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• David H. Richter2

• Diogo Bolster2
•

Samuel Bateman3
• Joseph Calantoni3 • Cristián Escauriaza1

Received: 16 September 2015 / Accepted: 21 July 2016
� Springer Science+Business Media Dordrecht 2016

Abstract At the smallest scales of sediment transport in rivers, the coherent structures of

the turbulent boundary layer constitute the fundamental mechanisms of bedload transport,

locally increasing the instantaneous hydrodynamic forces acting on sediment particles, and

mobilizing them downstream. Near the critical threshold for initiating sediment motion, the

interactions of the particles with these unsteady coherent structures and with other sedi-

ment grains, produce localized transport events with brief episodes of collective motion

occurring due to the near-bed velocity fluctuations. Simulations of these flows pose a

significant challenge for numerical models aimed at capturing the physical processes and

complex non-linear interactions that generate highly intermittent and self-similar bedload

transport fluxes. In this investigation we carry out direct numerical simulations of the flow

in a rectangular flat-bed channel, at a Reynolds number equal to Re = 3632, coupled with

the discrete element method to simulate the dynamics of spherical particles near the bed.

We perform two-way coupled Lagrangian simulations of 48,510 sediment particles, with

4851 fixed particles to account for bed roughness. Our simulations consider a total of eight

different values of the non-dimensional Shields parameter to study the evolution of

transport statistics. From the trajectory and velocity of each sediment particle, we compute

the changes in the probability distribution functions of velocities, bed activity, and jump

lengths as the Shields number increases. For the lower shear stresses, the intermittency of

the global bedload transport flux is described by computing the singularity or multifr actal

spectrum of transport, which also characterizes the widespread range of transport event

magnitudes. These findings can help to identify the mechanisms of sediment transport at
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the particle scale. The statistical analysis can also be used as an ingredient to develop

larger, upscaled models for predicting mean transport rates, considering the variability of

entrainment and deposition that characterizes the transport near the threshold of motion.

Keywords Direct numerical simulations � Lagrangian particle model � Bedload transport �
Discrete element method � Intermittency

List of symbols
C Volumetric concentration of particles

CD Drag coefficient

d Particles diameter

D0 Fractal, Hausdorff or box-counting dimension of the bedload flux

dþ Non-dimensional diameter

e Coefficient of restitution

Fcol Force due to inter-particles collisions

Fi Feedback force from the particles to the flow

Fr Froude number

fi External pressure gradient applied to the flow

f
p
i;g Hydrodynamic drag force felt by a particle

f ðaÞ Singularity spectrum

g Gravity acceleration

h Length scale of a domain

k Shape parameter of the Gamma distribution function

Mðq; rDtÞ q-th Order statistical moment of li

NðrDtÞ Number of time windows of size rDt contained in the total time when

transport occurs

P Pressure field of the flow

Re Reynolds number based on bulk velocity

Rep Particle Reynolds number based on the particle velocity relative to the flow

Re�p Particle Reynolds number based on the friction velocity

Res Friction Reynolds number

r Integer for computing different sampling time scale of sediment transport

rþinactive Dimensionless radius of the inactive particles

S(t) Cumulative amount of particles that have crossed the control plane until time t

Stk Stokes number

s(t) Number of particles crossing the control plane in a given time step Dt

Tmax Total time of simulation

TðrDtÞ Total width of periods with no transport that are larger than rDt

t Time

U Bulk velocity of the flow

ufi Velocity of the fluid at the particle location (i ¼ 1; 2; 3)

uj Instantaneous velocity components of the flow (j ¼ 1; 2; 3)

up Particles velocity in the streamwise direction

uþ Dimensionless bulk velocity

u� Friction velocity

vcr Arbitrary critical velocity which delineate active motions

vp Particles velocity in the spanwise direction

vpi
Instantaneous particle velocity component (i ¼ 1; 2; 3)
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wp Particles velocity in the vertical direction

w j
g Linear geometric weight for the projection of the feedback forces from

particles to flow

xi Cartesian coordinates (i ¼ 1; 2; 3). Also written as x, y, z

xL Streamwise dimension of the channel

Y Young’s modulus

yL Spanwise dimension of the channel

zL Vertical dimension of the channel

zþ Dimensionless vertical coordinate

a Hölder exponent

b Scale parameter of the Gamma distribution function

Dt Time step used by the flow solver

Dtp Time step used by the particles solver

DVg Volume of a computational cell

d Boundary layer thickness

f Scaling exponent function

h Shields parameter

# Poisson’s ratio

j von Kármán constant

k Distance traveled downstream by the particles

lf Coefficient of friction

li Mass fraction of sediment that cross the reference plane between two

successive plateaus

m Kinematic viscosity of the fluid

qf Density of the fluid

qp Density of the particles

s0 Bed shear stress

X Random variable distributing Gamma

8p Volume of a particle

1 Introduction

The initiation of motion and sediment transport processes near the bed play an important

role across a wide range of temporal and spatial scales in fluvial systems. These phe-

nomena include the dynamics and interactions of particles, bedform generation, and larger

scale processes such as bed resistance, changes of the flow hydrodynamics and impacts on

the entire morphodynamics of the river. The collective dynamics of sediment particles

displays a complex behavior that is to date not fully understood, as it is mostly dominated

by complex nonlinear interactions of the sediment grains with the turbulent boundary layer,

and with other particles in motion or lying on the bed. The identification of the funda-

mental mechanisms that control bedload transport in rivers and the prediction of sediment

dynamics at the particle scale still present significant challenges for computational models

and experimental investigations, and continue to be the subject of extensive research

[24, 44, 45].

At conditions near the threshold of motion, a distinctive feature of bedload transport is

the intermittency of the sediment flux, characterized by frequent and localized transport
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events in which groups of particles are displaced by saltating, rolling or sliding on the bed

[20, 21, 27]. From the early pioneering work of Einstein [21], the estimation of the

sediment flux has been formulated in many cases using a probabilistic approach, repre-

senting the sediment jump lengths and other aspects of the particle dynamics using

probability distribution functions. Recent investigations, however, have shown that the

intermittent fluxes produced at low transport stages yield a non-Gaussian behavior, with

thick tails of the probability distribution functions due to frequent extreme events and long

correlations, violating critical assumptions required for Gaussian/Fickian transport [e.g.,

4, 23, 35, 41, 46].

This characteristic anomalous scaling of the sediment flux [41] is induced by the near-

bed coherent structures of the turbulent boundary layer that interact with the grains. The

coherent turbulent motions produce well-known sweeps, ejections, inward and outward

interactions of flow velocity fluctuations, among other complex hydrodynamic features that

can increase the instantaneous forces acting on sediment grains [see 1, 2, 36, for details].

The bedload flux is therefore closely related to the interactions between these coherent

structures of the boundary layer and the sediment particles.

Previous investigations have demonstrated that sweeps are strongly correlated to

entrainment events [29–31]. Outward interactions have also been recognized as major

mechanisms for entrainment [9, 37, 40]. Thus, positive fluctuations in the streamwise

velocity contribute to particle motion. Although under certain conditions, ejections could

play a more relevant role than outward interactions [42], e.g. when sediment is poorly

sorted [55]. In addition to the instantaneous hydrodynamic forces that act on sediment

particles produced by the near-bed coherent structures, intermittency can also arise due to

the bed configuration, as particles can rest in positions less exposed to the flow or ‘‘pro-

tective pockets’’ that are formed by other surrounding particles. Particles at rest thus

impose an additional restriction to the movement, favoring the intermittency of the

transport flux.

Models aimed at understanding the intermittency of bedload transport and the initiation

of motion processes need to capture the turbulent events on the bed, the space-time

variability of the hydrodynamic forces, and the interactions and collisions between parti-

cles. Recent advances in Lagrangian particle models of sediment transport have reproduced

many features of the bedload flux under different hydrodynamic conditions, representing

the sediment particles as spheres with the discrete-element method (DEM) [15]. Simula-

tions have been performed either with the one-way coupling approach in dilute flows, in

which the flow is not affected by the particle dynamics, or two-way coupling when par-

ticles can alter the dynamics of the flow [7]. Some current models are listed below, where

different approaches and assumptions are considered.

Chang and Scotti [17] initially performed simulations of sediment grains in a channel

with a rigid wavy bottom to recreate a fixed ripple on the bed. They used a one-way

coupling approach with Large-Eddy Simulations (LES) to solve the flow, imposing peri-

odic boundary conditions in the streamwise and spanwise directions. Their setup was

characterized by a Reynolds number Re = 3250, simulating 14,000 particles with Stokes

numbers ranging from 1 9 10-4 to 4 9 10-4. Their work showed that the suspension of

particles above the ripple was divided into two steps: i) a cloud of suspended grains

appearing downstream from the top of the ripple and ii) ejection of particles into the water

column occurring from this sediment cloud.

Escauriaza and Sotiropoulos [23] computed the flow and particle dynamics past a

cylinder in a flat-bed channel using the Detached-Eddy Simulation (DES) approach. DES

is a hybrid turbulence model that involves solving the Unsteady Reynolds-Averaged
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Navier–Stokes equations (URANS) near solid walls, and LES in the rest of the domain.

They carried out one-way coupling simulations of non-interacting particles that could only

collide with the bed and the cylinder. In their simulations they considered up to 200,000

sediment grains initially placed on the bed upstream of the cylindrical obstacle, in a flow

with a Reynolds number equal to Re = 39,000. This work showed for the first time the

mechanisms of transport at the particle level that generate the intermittency of the sediment

flux in conditions near the threshold of motion. The quasi-periodic dynamics of the tur-

bulent horseshoe vortex system around the cylinder locally increased the hydrodynamic

forces, producing seemingly random episodes of transport in which groups of particles

were entrained, while near-bed vortices formed streaks of particles in low shear-stress

regions. The intermittent cumulative bedload flux was calculated as the total number of

particles that crossed a control plane downstream of the obstacle, which was described by

the fractal curve known as the devil’s staircase distribution [6]. The investigation of

Escauriaza and Sotiropoulos [23] was also the first to characterize the intermittency in

conditions near the threshold of motion, by computing the multifractal spectrum of bedload

transport in the cumulative sediment transport series. Similar results were obtained by Link

et al. [35], who also observed this multifractal behavior in a similar configuration, but in a

non-flat scoured bed, showing how the statistics changed as the bed was eroded by the

horseshoe vortex system.

Soldati and Marchioli [47] discussed the applicability of the point-particle approach in

sediment transport simulations, comparing a flat-bed channel and a wavy channel through

direct numerical simulation (DNS) and LES respectively. The flow they simulated had

friction Reynolds numbers (Res) ranging from 150 to 300, where sediment particles were

modeled as non-interacting, spherical, and rigid elements. The friction Reynolds number is

defined as Res ¼ u�h=m, where u� is the friction velocity, h the length scale of the domain,

and m the kinematic viscosity. They focused on the development of different strategies that

could be carried out on computational models to study sedimentation and resuspension

processes.

Schmeeckle [45] combined LES for computing the flow with a DEM approach for

solving the particle dynamics on a flat-bed channel with periodic boundary conditions in

streamwise and spanwise directions. The sediment was represented by around 115,000

spherical elements in a flow with Re ranging from 8000 to 48,000. He employed a two-way

coupling approach, including collisions among grains. The results of this model showed

that in bedload transport the peak in the sediment flux occurs very near the top of the non-

moving bed of grains, and that saltation played a secondary role as a mechanism of

transport near the bed. The range of parameters explored in this work considered condi-

tions well above the threshold of motion for the sediment grains, which produced con-

tinuous transport without intermittency on the bedload flux.

Dallali and Armenio [18] carried out one-way and two-way coupled simulations using

LES in a flat bed channel with periodic boundary conditions. They represented the dis-

persed phase using a continuum Eulerian model instead of a Lagrangian particle model.

Their cases of study were determined by a friction Reynolds number equal to Res ¼ 600,

and sediments with non-dimensional diameters dþ ¼ 1; 3; 5; and 6.5, where dþ ¼ u�d=m,
and d is the representative diameter of the sediment grains. This non-dimensional particle

diameter is also known as particle Reynolds number (Re�p). All cases were above the

Shields curve, i.e. over the threshold of motion. They found that the velocity and con-

centration profiles depended upon the nature of the coupling included in their model. This

suggested that two-way coupling is needed to capture certain critical features of the flow,
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for example, the sediment buoyancy contribution to the momentum transport, or the

changes to the von Kármán constant of the velocity profile.

Vowinckel et al. [53] modeled a flat-bed channel with DNS, using the immersed

boundary method (IBM) for the particles. Their simulations considered between 13,500

and 27,000 immobile particles fixed to the bed along with 0–13,500 mobile particles in a

channel flow with Re = 2941 and a Shields parameters above and below the critical value

for entrainment. Vowinckel et al. [53], in agreement with other studies such as Alletto and

Breuer [3], recognized that a point-particle approach is suitable for representing sediment

transport at these scales if grain collisions and feedbacks with the flow are considered. In

this specific point they also agree with Schmeeckle [45], who demonstrated that the two-

way coupling approach and sphere collisions are realistic assumptions, neglecting the mass

coupling for stability reasons. It is worth mentioning that the values below the critical

Shields number for sediment motion in [53] were used to study the influence of sediment in

turbulence modulation, rather than the intermittency in transport.

As seen above, many studies have focused on the fluid-particle interaction using

computational models, and while identified as important, the intermittent processes of

transport generated near the threshold of motion have not been deeply explored or char-

acterized. Following these previous works, we carry out simulations using DNS, coupled in

a two-way manner to a DEM particle solver which computes collisions between grains

using a point-particle approach. Here we present this model as a tool for gaining insights in

the mechanisms that generate intermittency in sediment transport.

The paper is organized as follows: In Sect. 2 we present a brief description of the

numerical methods we use to perform DNS and the coupling with the DEM particle model.

In Sect. 3 we analyze the statistics of sediment transport based on the velocities and

trajectories of particles, i.e. velocity histograms, activity, and jump lengths, also including

a characterization of intermittency at low transport stages with the multifractal spectrum of

the bedload flux. Finally, Sect. 4 contains the conclusions, the summary of the findings of

our research, and some suggested possible future directions of study.

2 Methods

2.1 Carrier phase equations

The fluid phase is governed by the incompressible Navier–Stokes mass and momentum

conservation equations:

ouj

oxj

¼ 0; ð1Þ

oui

ot
þ uj

oui

oxj

¼ � 1

qf

oP

oxi

þ m
o2ui

oxjoxj

þ 1

qf

Fi þ
fi

qf

; ð2Þ

where xi are the cartesian coordinates (i ¼ 1; 2; 3) in the streamwise, spanwise and vertical

directions respectively, uj are the instantaneous velocity components of the fluid, P is the

pressure, qf is the density of the fluid, m the kinematic viscosity, fi is an additional force

which represents an externally applied pressure gradient in the streamwise direction, and Fi

is the feedback force from the particles that acts on the fluid. Fi is computed by linearly

projecting and summing the drag force from all particles within a given computational cell:
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Fi ¼ �
X

g

w j
g

DVg
f

p
i;g; ð3Þ

where the summation is over all particles g in the grid cells, which share a computational

node j. DVg is the volume of the cell in which the particle resides, w j
g is the linear

geometric weight based on the distance from node j to the particle g and f
p
i;g is the

hydrodynamic drag force felt by particle g (second term on the right hand side of 4, below).

Additional details can be found in the work of Richter and Sullivan [43].

2.2 Dispersed phase equations

The particle motion is governed by Newton’s second law, written as follows [15]:

qp8p

dvpi

dt
¼ ðqp � qf Þ8pgi þ

1

2
qf CDAjufi � vpi

jðufi � vpi
Þ þ Fcol; ð4Þ

where qp and 8p are the density and volume of a spherical particle, vpi
is the particle

velocity in the i direction of the Cartesian frame, ufi is the velocity of the fluid at the

particle location computed using a sixth-order Lagrange interpolation, Fcol is the collision

force due to other particles (see Appendix 1), and CD is the drag coefficient, calculated

from the following expression [12]:

CD ¼ 24

Rep

ð1þ 0:15Re0:697p Þ; ð5Þ

where Rep ¼ dpjvpi � ufij=m is the particle Reynolds number based on the magnitude of the

slip velocity vpi � ufi.

The first term on the right hand side of 4 corresponds to gravitational and buoyancy

forces, and the last term refers to the hydrodynamic drag force. For simplicity we consider

the drag force as the only interaction with the fluid, since it is typically much larger in

magnitude than other forces such as added mass, lift, Basset, or pressure drag. For

example, Basset forces have been derived for Stokes flows, where the inertia terms in the

Navier–Stokes equations are negligible. Consequently, it should be expected that Basset

forces will be negligible unless the particle Reynolds number is small, i.e. when Res\\1,

where Res is the particle Reynolds number referred to the particles diameter and settling

velocity [38, 39]. Throughout this work, we analyze flows where Res *6–36. The low-

Reynolds number simulations of Escauriaza and Sotiropoulos [22] in chaotically-advected

flows, demonstrate that lift, added mass, pressure drag, and viscous stresses are at least one

order of magnitude smaller than drag. Although it has been shown that the influence of the

pressure drag increases when the density of the particles is similar to the density of the

carrier phase [5], it decreases for low Reynolds numbers [50]. The present study is based

on relatively low Reynolds numbers, and ultimately, the main objective of this paper is to

shed light on the intermittency of sediment transport during the first stages of entrainment.

The presented approach is similar to cases of inertial particle transport in low Reynolds

number flows [22], and two-way coupling simulations of sediment particles in turbulent

flows [45]. The carrier phase equations are solved using a DNS approach developed by

[43], whereas the dispersed phase equations are computed by coupling the DNS code to the

open source, DEM-based LIGGGTHS package (see Appendix 1), which efficiently handles

particle collisions and the computation of the forces in 4.
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2.3 Computational setup

Our simulations are carried out in a rectangular flat-bed channel. The dimensions of the

channel in the streamwise, spanwise, and vertical directions (x, y, z cartesian coordinates)

are respectively ½xL � yL � zL� ¼ 0:12� 0:06� 0:04 m. The boundary conditions consist

of a no-slip rigid wall at the bottom, a zero-stress rigid lid at the top (i.e. free surface

condition), and periodicity in the streamwise and spanwise directions. Spatial discretiza-

tion in the x and y-directions is performed using a pseudospectral approach and derivatives

in the z-direction are calculated via second order finite differencing. A computational grid

of 128 9 256 9 128 nodes is distributed uniformly in the x and y-directions and alge-

braically stretched in the z-direction. The size of the domain for the simulations presented

in this investigation are based on the work of [45], who employed a computational domain

of these dimensions to successfully study the mechanisms of bedload transport in similar

conditions, with larger transport rates.

Time integration is performed using a third-order Runge-Kutta scheme for both the flow

and dispersed phase equations (for details on the numerical methods and validation studies

the reader is referred to the work of [43]. An additional validation of the coupling of the

flow and particles solvers is shown in Appendix 2). The time step used for the flow, in

Eq. 2, is equal to Dt ¼ 7:28� 10�4 s. The particle trajectories, on the other hand, are

integrated using a time step of Dtp ¼ 5:0� 10�7 s, owing to the requirement of resolving

collision processes between particles. Thus for each time step of the flow solver, there are

Dt=Dtp = 1456 time steps taken to integrate the equations of particle motion while

assuming a frozen flow field. The total of simulation in all cases is roughly 120 s. The

external pressure gradient added to 2 (fi) is dynamically adjusted in order to obtain a

desired bulk velocity which remains constant. As initial conditions, a fully developed

unladen flow is used to initialize the flow field, into which the particles are inserted along

the bottom wall with zero velocity.

To account for the effects of wall roughness, we insert ‘‘inactive’’ hemispherical par-

ticles at the wall, in a close-packed grid pattern. These particles remain stationary, do not

couple onto the surrounding flow, but experience collisions with the ‘‘active’’ particles

whose trajectories are being integrated in time according to 4, in order to generate

roughness on the surface. This method of approximating wall roughness using inactive

particles is similar to that of [52]. The radius of the inactive particles is set to

rþinactive ¼ 3:44, which is smaller than the viscous sublayer of wall-bounded turbulent flow

where rþinactive ¼ ðd=2Þu�=m. In total we use 48, 510 spherical active particles and 4, 851

hemispherical inactive particles in all simulations. The setup of the computational domain,

including the dimensions of the channel and details on the particles used in the simulations,

is shown in Fig. 1.

Numerical simulations of the particle dynamics in this investigation are characterized

by the Shields parameter h, defined as follows,

h ¼ s0
ðqs � qf Þgd

ð6Þ

where s0 ¼ qf u
�2 is the averaged bed shear stress, and the other magnitudes have been

defined previously. The critical magnitude of the Shields parameter, which is generally

employed to establish the criterion for initiation of motion, is a function of the particle

Reynolds number Re�p as shown in Fig. 2, and denoted as Shields’ curve [51]. The mag-

nitude of the drag force, on the other hand, is characterized by the particle Stokes number
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Stk, which is defined as the ratio of the particle response time and the characteristic time

scale of the flow as follows,

Stk ¼
qsd

2U

18qf mzL
ð7Þ

where U and zL are the bulk velocities of the flow and the water depth, respectively.

Since we are ultimately interested in the intermittency of sediment transport near the

threshold of particle motion, six different cases are simulated, which span a range of the

Shields parameter h near the critical value, while maintaining a roughly constant particle

Reynolds number Re�p and Stokes number Stk. Additionally, two extra cases are included

far from the critical value of the Shields parameter. They are only used as extreme cases

with continuous transport, focusing our study on the first six. All cases are shown by the

red dots in Fig. 2. Parameters including the bulk flow Reynolds number (Re ¼ UzL=m),
collision properties (e.g., restitution coefficient, elasticity parameters, etc.), and Froude

number (Fr ¼ U=
ffiffiffiffiffiffiffi
gzL

p
) are held constant for all the simulations. The coefficient of

restitution, Poisson’s ratio, coefficient of friction and Young’s modulus used in the sim-

ulations are characteristics for sand [32, 45]. The general parameters for all simulations are

shown in Table 1, while conditions specific to each case are presented in Table 2.

Finally for measuring the sediment flux, which is a primary quantity of interest, a

control plane is defined at the center of the channel whose normal vector is aligned with the

streamwise direction. We then count the number of grains that cross the control plane

during a given flow time step Dt. We do this for all time steps in the simulation, con-

structing the series of sediment transport as a function of time. In certain cases some

particles cross the plane and rebound back upstream. In these cases we eliminate them by

filtering the series, and eliminating negative fluxes across the plane. From the series we

then compute the cumulative series of sediment flux S(t), which provides the total number

of particles that have crossed the control plane from the beginning of the simulation until

Fig. 1 (Color online) Snapshots of the flow and particles in the computational domain. a The complete
computational domain corresponds to a rectangular channel with sediment particles initially at the bottom
(the dimensions are shown in meters); and b Lateral view of a zoomed region near the bottom of the channel
with instantaneous velocity profiles in a vertical plane. The bed is formed by a layer of many particles, with
a thickness of approximately *5 to 6 d. Active particles are colored in brown, and halves of inactive
particles in gray are shown at the very bottom. Blue/white contours indicate streamwise velocity magnitude
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time t. This series S(t) will play a central role in the analysis performed in the following

section.

3 Results

In this section we analyze the results of the simulations by comparing the statistics of

sediment dynamics for the parameter space defined in Subsect. 2.3. We calculate the

histograms of particle velocities in three dimensions to investigate the characteristics of

sediment motion near the critical Shields parameter. From the bed activity, defined as the

Fig. 2 (Color online) Shields diagram (after [51], modified from [18]) with the simulated cases in red
points. These go from very near the threshold conditions of entrainment, defined by the solid black Shields’
curve, to conditions where the sediment transport is strongly favored. The simulations for h ¼ 0:84 and
h ¼ 0:59 (case 0-A and 0-B in Table 2) are extreme cases, used only as examples of a limiting case

Table 1 Constant flow condi-
tions and particle properties for
all the simulations

Parameter Symbol Value

Reynolds number Re 3632

Froude number Fr 0.15

Stokes number Stk *0.08 to 0.11 m/s

Bulk velocity U 0.091 m/s

Friction velocity u� � 0.0081 to 0.0089 m/s

Fluid density qf 1000 kg/s

Kinematic viscosity m 1:003� 10�6 m2/s

Particle diameter d 0.8 mm

Coefficient of restitution e 0.01

Poisson’s ratio # 0.45

Young’s modulus Y 2:5� 107Pa

Coefficient of friction lf 0.6
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number of active particles participating on bedload transport at any given instant in time,

we identify a transition to a regime where there are always particles in motion, as the

Shields number of the simulation increases. The particle trajectories are also used to obtain

statistics of jump lengths in the streamwise direction, in terms of the Shields number.

Finally, we analyze the intermittency of the cumulative bedload flux by characterizing the

time series through the multifractal spectrum of sediment transport, which reveals the

scaling of transport events for different Shields numbers.

3.1 Particle velocity distributions

We compute the probability density functions (pdfs) of particle velocities in each of the

three spatial dimensions, i.e., longitudinal, spanwise and wall-normal, which are shown in

Figs. 3, 4 and 5 respectively. The pdfs are constructed using the histograms of instanta-

neous particle velocities of all active particles based on all time steps over a given

simulation.

Table 2 Simulated cases

Case 0-A Case 0-B Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Re�p 6.47 7.09 6.88 6.97 7.00 6.88 7.03 6.95

h 0.84 0.59 0.12 0.10 0.08 0.06 0.04 0.03

qs (kg/m
3) 1010 1017 1080 1096 1121 1161 1241 1347

We modify the density of the particles for each case in order to change the Shields parameter
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Fig. 3 Probability density functions of streamwise particle velocity for the Shields parameters of cases 1–6.
The central region marked with dashed vertical lines corresponds to positive and negative values of the
critical velocity vcr , which is used to delineate particles considered in motion, which lie outside this region.
The positive velocities show an exponential-like distribution after the cutoff, where a linear trend is visible
in the semi-log scale
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In Figs. 3, 4 and 5 we have marked a central section with dashed vertical lines, which is

defined by the magnitude of a critical velocity vcr � 0:0125 m/s. This critical velocity is set

to delineate particles that we deem to be in active motion, compared for example with

particles that could be simply rocking back and forth, or vibrating but not actively moving

in the streamwise direction [34]. Such motions can occur when the local shear stresses that
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Fig. 4 Probability density functions of spanwise particle velocity for the Shields parameters of cases 1–6.
The negative and positive tails are again exponential-like after the cutoff vcr and are symmetric with respect
to zero
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Fig. 5 Probability density functions of vertical particle velocity for the Shields parameters of cases 1–6.
Negative and positive sides show contrasting behavior, revealing the dominance of different physical
mechanisms in each region (gravity and drag force, respectively). Curves become straight lines in the semi-
log scale as the Shields number increases, exposing a transition to an exponential-like distribution. This
occurs faster for the positive velocities than for the negative ones
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come from the fluid are strong enough to move particles somewhat, but not sufficiently

large to displace them downstream. While the choice of this value might be considered

arbitrary, we selected its specific magnitude based on the experimental study of Roseberry

et al. [44]. They experimentally investigated the bedload transport of coarse sand particles

in a channel recording high-speed videos of grains in motion. This high-speed imaging was

captured from a top view of the channel, with a spatial resolution of 1 pixel � 0:05 mm and

a time discretization of 250 frames per second. According to their set-up, they could not

distinguish between two consecutive frames at velocities less than those permitted by the

resolution of the images and its acquisition rate, i.e. vcr ¼ 0:05 mm/(1/250fps) = 0.0125

m/s. Under these assumptions, we are considering as modes of motion displacements by

saltation, rolling, sliding, and in general, movements with a velocity greater than vcr .

Figure 3 displays the pdfs for particle velocities in the streamwise direction for cases

1–6. In each figure, for all velocities greater than the critical velocity (up [ vcr), there

appears to be an exponential-like tail in the distribution (straight line on a semi-log plot),

which is in good agreement with findings from other studies [see 26, 44]. The size of this

tail becomes stronger as the Shields parameter increases, in line with the idea that with

increasing Shields number more particles become increasingly more mobile. The distri-

bution in all cases is strongly skewed with a preferential motion in the direction of flow as

one would expect. Note that with our choice of vcr no particles appear to actively move in

the backwards direction. The magnitude of the region between 	vcr is dictated by the

number of particles which remain at rest.

In the case of the spanwise particle velocity shown in Fig. 4, the particle velocity pdfs

are completely symmetric, as one would expect since there is no preferential flow bias in

this direction. Again, for jvpj[ jvcrj the probability densities display an almost expo-

nential-like decay, while they are sharply peaked around 0. As the Shields number

increases the exponential tails become stronger, as a greater fraction of the particles are

mobilized. Indeed for the smallest Shields number, velocities greater than the critical

velocity are within the noise of the distribution and practically speaking, the vast majority

of particles are immobile. For h = 0.03, around 99.99 % of particles lie inside this region

during the entire simulated period.

In Fig. 5 we report the pdfs for the vertical particle velocities, which also display many

of the aforementioned features of the streamwise and spanwise velocities. One feature that

is noteworthy is that the distributions are not symmetric as the mechanisms that induce

upward and downward motions are not the same (drag and submerged gravity). In this

sense we can compute the probability of having a positive or negative value of wp

depending on the Shields number, and we observe that those probabilities become more

similar as the Shields number is increased, as shown in Table 3. These results suggest that

at high Shields numbers, the motion in both vertical directions is dominated by the same

physical mechanisms, contrary to the cases with low Shields numbers.

Finally for each of the particle velocity pdfs, we compute the skewness and plot it as a

function of h in Fig. 6. For the simulated cases, the values of the skewness of up are always

positive, with a maximum value located at h � 0:10. The skewness approaches zero at high
and low Shields parameter values, respectively, as a result of: (i) streamwise particle

velocities gradually deviating from the mean in a symmetric way at high Shields param-

eters and (ii) a reduction in the number of particles participating in transport at low values.

The skewness of vp does not vary with the Shields parameter, owing to the statistical

invariance with streamwise direction. The magnitude of the skewness of wp decreases as
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the Shields parameter increases, in accordance with the ratios of probabilities for positive

and negative wp discussed above regarding Table 3.

3.2 Activity

While knowing the detailed velocity distributions is useful, we also consider another more

revealing metric that is commonly employed in sediment transport formulas: At any given

time, how many particles are participating in transport in our system? This is quantified by

the activity, defined as the number of particles in motion at a given instant in time. A

similar definition for the activity has been given by Roseberry et al. [44], with the only

difference that they considered the number of particles in motion per unit of bed area.

Similar to the previous analysis of pdfs of particle velocity, the criterion for being in

motion is that the velocity magnitude of a particle is greater than the aforementioned

critical velocity (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

p þ v2p þ w2
p

q

 vcr). In this way, a particle moving in any direction

(i.e., not just the streamwise direction) is counted as moving.

Thus each time step represents an instantaneous sample, and from the full time series a

probability density function can be constructed for activity at each value of Shields

Table 3 Ratio between the
probability of having wp 
 0 and

wp\0

h Pðwp 
 0Þ=Pðwp\0Þ

0.03 1.227

0.04 1.220

0.06 1.160

0.08 1.136

0.10 1.104

0.12 1.077

0.59 1.062

0.84 1.084
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50Fig. 6 Skewness of the particle
velocity components as function
of the Shields parameter. The
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lines are spline fits over log10h, to
show the tendencies of the
skewness

Environ Fluid Mech

123



parameter. The pdfs for activity for cases 1–6 are shown in Fig. 7. In addition to the

discrete probability density portrayed in this figure, we overlay the statistics of the

numerical simulation with the best-fit of a Gamma distribution function:

f ðXjk; bÞ ¼ 1

bkCðkÞ
X k�1e

�X
b : ð8Þ

The Gamma distribution is controlled by two parameters, k and b. Note that this is a

continuous, rather than discrete distribution; previous studies have observed a negative

binomial distribution fit to their data for activity [4], which is the discrete counterpart to the

Gamma distribution. We also obtain excellent fits with the negative binomial, but choose to

display the continuous Gamma for a specific reason explained below.

Qualitatively, the distributions in Fig. 7 can be broken into two subclasses. In the top

row, corresponding to the smaller Shields parameter values, the best fit Gamma distribu-

tion falls into its exponential behavior regime, meaning that the largest probability is

always associated with an activity of zero—i.e., that there is a strong probability that zero

particles are moving during the entire period of simulation. This probability is greatest for

the smallest Shields parameter, as depicted in the first plot of Fig. 7, which is in line with

our intuition that smaller Shields parameters reflect less motion and more stationary par-

ticles. However in the bottom row, for larger values of the Shields parameter, the best fit

Gamma distribution has transitioned to its other typical behavior, which is qualitatively

more like a log-normal distribution. For this case there is zero probability that at any given

time no particles are in motion—i.e., at least some particles are always in a state of motion.

Quantitatively this transition can be understood by exploring how the parameters of the

Gamma distribution, k and b, evolve with the Shields parameter. For cases 1–6 these

relationships are shown in Fig. 8. As noted qualitatively above, when k\1 the Gamma

distribution looks like an exponential distribution, while for k [ 1 it falls into its other,

more log-normal behavior regime. Thus the value k ¼ 1 sets a transition in behavior when
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one might expect there to be times when there are no particles actively moving, versus a

regime where there will always be at least some particles moving. An interpolation of the

k parameter with these results suggests that the transition occurs at around h ¼ 0:067, as
shown in Fig. 8(a). Thus, while the critical Shields number for motion is around h � 0:033
(see the critical Shields parameter in the diagram shown in Fig. 2), our simulations show

that a value roughly twice as large is needed to ensure that some sediment particles are

always in motion. Continuously increasing k with Shields number, increases the skewness

of the distribution and places a heavier weight on the power-law tail associated with larger

activities. Likewise the monotonic relationship between b and Shields parameter in

Fig. 8(b) implies that the mean of the distribution increases and that the exponential

tempering happens at a larger value of activity. This is again in line with physical rea-

soning that a greater Shields parameter means more particles in motion and thus greater

activities.

3.3 Travel distance statistics

When developing a Lagrangian picture of how sediment particles move, so as to ultimately

build an upscaled/effective model for transport, it is important to have an understanding of

the particle travel (or jump) statistics in addition to mere particle activity; that is, what is

the statistical distribution of travel distance when particles become dislodged from the bed?

Such information, combined with generalized central limit theorems under certain sim-

plifying assumptions, can yield macroscopic equations for transport, as stated in the

original work of Einstein [21]. While the specific focus of this paper is not yet at this model

development stage, we present these statistics here so that they might be used for this end

goal in the future. Additionally they provide useful information in addressing some of the

questions we pose here relating to intermittency, as particle jump statistics and intermit-

tency are often tightly linked [e.g., 19].

Considering sediment transport as a series of consecutive cycles of particle resting and

motion, we gather statistics on the distance that the particles travel downstream during a

given transport event; we denote these distances as k. Since in this instance we are only

concerned with streamwise particle movement, we limit our presentation to positive values
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Fig. 8 Parameters k and b of the gamma distribution, used to fit the activity pdfs in Fig. 7, vs the Shields
parameter. When k
 1 the Gamma distribution suggests that there are never times when all particles are in a
state of rest and at least some are in motion. This occurs for Shields numbers h
 0:067
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of k; we consider a particle to be in a state of motion when its streamwise velocity

surpasses the critical velocity (up 
 vcr), and thus k is computed as the difference between

the final and initial x-position of the grains between two consecutive stop events.

Pdfs of k across the range of considered Shields numbers in cases 1–6 are shown in

Fig. 9. Consistent with the above discussions, higher Shields parameters result in a broader

distribution of jump lengths. Starting at case 1, where h ¼ 0:03, the largest jump length

measured was only 3 particle diameters in length. As h is increased, nonzero probabilities

of travel distance as high as 50 particle diameters are found, illustrating that higher bed

stresses result in both increased jump activity as well as flight distance. The shape of the

travel distance pdfs shown in Fig. 9 remained generally constant, with the peak length

always around a single diameter

3.4 Characterization of the intermittency in the bedload transport flux

At low Shields numbers, the complex interactions of the sediment particles with the

turbulent boundary layer produce a highly intermittent bedload transport flux. We perform

a statistical analysis of this intermittency using our measured cumulative bedload transport

flux S(t), which is calculated following Escauriaza and Sotiropoulos [23]. We define a cross

section in the channel, and compute the time series of the number of sediment particles that

cross this vertical plane at every instant in time. Figure 10a depicts the cumulative bedload

transport S(t), for four different Shields numbers, showing a highly irregular flux with

multiple transport events of different magnitudes, and a seemingly random series of pla-

teaus that correspond to time intervals with no particles crossing the control plane. As

shown qualitatively in Fig. 10b, the cumulative bedload flux in these cases exhibits self-

similarity, with a repeating structure of transport episodes and plateaus as we magnify the

curve to observe the transport at smaller time scales. This intermittent and self-similar flux

in time corresponds to the fractal curve known as the devil’s staircase [see Refs. 22, 23, for

details].
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Fig. 9 PDFs of travel distance of the particles in diameter units. Subplots show the same pdfs in semi-log
scales and for a longer interval of k
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The occurrence of bedload transport events for low Shields is characterized by the

fractal dimension of the devil’s staircase, and the scaling of events of different magnitudes

by the multifractal spectrum of the flux. In what follows we describe briefly the

methodology to analyze the intermittency of bedload transport through the multifractal or

singularity spectrum of S(t), and study the evolution of these statistics as the Shields

number increases.

3.4.1 Fractal dimension and multifractal spectrum of the bedload flux

The distribution of all the transport events in time, seen at different time scales in a self-

similar bedload flux, is characterized by the fractal dimension of the curves shown in

Fig. 10. Here we follow the classical methodology employed by Bak [6] to compute the

fractal, Hausdorff, or box-counting dimension of the devil’s staircase [see also 23]. If we

define the time scale as the product of an integer r and the time-step of the simulation Dt,

we can calculate the total width of periods with no transport that are larger than rDt,

defined as TðrDtÞ. Subsequently, we compute the episodes of transport as the spaces

between the plateaus that can be identified at that time scale during the total time of
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Fig. 10 a Cumulative sediment transport for several Shields parameters (not all cases are shown).
b Cumulative sediment transport at different scales qualitatively showing self-similarity for h ¼ 0:08
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computation Tmax. We then measure this quantity to obtain the total number of time

windows NðrDtÞ with magnitude rDt, required to contain all the segments previously

calculated, as follows,

NðrDtÞ ¼ Tmax � TðrDtÞ
rDt

: ð9Þ

Therefore, the fractal dimension of the bedload transport events, D0, corresponds to the

exponent of the power-law distribution that characterizes the scale-invariance of the flux,

such that,

NðrDtÞ� 1

rDt

� �D0

: ð10Þ

If we now calculate the scaling regime of the occurrence of events of different magnitudes,

seen at the time scales given by rDt, we will find a range of exponents represented by the

singularity or multifractal spectrum of bedload transport. We first compute the number of

grains that cross the reference plane between two consecutive plateaus of the devil’s

staircase, denoted as i and i � 1. This value corresponds to the transport event magnitude,

which we divide by the total number of particles that have crossed the plane by the end of

the simulation, SðTmaxÞ, as follows,

liðrDtÞ ¼ SiðrDtÞ � Si�1ðrDtÞ
SðTmaxÞ

; ð11Þ

where liðrDtÞ is thus a measure of the normalized strength of the transport event occurring

between two inactive periods. As explained by Harte [28], the q-th order statistical moment

of liðrDtÞ, denoted as Mðq; rDtÞ, can also be represented by a power-law relationship if the

moment distributions are self-similar, such that the following expression is valid for each

value of q,

Mðq; rDtÞ� ðrDtÞfðqÞ; ð12Þ

where fðqÞ is called the scaling exponent function. If fðqÞ has a linear dependence on q, the

series is monofractal only characterized by the exponent D0. On the other hand if fðqÞ has a
non-linear dependence on q, the series is defined as multifractal. In the latter case, the

measure liðrDtÞ locally scales with rDt, through the so-called Hölder exponent a, which is

also called the singularity strength at scale rDt,

liðrDtÞ� ðrDtÞa: ð13Þ

This exponent characterizes the local differentiability of the measure, since values of a\1

imply that the series is not differentiable at that point. If a tends to one, on the other hand,

the series is ‘‘smoother’’, and can be differentiable when it reaches a value equal to 1. The

exponent f ðaÞ is therefore defined as the fractal dimension of the set of singularities with

scaling index a, which yields the multifractal or singularity spectrum f ðaÞ vs a. The
exponents f ðaÞ, a, fðqÞ, and the moment order q, are related through the Legendre

transform, which is used to calculate the multifractal spectrum [25],

a ¼ dfðqÞ
dq

f ðaÞ ¼qa� fðqÞ;
ð14Þ

Environ Fluid Mech

123



The maximum value of the multifractal spectrum f ðaÞ is equal to the fractal or box-

counting dimension of the bedload flux, D0, and it can be used to quantify the intermittency

of the bedload flux in time. When more particles are continuously crossing the control

plane, with events that are observed at finer time-scales, the fractal dimension of the time

series approaches 1, D0 ! 1. Conversely, as the duration of the plateaus increases, D0

tends to zero due to the more intermittent sediment transport events. For more details on

the basic aspects of the multifractal theory, the reader is referred to [23, 25, 28, 46].

3.4.2 Evolution of intermittency for increasing Shields numbers

As previously discussed, Fig. 10a displays the cumulative bedload transport flux S(t) for

four values of the Shields parameter, showing also the self-similar structure of these

curves. Fig. 10b presents S(t) for a single case, but covering the entire time duration of the

simulation. All cases in the range h ¼ 0:06�0:12 display intermittency, and follow a

characteristic devil’s staircase structure. However, the degree of intermittency appears to

differ considerably, as the duration of the plateaus shortens with an increasing Shields

number. For the case with the maximum Shields number simulated, h ¼ 0:84, the bedload
flux becomes a continuous function of time, and S(t) increases continuously with no

plateaus and D0 ¼ 1 (not shown here). This result indicates that for large values of h there

are always sediment particles crossing the vertical plane, which can be measured for all the

range of time scales analyzed. For the smallest Shields numbers (h ¼ 0:03 and 0.04) very

few particles are mobile, while in the range of h ¼ 0:06�0:12, the intermittent-like

behavior is clearly observed.

Figure 11 shows the singularity spectra for the four values of h near the threshold of

motion (cases 1–4), which are calculated using the statistical moments of transport events

and the Legendre transform, Eq. (14). The spectra follow a non-monotonic single peaked

pattern, similar to that observed in the work of Escauriaza and Sotiropoulos [23]. The

corresponding fractal dimensions (peaks of the spectra) are shown in the adjacent plot with

a clear monotonic increasing trend, in which the values of D0 increase with the Shields

number. For the extreme case of h ¼ 0:84, the fractal dimension has actually saturated,

yielding a continuous flux with D0 ¼ 1. Based on this data alone, we can anticipate that the

fractal dimension will saturate at a value of around h ¼ 0:59, above which no intermittency
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Fig. 11 a Singularity spectra f ðaÞ for h ¼ 0:06�0:12 showing the multifractal nature of the sediment
transport near the threshold of motion. The bold curves are the computed region of the spectra, which are
filled with symmetrical quadratic fits (dashed curves). The spectra are tangent to the line f ðaÞ ¼ a. b Fractal
dimensions of the sediment transport as a function of the Shields parameter
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will occur. Finally, it is also important to point out that as the Shields number increases the

spectra move toward larger values of a, becoming more continuous. They also encompass

a wider range of a, which means that in these cases there is a wider range of transport event

magnitudes.

4 Conclusions

In this investigation we performed simulations of sediment transport in a flat-bed channel

using a Lagrangian particle model based on the DEM approach, coupled with direct

numerical simulations for the fluid flow. By fixing a constant particle Reynolds number

Re�p, and varying the Shields parameter h, we studied eight cases encompassing a range

from almost no sediment motion to continuous entrainment. This research is mainly

focused on the dynamics of the cases that are near the threshold of motion to study the

statistical characteristics of particle velocities, bed activity, and jump length size of the

particles. For the lower Shields numbers, we find that the bedload transport flux is highly

intermittent and that it can be characterized by the multifractal spectrum of transport

events. The intermittency and fractal properties are lost as the Shields parameter increases,

producing series of continuous particle transport in time.

For larger magnitudes of the Shields parameter, particles become easier to dislodge by

the turbulent coherent structures of the boundary layer flow, exposing the particles to

higher stresses and mobilizing a larger portion of the bed. This favors the emergence of a

continuous bedload transport flux, which is quantified by observing that the multifractal

behavior breaks down at some point in the interval h � 0:12�0:59 of the Shields

parameter, when Re�p � 7:0. An additional transition of the intermittent dynamics is also

observed for the range of times scales analyzed in our research (from the time step of the

calculation to the total time simulated). At a value of the Shields parameter h � 0:067, we
observed on the pdfs of particle activity that the probability of finding zero moving par-

ticles abruptly transitions to zero for the total time period that was simulated. However, at

these stages the existence of plateaus in the sediment transport flux persists over this

critical value of h, i.e. jumps are short and they not necessarily reach the control plane for

particles actively participating in transport.

A principal finding of this research is that a Lagrangian model coupled with DNS can

capture the intermittent nature of the sediment transport presented during the first stages of

the entrainment. Taking into account the restriction on motion that particles impose on

each other, the model must include the computation of collisions between grains. A two-

way coupling approach should be chosen if the studied bed is composed of many layers of

particles.

The devil’s staircase distributions correspond to an aggregated manner of conceiving

the individual trajectories of the particles with a given distribution of resting times. For

example, if greater resting times are likely, this fact will be indirectly expressed by longer

plateaus in the associated devil’s staircase. A suitable conceptual model for understanding

the behavior of these trajectories has been proposed by Nikora et al. [41] and experi-

mentally studied by Campagnol et al. [11]. They divided the time scales of the trajectories

into three categories: a local range for the smallest time scales, an intermediate range, and a

global range. At the same time, the local range can be split into two subdivisions: a local-

near field range and a local-ballistic range [8, 10, 11]; whereas a transition regime can be

identified between the intermediate and global ranges [10]. Each of these categories is
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characterized by a different diffusion regime, i.e., a normal or anomalous regime in the

Fickian sense. Given that the fractal dimension contains information for all the scales, it

could be potentially used for deriving the different diffusion regimes in time (or vice

versa). This approach is proposed for future research. Additionally, it is important to note

that in the model of Nikora et al. [41], the variance of the particle displacements increases

with time at a different rate depending on the diffusion regime. In this sense, throughout

our simulations we have observed transitions among these regimes, where the variances

increase homogeneously in time as the Shields number is also increased. These phenomena

could be directly related to changes in the distributions of the particles resting times and

travel distances, which are the variables highlighted by Bialik et al. [10]. Nonetheless,

these are preliminary results (not included in this article), which need a deeper study to be

confirmed.

Finally, let us note that the Shields curve is roughly independent of Re�p in the range

Re�p � 6�20, i.e. here the initiation of motion only depends on h as the flow becomes fully

rough (c.f. Fig. 2). Under this premise, one could speculate that the results presented

through this investigation are valid for the entire mentioned range. However, additional

research must be conducted to validate this point. In future investigations we will address

important issues to characterize bedload transport, exploring the phase-space of parameters

to understand the specific influence of the time scales of the turbulent flow on particle

motion, and incorporate different particle sizes in the simulations to study the effects of

grain size distributions on the flow and on particle interactions.
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Appendix 1

The discrete element method (DEM) used for the computation of the particles dynamics

is the open source LIGGGHTS, available on http://www.liggghts.com. The equations

solved by this algorithm have been previously explained by Chand et al. [16] and

Schmeeckle [45], but following their work and for the clarity of the reader, we repeat

them here.

For each particle, collisions with other grains are computed when the distance between

their center is less or equal than the sum of their radii, i.e. they overlap, or at least, they are

in contact. For two particles, the force product of their collision is divided into a normal

force (Fn) and a tangencial force (Ft):

Fcol ¼ Fn þ Ft ð15Þ

The normal force along the line of center between two colliding particles is computed as:

Fn ¼ Kndn � cnvn ð16Þ

whereas the tangencial force is calculated as follows:

Ft ¼ Ktdt � ctvt ð17Þ

where Kn and Kt are the stiffness coefficients, dn and dt are the overlap distance between
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two grains, cn and ct are the viscoelastic damping constants, vn and vt the relative velocity

and the subscripts n and t correspond to the normal and tangencial components. If nec-

essary, the tangential overlap is truncated in order to satisfy the condition Ft �lf Fn, where

lf is the coefficient of friction. In turn, the previous variables are computed as follows:

Kn ¼ 4

3
Y�

ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð18Þ

cn ¼ �2

ffiffiffi
5

6

r
B

ffiffiffiffiffiffiffiffiffiffiffi
Snm�

p

 0 ð19Þ

Kt ¼ 8G�
ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð20Þ

ct ¼ �2

ffiffiffi
5

6

r
B

ffiffiffiffiffiffiffiffiffiffi
Stm�

p

 0 ð21Þ

The parameters in Eqs, 18–21 are defined as follows:

Sn ¼ 2Y�
ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð22Þ

St ¼ 8G�
ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð23Þ

B ¼ lnðeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2ðeÞ þ p2

q ð24Þ

1

Y� ¼
1� #2

1

Y1

þ 1� #2
2

Y2

ð25Þ

1

G� ¼
2ð2þ #1Þ

Y1

þ 2ð2þ #2Þ
Y2

ð26Þ

1

R� ¼
1

R1

þ 1

R2

ð27Þ

1

m� ¼
1

m1

þ 1

m2

ð28Þ

where e is the coefficient of restitution, # is the Poisson’s ratio, Y the Young’s modulus,

R the radius of a particle, m the mass of a particle and the subscripts 1 and 2 are the

identifiers for two particles in contact.

Appendix 2

In this appendix we present a validation of the coupling between the fluid and solid phases.

The numerical method for the fluid solver has already been validated before [see for

example 43]. Also, the dispersed phase solver has been broadly used and validated in

several previous investigations [16, 26, 45].

In order to carry out the validation, we perform additional simulations of a flow over a

flat bed channel, different than those presented in this article. The setup reproduces the
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simulations carried out by Schmeeckle [45]. The configuration of the system is a rectan-

gular channel of 0.12 m long, 0.06 m wide and 0.04 m deep. The mean velocities of the

considered cases for comparisons are U = 0.2, 0.3, 0.4 and 0.5 m/s. Let us note that given

these high velocities, here our algorithm works as a LES model with numerical dissipation

instead of a DNS one (for this approach, see for example [33]). Following the reference

case, our flow is driven by a pressure gradient, with periodic lateral boundary conditions, a

free-slip rigid lid at the top, a solid wall at the bottom, and a two-way coupling approach.

Schmeeckle [45] used 115, 728 spherical particles with a diameter d ¼ 0:5 mm, which

corresponds to 7.57 cm3 of solid material. We consider 28, 800 hemispherical particles

stuck to the bed in order to have static particles at the bottom. In this way, we fulfill the

condition used by [45] of particles with almost zero velocity at the bottom. Furthermore,

we use 101, 328 spherical mobile particles. The diameter that we use is the same that the

reference case. According to these conditions, the solid material of our simulations is 7.57

cm3, coinciding with the value employed by [45]. More parameters of these simulations are

shown in Table 4.

A comparison of the bulk velocity profiles of the flow in the downstream direction is

shown in Fig. 12a. The concentration of particles in the vertical direction is also compared

in Fig. 12b. These results show that our model captures the region of slower flow velocity

in and near the sediment bed, the development of the logarithmic velocity profile, and the

distribution of particles in the vertical direction, which is directly related to the fluid-

particle interactions.

Additionally, we compare the velocity profile for a bulk velocity U = 0.2 m/s using a

one-way and two-way coupling approach (shown in Fig. 13). For the one-way coupling

case, the profile matches theoretical curves (see 29). From the perspective of the flow, this

is similar to the boundary layer flow without sediments. Even though 29 can be used to

calculate separately every region of a velocity profile without sediment particles [49, 54],

the equation for the buffer layer can represent the whole inner layer accurately [48]. Here,

the inner layer is composed by the viscous, buffer, and logarithmic layers. This equation is

also known as the Spalding’s law of the wall [54] and we use it for the range 0� zþ � 350.

We use the outer-layer equation from 29 outside this range [13].

U

u�
¼

zþ if zþ � 5 Viscoussublayer

zþ � e�jB½ejuþ � 1� juþ � ðjuþÞ2

2
� ðjuþÞ3

6
� if 5zþ � 30 Bufferlayer

1

j
ln zþ þ B if 30\zþ � 350 Log:layer

1

j
ln zþ þ B þ 2P

j
sin2ðp

2

z

d
Þ if 350\zþ � 1750 Outerlayer

8
>>>>>>><

>>>>>>>:

ð29Þ

Table 4 Particles parameters of comparison cases

Parameter Reference cases Schmeeckle [45] Comparison cases

Diameter (mm) 0.5 0.5

Density (kg/m3) 2650 2650

Coefficient of restitution 0.01 0.01

Poisson’s ratio 0.45 0.45

Young’s modulus (Pa) 0.5 9 106 0.5 9 106

Coefficient of friction 0.6 0.6
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In 29, u� is the friction velocity, zþ ¼ zu�

m , m is the kinematic viscosity, uþ ¼ U
u�, d is the

boundary layer thickness, j ¼ 0:41 is the von Kármán constant, P ¼ jA
2
and A and B are

experimental coefficients with A ¼ 2:5 for flat plates and B ¼ 5:0 [14]. In the outer-layer

we use the approximation d � 1750 m
u� [54].
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32. Kézdi Á (1974) Handbook of soil mechanics, vol One. Elsevier, Amsterdam

Environ Fluid Mech

123



33. Le Moigne A, Qin N (2006) LES with numerical dissipation for aircraft wake vortices. In: 44th AIAA
aerospace sciences meeting and exhibit, aerospace sciences meetings

34. Lee H, Ha MY, Balachandar S (2012) Work-based criterion for particle motion and implication for
turbulent bed-load transport. Phys Fluids 24(11):116604
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