial Markov model outperforms the other
two. The one instance where this does not happen is for Re = 15 at the biggest downstream
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Table 1 Table ranking the model predictions of breakthrough curves relative to the highly resolved data for
all Reynolds numbers and distance x = 10L,100L and 1000L

Re =15 Re = 60 Re =80

x =10L S,AU(,16,18) x 1074 S, U, A(l,14,28) x 1074 S, U, A (6,12, 110) x 1073

x=100L  S,A, U (6, 1740) x 107> S, A, U (8,130,240) x 1075 S,A, U (1,3,60) x 107

x=1000L A,S,U(6,20,110) x 1075 S, A, U (7,78,130) x 1075 S, A, U (3, 13,50) x 1075
Re = 115 Re = 145 Re = 280

x=10L S,U, A (4,10,20) x 1074 U, A,S (5,15,21) x 10~* U,S,A(5,6,17) x 107%
x=100L U,S,A(4,16,23) x107* U, A,S9,13,29) x 10~* U,S, A (4,9,23) x 107%
x=1000L A, U,S#,7,14) x10~4 U, A, S (3,10,24) x 1074 U,A,S(3,3,5 x1074

The rank is based on mean absolute error MAE = % ZINZ | Imodeled; — actual;| and the sequences are
presented from lowest to highest MAE
U uncorrelated spatial model, S the spatial Markov model, A the advection dispersion equation

distance, where it is likely that the ADE matches so well because the system has reached an
asymptotic state where Taylor dispersion ideas hold and the asymptotic ADE is valid, in which
case it is perhaps the most obvious choice of model given that it is the easiest to implement.
For all of the lower Reynolds number cases the MAE for the spatial Markov model was at
least 1-2 orders of magnitude smaller than for the uncorrelated spatial model. For the lowest
unsteady Reynolds number there is no clear winner as each of the three models appears to be
best depending on the downstream distance, perhaps reflecting that this Reynolds number lies
in a transition regime where no clear model should win. For the highest unsteady Reynolds
numbers (Re = 145 and 280) the uncorrelated spatial model appears to consistently perform
best, although for the highest Reynolds number case at biggest distance x = 1000L the ADE
compares almost as favorably.

A key question that arises is: Why are correlation effects important for the lower Reynolds
number steady flows, but less important for the larger Reynolds number unsteady cases?
While the aforementioned Fig. 10 already schematically illustrates in a qualitative sense
the physical mechanism behind why correlation effects will persist in steady flows, but not
unsteady ones, it does not explicitly quantify it. To address this, let us define two transition
velocities,

L Axi

V= —, Uy = ——.
T’ " L/u

(20)

vy, defines the characteristic velocity with which a particle traverses a periodic element
given its transition time t;. vy, characterizes the characteristic velocity of a particle over
mean advective time L /i given that it has travelled a distance Ax;. We can now, using our
microscale model, calculate the correlation of v, with distance (over multiple jumps of length
L) and the correlation of v, over time (over multiple time steps of size L/i). Plots of the
correlations are shown for the steady Re = 15 and unsteady Re = 280 cases in Fig. 16.
The low Reynolds number case shows long-range correlation over space and time, although
shorter correlation length in space than in time, which justifies the choice of fixing jump length
with random time step in the spatial model framework. While these correlations appear to
be exponential, their range is large enough that correlation effects must be included in the
spatial model. On the other hand, for the unsteady flow, the correlation in time drops sharply
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Fig. 16 Velocity correlation in space and time for different Reynolds numbers. Steady flow: aRe = 15, Pe =
7.5 % 103 Unsteady flow: b Re = 280, Pe = 1.4 x 103, Note the difference in scale on the x-axis

and then persists over long times, while the correlation in space drops almost immediately
to zero, demonstrating why no correlation effects need be included in the spatial model for
these cases.

6 Conclusions

We simulated flow and transport through an idealized porous medium using high-resolution
microscale numerical simulations over a range of Reynolds numbers that spanned the steady
inertial and unsteady flow regimes. These simulations provided the data needed to parame-
terize and validate three upscaled pre-asymptotic transport models—an ADE with a transient
dispersion coefficient, an uncorrelated spatial model with fixed space step and travel time
distribution, and a spatial Markov model with fixed space step and joint travel time distri-
bution. The goal was to verify the three models’ ability to predict two common transport
metrics—the second centered moment of a solute plume and breakthrough curves, both orig-
inating from pulse initial conditions. We focused primarily on the ability of the models to
predict these features at pre-asymptotic spatial and temporal scales, since these models were
specifically designed to capture the more difficult to predict pre-asymptotic transport regime
and the use of upscaled models to predict asymptotic transport is well established.

Broadly speaking, our conclusions can be divided among two predominant flow regimes,
the inertial steady and unsteady regimes. In the inertial steady flow regime:

1. Due to the use of a Schmidt number representative of solutes in water, diffusive effects
were very small relative to advective effects for the range of Reynolds numbers consid-
ered. These small diffusive effects suggest large pre-asymptotic time and length scales,
as it is diffusion that sets these scales. This led to persistent non-Fickian behavior of the
solute plume over a large range of the simulated time scales, consistent with observations
and conclusions from previous studies.

2. Dueto the strong Lagrangian velocity correlations in space that arise due to weak diffusive
effects, the spatial Markov model was the only model that was able to accurately describe
both the evolution of the second centered moment in time and the non-Fickian details
of the breakthrough curves, such as non-monotonic post-peak breakthrough curves and
tails at early times. This indicates that when flows are steady and Peclet numbers large,
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it is critical to account for velocity correlation in effective upscaled models, of the type
presented here (i.e., fixed spatial step), that should mimic small-scale behaviors.

3. The ADE with a transient dispersion coefficient failed to adequately capture the peak
and tail of the non-Fickian breakthrough curves at pre-asymptotic times, indicating that
the use of a transient dispersion coefficient is not sufficient to accurately model the
pre-asymptotic physics, again consistent with previous studies.

4. The uncorrelated spatial model failed to adequately reproduce either of the transport
metrics due to its inability to enforce the tendency of particles that travel along fast
streamlines to persist along fast streamlines and of slow ones to persist along slow paths.
This reaffirms that in steady flows it is crucial to account for velocity correlation in
upscaled models at pre-asymptotic length scales.

In the unsteady flow regime:

1. Despite high Peclet numbers and thus small diffusive effects, unsteadiness in the flow
appears to lead to a rapid decorrelation in particle velocities in space; however, veloc-
ity correlation in time persisted over longer scales, thus suggesting the strength of an
uncorrelated spatial model over an effective ADE at shorter scales.

2. All three of the models, when optimally chosen, were able to accurately predict the second
centered moment of the plume and the peaks of the breakthrough curves. This indicates
that an upscaled model which accounts for the correlation structure and the shape of the
travel time distribution is unnecessary to predict these metrics.

3. Both spatial models were able to capture tailing in the breakthrough curves. However, the
ADE failed in doing so. Thus, if tailing features are deemed important, a model which
accounts for the shape of the travel time distribution is required. However, if tailing is
deemed unimportant, the ADE performs well.

4. The spatial Markov model only worked well when a small number of bins to discretize
the transition matrix were used. When a large number of bins were used the model
yielded unphysical results. This appears to be an artifact of how the transition matrix is
measured, that is, from a single-pulse initial condition, which is unable to capture the
complete correlation structure inherent to the flow. If the transition matrix is measured
from multiple pulses injected at different times it appears to homogenize more and more
as the number of pulses increases. However, the computational cost associated with
measuring this transition matrix can become so expensive as to be comparable to a full
microscale simulation, thus defeating the purpose of an upscaling exercise. However, this
apparent homogenization of the transition matrix does explain why the USM appears to
work well for the unsteady flows as it corresponds to a completely uniform transition
matrix where all bins are equally accessible by all particles.

Thus, generally speaking, when flows are steady we recommend the use of a model
which accounts for velocity correlation, like the spatial Markov model, to upscale transport
at pre-asymptotic times. As the Reynolds numbers become larger and the flow becomes
unsteady, it appears sufficient to use an upscaled model which is parameterized with either
a single breakthrough curve or a time series of the first and second spatial moments of
the solute plume. One of the benefits of the uncorrelated spatial model is that the effective
asymptotic transport coefficients can be predicted entirely from the transition time distribution
(e.g., Shlesinger 1974; Margolin and Berkowitz 2002), meaning that transport can be well
predicted all the way from pre-asymptotic to asymptotic times. Therefore, as the velocity
fields where transport occurs get more complicated (by becoming unsteady), the transport
upscaling process becomes simpler, allowing us to use models that require less information.
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