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Abstract The purely Lagrangian algorithm for chemical reactions introduced by Benson and Meerschaert
(2008) suffers from a low-concentration resolution problem. We alleviate the problem by redefining the prob-
abilistic collision/reaction (birth/death) stochastic process as a mass-reduction operation. Theoretically, this
corresponds to replacing an on/off particle with a large number of “subparticles” and tracking the number
fraction. The new particle reaction process maintains the original particle numbers but adjusts each particle’s
mass upon reaction. Several simulations show the veracity as well as the gains in low-concentration resolu-
tion offered by the algorithm. We also compare the results to those obtained by a traditional finite difference
model with suitably defined initial condition, demonstrating that the Lagrangian models match these.

1. Introduction

Chemical reactions play an important role in the evolution of many hydrologic systems (see the review by
Dentz et al. [2011]). It is important to recognize that reactants must physically come into contact for reac-
tions to occur; mixing is the process that enables this. Reactions will occur in well-mixed systems at a rate
determined purely by thermodynamics. However, when incomplete mixing of reactants occurs, the
observed rate of reaction can be significantly less than this. Such incomplete mixing can occur in porous
media as exemplified in experiments in a homogeneous glass bead pack by Gramling et al. [2002] and a het-
erogeneous porous medium [Oates, 2007]. Many traditional models such as the advection-dispersion-
reaction equation (ADRE) assume perfect mixing at some scale and overpredict the amount of reaction that
actually occurs. Theoretical studies, based on volume averaging and homogenization [Battiato et al., 2009;
Battiato and Tartakovsky, 2011; Chiogna and Bellin, 2013], demonstrate how the mixing assumptions inher-
ent to such models can break down and result in incorrect predictions.

A number of techniques have emerged to address the impact of incomplete mixing on overall reaction pro-
gress. These include concentration perturbation expansions [Luo et al., 2008; Tartakovsky et al., 2012], modi-
fications of nonlocal continuous time random walks [Edery et al., 2009; Hansen and Berkowitz, 2015; Zhang
et al,, 2014], memory effect models [Donado et al., 2009], ADRE models with time-varying kinetic rate param-
eters [Sanchez-Vila et al., 2010], higher-order volume-averaging closures [Porta et al., 2013], concentration
probability density methods [Chiogna and Bellin, 2013], modified spatial Gillespie algorithms [De Anna et al.,
2011], time-subordination of the Markovian well-mixed reaction [Benson et al., 2013], and Lagrangian ran-
dom walk and reaction models [Benson and Meerschaert, 2008]. While all have had some success in repro-
ducing experimental observations, in this note we focus specifically on the random walk methods.

Particle-based random walk methods are popular for use in hydrologic systems, particularly for conservative
solute transport, as they are straightforward to implement in heterogeneous velocity fields and, for suffi-
ciently smooth velocity fields, do not suffer from numerical diffusion. Due to their discrete nature, the parti-
cle methods impart noise (whether user-defined or not) on concentration fields. If desired, this noise can be
smoothed via spatial or temporal interpolation kernels [Fernandez-Garcia and Sanchez-Vila, 2011; Pedretti
and Fernandez-Garcia, 2013]. Comprehensive discussions on the benefits and shortcomings of random walk
methods (as well as others) are given in Salamon et al. [2006] and Boso et al. [2013]. An important point that
should be stressed regarding particle-based random walk methods is that the numerical particles do not
have a physical volume, or size; they are points that carry mass that can move through space and time. This
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is in contrast to an alternative family of Lagrangian models, Smoothed Particle Hydrodynamics (SPH), which
can also be used to model reactive transport. A comprehensive discussion on SPH is also included in Boso
et al. [2013].

While random walks have also often been used to model reactive transport, in many cases, particle posi-
tions are reinterpolated on to an Eulerian grid and reaction rates calculated in an Eulerian manner [Tompson
and Dougherty, 1992], which may remove some of the inherent benefits of random walks. To avoid this rein-
terpolation step, Benson and Meerschaert [2008] proposed a novel random collision method for reactive
transport. Paster et al. [2013] theoretically demonstrated the equivalence of this method and a diffusion-
reaction equation in the limit of infinitesimal time step. Using this method, described in detail below,
Benson and Meerschaert [2008] studied the simple reaction A+B — C in a one-dimensional system where
particles are initially uniformly, but randomly, distributed in the domain of interest with equal mean initial
concentrations of both reactant species. If the system is well-mixed, the mean concentration in the domain
evolves at late time as C ~ t~'. However, with their method, Benson and Meerschaert [2008] show that at
late times the concentrations actually evolve as t~'/# in one dimension. This late time scaling emerges due
to incomplete mixing of the reactants and the result is consistent with predictions by physicists working on
related problems [Toussaint and Wilczek, 1983; Kang and Redner, 1985; Zumofen et al., 1996; De Anna et al.,
2011]. Paster et al. [2014] generalized the method to two and three dimensions and demonstrated that the
results are consistent with those obtained by a moment method closure [Tartakovsky et al., 2012]. In particular,
these studies all show that the time-of-onset of the anomalous reaction rate (i.e., t~'/* in the one-dimensional
case) depends on the size of the domain, the number of particles used, the rate of reaction, and the magni-
tude of diffusion coefficient, all of which can be combined into a single dimensionless Damkohler number.
Because the particle-based solution depends on the initial number of particles, it would appear that the solu-
tion is discretization-dependent, since the chosen number of particles discretizes the total mass of the system.
This problem was addressed by Paster et al. [2014], who showed that the finite number of particles naturally
encodes an autocorrelated stochastic initial condition, which is responsible for the transition to an incomplete
mixing regime at late times. Hence, the initial particle number and initial particle masses are not an arbitrary
modeling choice. Using this argument, Ding et al. [2013] were able to use this method to reproduce the exper-
imental observations of reactive transport in a column, where they independently estimated the required
number of particles from the concentration images presented by Gramling et al. [2002].

While the analytical methods of Tartakovsky et al. [2012] and Paster et al. [2014] can explain these particle-
number-dependent behaviors, they are based on closures that make some strong assumptions that require
further validation; e.g., the assumption that third and higher-order moments in concentration are negligible
and the assumption of highly idealized initial conditions for auto and cross correlations of the species con-
centration fields that make the problem analytically tractable. Additionally, the algorithm of Benson and
Meerschaert [2008] simply removes particles upon species conversion, which naturally imposes a resolution
with which concentration can be measured (i.e., the mass of a single particle). As we show in detail in this
work, this restriction results in poor convergence of this particle tracking algorithm at late times. In this note
we propose a modification to the algorithm of Benson and Meerschaert [2008], which circumvents the
removal of particles and allows for resolution of smaller concentrations as needed. We also compare the
original and modified method to the results of a highly resolved finite-difference-based solution, but with
an equivalent stochastic initial condition, to demonstrate that these methods are indeed solving the reac-
tive transport problem correctly. Additionally, we show the convergence of the proposed algorithm to the
diffusion-reaction equation in the limit of infinitesimal time step.

2. Problem Setup

Consider a one-dimensional domain of length L. The domain is initially filled with solutes A and B of concen-
trations Ca(x, t) and Cg(x,t) [ML™"], which evolve by the reaction diffusion equation

aG _ _9*G

— =D—— —kC,C i=A, B, 1

ot p) ACg, i=A,B, M
where D [L2T "] is the diffusion coefficient, assumed to be the same for both A and B and k [LM~'T "] is
the thermodynamic reaction rate. The initial mass of each reactant in the domain is the same such that the
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average concentration Cy of each is the same. The 1:1 stoichiometry of the reaction implies that the mean
concentration of each will be the same at all times. The initial concentration in the domain is defined by dis-
cretizing the total mass of reactant into N, particles and distributing these particles by assigning a position
to each particle drawn from a uniform distribution U(0, L). The mean distance between each particle is then
given by /=L/Ny. This distance encodes the autocorrelation scale of noise in the initial condition [Paster
et al., 2014]. Boundary conditions at x = 0 and L are considered periodic.

Defining nondimensional variables t*=tkCy, x*=x/I, and C*=C/C, the governing equation can be written
in dimensionless form

ac: 1 &C
ot Da Ox?

—C,C, i=A,B, (2)

where Da=kCyl? /D is the Damkohler number that quantifies the ratio of how quickly the species react to
how quickly they diffuse.

2.1. Particle Tracking: The Benson and Meerschaert [2008] Algorithm
Particles in this algorithm go through a two-step process during each time step. First their positions are
updated following a standard Langevin equation

X (A =X () 20y, ias, ®

where x* is the vector of dimensionless particle locations and § is a vector of the same length with inde-
pendent normally distributed variables with zero mean and unit variance. Next, to assess reaction, each A, B
particle pair is compared. We cycle through each A particle and compare to all B particles. For each pair the
probability of reaction is calculated as

Preact=PcolP react|col s 4)

. . . . U . o) — .l 1

where the probability density function (for Fickian diffusion) of colocation v*(s*)=dPy/dx 7\/m
_x2

esar/oa depends on the separation distance s*=|x}; —x}|. In dimensionless units, the probability of reaction is

calculated by Preq:=At*v*(s*). For a dimensional form of this expression we refer the interested reader to

the original work by Benson and Meerschaert [2008].

The probability of reaction P,eq is compared to a uniform random number U(0, 1) and if Pyeqer > U the reac-
tion occurs and both particles are removed from the system. In this specific work we are not interested in
tracking the evolution of the reaction product C, but if we were, a new C particle would be created [e.g.,
Ding and Benson, 2015]. Otherwise, if the reaction does not occur, both particles survive and we move on to
the next particle pair until all have been exhausted. Then we move to the next time step and begin the
process again. For practical reasons we only actually compare particle pairs that are closer than a distance

a\/2At* /Da, where a = 3, as the probability of reactions for particles at distances greater than this is negli-
gible and this significantly speeds up calculations (for details, see Paster et al. [2014]).

2.2. Particle Tracking: Number Preserving
Here we propose a modification to the above algorithm. In this method each particle is characterized by (i)
its location x*(t*) and (ii) the amount of mass that it carries which we denote by m*(t*), both of which
evolve in time. In the same way as before, during each time step particle locations are updated via a ran-
dom walk as in equation (3). Again, as above, we cycle through all particle pairs in the system, but rather
than calculating the probability that a reaction occurs we note that the probability density for a particle
location starting at a point x§ at the beginning of a time step, after a time step At* is given by
*( * A *| *) 1 7()(*7)(3)2
p*(x tH|x)= —— @ %Ar/Da (5)
7 0 \/4nAt* /Da '
which is the fundamental solution to the diffusion equation for a pulse initial condition at x*=x; after time
step At*.
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Now we propose that the rate of reaction between an A particle and a B particle will reduce the mass of
each particle. Heuristically, the mass of each particle spreads according to the Gaussian, and we may inte-
grate the local reactions that follow the law of mass action such that

* * —(x* —xt )2 * —(xt —x*)2
_ Amag :J rdX=J _ M s xMB almgy
At o o \/4nAt*/Da \/4nAt*/Da

- —(et —x* )2
= %e%:m;m; V*(S*).
\/8mAt* /Da
An argument making the heuristics more rigorous is presented in Appendix A and again for the interested
reader, equation (6) is presented in dimensional form in equation (A1).

The mass of each particle is updated following (6) and then we move on to the next particle pair until all
have been exhausted. Note that in the method above, the change of mass of a particle depends only on
the distance between particles and the Damkohler number. Again, for efficiency only particles within a dis-
tance a/2At* /Da are considered. With this algorithm no particle is ever destroyed, but the mass that it car-
ries continuously decreases over time. Similar to the procedure of Paster et al. [2013] we show that the
modified algorithm converges to the ADRE at the limit At* — 0 (see Appendix B).

2.3. Finite Differences
We also solve equation (2) using a first-order explicit in time, central in space finite difference method
GO EHAT) =G (X)) 1 G +AX ) =2C (x5, 1) + G (X —Ax", t7)

At Da (Ax*)?

—C(x" G (x, 7). (7)

The discretization in space Ax*=1/N is chosen so as to resolve the noisy initial condition, which is set by
counting the number of initial particles n in each bin and assigning a concentration g Time steps are cho-
sen to ensure stability of the numerical simulation At*=bDa(Ax*)?, where b= 0.1, less than the required
value of 0.5 [Pozrikidis, 1998]. Note that for the smallest Da numbers this restriction can result in an

extremely small and restrictive time step.

3. Results

We ran the above described algorithms for four test cases. As the only dimensionless parameter
describing the behavior of this system is Da, we vary it over several orders of magnitude such that
Da=10"3,10"2,10"",1. In all cases, 1000 particles were used to calculate the solutions (or in the case of
the finite difference method to generate the initial condition). In Figure 1, we plot the evolution of mean
concentration against time for the three numerical models proposed above and we also include the solu-
tion to the well-mixed problem C; = ﬁ In all cases the ensemble average mean concentration over 10
realizations is shown.

For the larger Da = 1 case we clearly observe the emergence of the anomalous t~'/* scaling, while for the

smallest Da=10"3, mixing is dominant enough that this behavior is never observed. The intermediate cases
show the anomalous time scale as well as a deviation associated with a finite size effect. Due the finite size
of the domain the system eventually rehomogenizes (i.e., segregated regions of reactants, or so-called
“islands” of a single species become large in comparison to the size of the domain and begin to overlap in a
well-mixed manner). Note that while the existence of this finite size effect has been identified and discussed
in previous studies [Bolster et al., 2012; Paster et al., 2014, 2015], the return of the system to the well-mixed
scaling of C ~ t~! has not, mainly due to a resolution issue, discussed in further detail below.

The match between all three methods is excellent, particularly for larger concentrations. For smaller dimen-
sionless concentrations, of order 1073, the finite difference method and the particle number preserving ran-
dom walk method we propose here continue to match quite well, while the particle destroying method
does not, which is not surprising given that with 1000 particles the best resolution that this method can
achieve is O(1/1000=10"3).

It should be noted that this issue of resolution can be readily addressed by using more particles; obviously
this comes at additional computational cost, which when done naively scales as O(N?), but when done

BOLSTER ET AL.

REACTIVE PARTICLE TRACKING 4



@AG U Water Resources Research

10.1002/2015WR018310

Concentration

Da=1 Da=10""

Concentration

Time Time
. Da=10"2 . Da=10"3
10 10
10”' 107"}
c c
2 9
'é S © S
E 10 E 107}
(3] (3]
c c
it 3
107 107}
-4 -4
10 10
10” 10° 10’ 10 10° 10* 10~ 10° 10’ 10° 10° 10*
Time Time

Figure 1. Comparison of the three numerical methods. Average concentrations plotted against time for the well-mixed case (red line), Benson and Meerschaert's original particle method
(black line), our modified particle method (purple circles), and the finite difference solution (green line).

efficiently can be reduced to O(NInN) [Paster et al., 2014]. To demonstrate that the same problem can be
solved with greater resolution, we also ran the same four sets of simulations, using Benson and Meerschaert's
original particle tracking algorithm, but increased the number of particles by a factor of 10 (N=10%). To ensure
that we still consider the same initial condition as before, 10* particles of each species are distributed ran-
domly and uniformly through the domain and then an additional nine particles of the same kind are placed
at each of these locations. In all cases we obtain an improved match with the other numerical solutions over
one more order-of-magnitude of concentration (Figure 2). For context the solution that would be obtained if
the 10* particles were randomly but uniformly distributed throughout the entire domain is also shown, clearly
yielding a different (better mixed) result. For clarity, in the comparison only the results of the finite difference
solution are shown in Figure 2. If we increase the number of particles, in the same manner, to 10° (not shown
here) the solution also matches well at all plotted times. Again this validates the fact that the solution to the
imperfectly mixed problem is entirely dependent on the spatial correlation structure associated with the initial
condition and is not a numerical error associated with a finite number of particles.

These results emphasize that any particle-based method will inherently have a noise associated with it,
meaning that representing a perfectly uniform initial concentration is more difficult to encode. A recent
paper by Rahbaralam et al. [2015] applies a kernel density estimator method to smooth the concentration
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Figure 2. Average concentrations plotted against time for Benson and Meerschaert's particle method with 10 times as many particles as in Figure 1, but an identical initial condition
(black line) and the finite difference solution (green line). For context the solution that would be obtained if the 10 times as many particles were randomly but uniformly distributed
throughout the domain is also shown (dashed black line). The red line corresponds to the well-mixed solution. Note how compared to Figure 1 the solutions match better at lower

concentrations up to concentrations of O(10~*), whereupon resolution effects again become an issue for Benson and Meerschaert’s method.

field from the particles, thus suppressing incomplete mixing effects and allowing well-mixed reaction calcu-
lations with a relatively small number of particles. On the other hand, incorporating the noisy initial condi-
tion can be beneficial as it can represent the incomplete mixing effects that arise in natural systems [e.g.,
Ding et al., 2013], but the link between concentration statistical structure and particle numbers is something
that a user must be aware of. The two approaches are important and indeed kernel-based approaches need
not damp out all noise and could be designed to generate more complex initial conditions, while maintain-
ing a tractable number of particles.

4, Conclusions

In this note we have proposed a modification to Benson and Meerschaert's reactive random walk method,
where we preserve the number of particles in the system at all times, but allow the mass of each particle to
change over time, rather than fixing it at a given value and either allowing a particle to survive or be
destroyed. We apply the method to a classical problem, a bimolecular reaction in a finite periodic domain,
where the initial mean concentrations of both species are the same and solutes move by diffusion. The
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emergent behavior is controlled by the dimensionless Damkohler number, which quantifies how quickly
reaction happens relative to diffusive mixing. We solve our example problem for four test cases, spanning 4
orders of magnitude in Da, ranging from a system where incomplete mixing effects dominate to one where
they are completely suppressed. Additionally, we solve the problem using a well-established and classical
finite difference method, encoding the same noisy initial conditions inherent to the particle tracking algo-
rithms. In all cases we demonstrate good agreement between all three methods although Benson and
Meerschaert's original algorithm fails to match the other two correctly at concentrations smaller than O(1/N)
where N is the number of particles used, which in their method sets a scale for the smallest resolvable con-
centration. Our modification to this method does not suffer from this resolution issue as any particle can
take on any arbitrarily small mass. We demonstrate that the resolution problem associated with Benson and
Meerschaert’s algorithm can be rectified by using more particles, but preserving the desired initial condition.
The consistency of the modeled mean concentrations across all methods verifies that the slow-down of
reactions that occurs is indeed associated with a noisy initial condition, as suggested theoretically by previ-
ous works [Paster et al., 2014; Bolster et al.,, 2012; Tartakovsky et al.,, 2012], but relying on strong closure
assumptions. This clearly shows how important characterizing initial conditions can be for reactive systems.
While in conservative transport cases, noise and specific details associated with the initial condition can
smear out over time, for the case of reactive transport strong and controlling signatures can remain for all
times. Although in this work we focus on a one-dimensional problem, all the above can readily be extended
to two and three dimensions, following for example the work of Paster et al. [2014].

While we have shown that this modified approach does not suffer from the aforementioned resolution issue
that Benson and Meerschaert's original algorithm does, we have only applied it to a relatively simple reaction
system. This novel approach remains to be fully tested in more complex reaction systems, with multiple
species and reversible reactions. In this context the original method recently has been extended with an
application to mixing-limited Michaelis-Menton-type bioremediation reactions [Ding and Benson, 2015].

Appendix A: Making Heuristics in Equation (6) Rigorous

Equation (6) for the reduction of the mass of each particle in our modified algorithm is presented heuristi-
cally in this note. The heuristics are made rigorous by defining a particle as a collection of many “subpar-
ticles” at the same location, and defining the changing mass of a particle of species i as m;= lim y_.. § Mo,
where n; is the number of subparticles at time t, and my is the initial mass of one macroparticle. To elucidate
certain physical features all variables in this appendix are presented in dimensional form and the resulting
expressions are only made nondimensional, as in the main text, in the final step. At t =0, by which we
mean the beginning of a time step, n; = N, i.e,, all subparticles are present. Focusing on the change in mass
of an A “macroparticle” when reacting with one other B “macroparticle,” we may write

—— = lim lim —(nA+AnA)_nA mo= lim lim %mo. (A1)
dt  N—oo At—0 NAt N—oo At—0 NAt

To calculate the number of subparticles reacted, consider the probabilities of the sequence of reactions
starting with the first A subparticle and first B subparticle P; 1 (react) = Py =mpAtkv(s), where the mass of
each microparticle m,=ma/ns=mo/N. The reaction with the next B subparticle factors in the survival prob-
ability from the previous reaction, so P;,=mpAtkv(s)(1—P;;), and the nth B subparticle has
Py py=mpAtkv(s)(1 +Z:’,f;1 (=P11)™). Because m,=mq/N, the higher-order terms are negligible for small At
and large N so that Py , = Py 1 =m,Atkv(s). A similar argument extends to the other A subparticles. By defi-
nition, for N — oo, the proportion of subparticles that react is the total number of possible reactions times

the probability of each: Any=—37", 3>, Pij=—nangP 1, s0

dma . . —nAanAtmpv(s) mo my
IMA_ iy fim ZPANBKAITV(S) O (5 = — mamgkv(s). "
= fmJm, = = s 2R (0)= et w2

Returning to dimensionless quantities, where m;=m;/(Col) and v(s)=(1/)v*(s*),

dm* * * *
dt*A =—mmjv(s"). (A3)
BOLSTER ET AL. REACTIVE PARTICLE TRACKING 7
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Appendix B: Convergence to ADRE

In the revised algorithm, in each time step, the particles move by random walk and then react. For species
A, and similarly for species B, this can be formally written as

Xy (8 + AL ) =x,,(t)++/2At* /Da &, (B1)

My (A ) =my, (t°) +Amy, (1), (B2)
where j=1,..., N4 is the A particle index, and
Ng

Amjy=—my> " my ()" (x;j(t*)—x;k(t*))m* (B3)
k=1

is the reduction in its mass.

Our method is in essence an operator splitting approach, and the convergence of the random walk process
to the diffusion equation (without reaction) is well known. What remains to be proven is that the change of
the mass of the particles, as described by equations (B2) and (B3) is a correct analogy of the reaction opera-
tor %=—C}§C§. Thus, our goal here is to show that the modified reaction step we propose indeed con-
verges to this expression.

Now consider an infinitesimal volume dx* and define W; (x*, t*)dx" as the expected mass of particles in this
infinitesimal volume, centered at x*. Hence, the expected mass density of particles is given by W;(x*,t*)
and it evolves due to the random walk to

WY (", £ +AE) = | Wi(y", t)g(x" —y" s At)dy", (B4)

where the prime denotes the updated distribution after the random walk, and g is the Gaussian
( * * At*) 1 _(x;fy;)z (B5)
gx -y ; = e 4At/Da
(4nAt*/Da)/?

A similar expression can be written for W}'. Expanding a Taylor series of W, (y*, t*) about point x* and sub-
stituting it in (B4) gives

At O*W;
Da 0x*2

A similar expression arises for the B species. The expected mass density loss in the reaction step (B2) and
(B3) is given by

jw,i;(y*,r*)g(x*—y*,Ar*)dy*=wA<x*,r*>+ +O((At" /Da)?). (86)

AW, (X"t + A ) =W, (x*, t* +At*)J V(X =X )Wy (Xt + A dx At (B7)
Therefore, the remaining mass density is

Wi (X*, £+ A ) =Wy (X", t* + At ) — AW, (x*, t* + At*) =

(B8)
Wy (x*, t* +At*) {1 fAt*j V(X —x )W (xV t* +At*)dx*’} ,
which becomes after substitution of (B4),
[ Wity 19—y syt 1= [ [ ity gt -y ey e | =
At ?W; | | (59
[W;(x*,t*)Jr o ax*ZA +0(At*2)} [1-At W (x*, 1)+ O(At)].
Taking first-order terms this implies
Wi (x*, -+ At ) =W (x*, t%) 1 9*W; e ek
=— -w, W (x", t* B1
At Da ax2 WAl W50, 1), (610
which converges as At* — 0 to
BOLSTER ET AL. REACTIVE PARTICLE TRACKING 8
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ow; _ 1 Pwy;
ot Da Ox*2

wiw;. (B11)

A similar expression for W can be obtained as well. Thus, the leading order of the evolution of mass density
in our particle system converges in the limit At* — 0 to the governing equation of concentration of the sys-
tem we model (equation (2)).

This result can be extended to the case where advection is present, i.e, when a term u - VC appears in the
LHS of equation (2). In this case the PT algorithm includes an advection step, where to first-order the par-
ticles are translated by uAt. The formal derivation of this extension is straightforward (via operator splitting)
and is not presented here in detail. The interested reader may refer to the work of Uffink [1988] or LaBolle
et al. [2000].
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