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a b s t r a c t 

When laboratory-measured chemical reaction rates are used in simulations at the field-scale, the models 

typically overpredict the apparent reaction rates. The discrepancy is primarily due to poorer mixing of 

chemically distinct waters at the larger scale. As a result, realistic field-scale predictions require accu- 

rate simulation of the degree of mixing between fluids. The Lagrangian particle-tracking (PT) method is 

a now-standard way to simulate the transport of conservative or sorbing solutes. The method’s main ad- 

vantage is the absence of numerical dispersion (and its artificial mixing) when simulating advection. New 

algorithms allow particles of different species to interact in nonlinear (e.g., bimolecular) reactions. There- 

fore, the PT methods hold a promise of more accurate field-scale simulation of reactive transport because 

they eliminate the masking effects of spurious mixing due to advection errors inherent in grid-based 

methods. A hypothetical field-scale reaction scenario is constructed and run in PT and Eulerian (finite- 

volume/finite-difference) simulators. Grid-based advection schemes considered here include 1st- to 3rd- 

order spatially accurate total-variation-diminishing flux-limiting schemes, both of which are widely used 

in current transport/reaction codes. A homogeneous velocity field in which the Courant number is every- 

where unity, so that the chosen Eulerian methods incur no error when simulating advection, shows that 

both the Eulerian and PT methods can achieve convergence in the L 1 (integrated concentration) norm, 

but neither shows stricter pointwise convergence. In this specific case with a constant dispersion coeffi- 

cient and bimolecular reaction A + B → P, the correct total amount of product is 0.221 M A 0 , where M A 0 is 

the original mass of reactant A . When the Courant number drops, the grid-based simulations can show 

remarkable errors due to spurious over- and under-mixing. In a heterogeneous velocity field (keeping 

the same constant and isotropic dispersion), the PT simulations show an increased reaction total from 

0.221 M A 0 to 0.372 M A 0 due to fluid deformation, while the 1st-order Eulerian simulations using ≈ 10 6 cells 

(with a classical grid Peclet number �x / αL of 10) have total product of 0.53 M A 0 , or approximately twice 

as much additional reaction due to advection error. The 3rd-order TVD algorithm fares better, with total 

product of 0.394 M A 0 , or about 1.14 times the increased reaction total. A very strict requirement on grid 

Peclet numbers for Eulerian simulations will be required for realistic reactions because of their nonlinear 

nature. We analytically estimate the magnitude of the effect for the end-member cases of very fast and 

very slow reactions and show that in either case, the mass produced is proportional to 1 / 
√ 

Pe , where Pe is 

the Peclet number. Therefore, extra mass is produced according to 
√ 

D , where the dispersion includes any 

numerical dispersion error. We test two PT methods, one that kills particles upon reaction and another 

that decrements a particle’s mass. For the bimolecular reaction studied here, the computational demands 

of the particle-killing methods are much smaller than, and the particle-number-preserving algorithm are 

on par with, the fastest Eulerian methods. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Chemical reactions occur ubiquitously at a multitude of scales

n hydrologic and hydrogeologic environments. A common obser-

ation is that reactions progress at lower rates at larger scales.
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Imperfect mixing is an important contributor to the various pro-

cesses that contribute to the scaling of reaction rates ( Dentz et al.,

2011 ). Mixing is the fundamental process that brings reactants

into contact with one another and accurate simulations of mix-

ing are key to correctly predicting reactions ( De Simoni et al.,

20 05; 20 07; Gramling et al., 2002 ). Recent studies of mixing in

heterogeneous hydrologic systems demonstrate that complex rate

changes can emerge, and simple assumptions about upscaled rates

have been shown to lack realism ( Bolster et al., 2011b; Burchard

and Rennau, 2008; Chiogna et al., 2012; Le Borgne et al., 2010; Le

Borgne et al., 2011; Le Borgne et al., 2013 ). While most of these

studies have focused on mixing of conservative solutes (and/or

instantaneous reactions), the results have broad implications for

all mixing-driven and rate-limited reactions ( Chiogna et al., 2012;

De Simoni et al., 20 05; 20 07 ). Many numerical and experimental

studies have shown that governing equations or numerical mod-

els that do not adequately simulate mixing will also suffer error

in ultimately predicting chemical reactions ( de Anna et al., 2014;

2013; Ding et al., 2012; Gramling et al., 2002; Porta et al., 2016;

Sanchez-Vila et al., 2010 ). 

Many numerical approaches exist for modeling transport of

non-reactive solutes through heterogeneous porous media. A re-

cent paper ( Boso et al., 2013 ) focuses on five currently popular

schemes. Broadly speaking, these authors conclude that, because

of spurious numerical dispersion, the grid-based Eulerian schemes

overestimate dilution/mixing, while Lagrangian approaches, includ-

ing both random walk particle tracking (RWPT) and Smoothed

Particle Hydrodynamics (SPH) approaches, given a sufficiently re-

solved and smooth velocity field, are free of numerical dispersion.

The authors report that SPH is relatively computationally demand-

ing and does not readily handle anisotropic dispersion ( Avesani

et al., 2015 ). Furthermore, the discrete nature of RWPT can lead

to discontinuous concentrations, although a variety of novel algo-

rithms have evolved in recent years to remove such spurious fluc-

tuations ( Fernàndez-Garcia and Sanchez-Vila, 2011; Pedretti and

Fernàndez-Garcia, 2013 ). While the errors associated with these

methods for non-reactive solutes are well known, the complicat-

ing factor of nonlinear reactions (which may amplify these er-

rors), has been recognized but only qualitatively reported ( Cirpka

et al., 1999 ). In this paper, we take a more quantitative look at the

difference between several widely-used Eulerian (grid-based) and

Lagrangian reactive transport algorithms. For reactive transport,

grid-based methods – including finite-element, finite-volume, and

finite-difference – continue to largely be the norm, although there

have been significant recent advances in Lagrangian approaches

( Benson and Meerschaert, 2008; Bolster et al., 2016; Edery et al.,

20 09; Tartakovsky et al., 20 07; 20 08 ). Here we will focus on classi-

cal finite-volume/finite-difference Eulerian methods and the purely

Lagrangian PT advection-dispersion-reaction schemes. 

Regarding the widespread use of grid-based codes, we highlight

a few approaches and recent studies. More detailed descriptions

are given by Steefel et al. (2014) . While different in their under-

lying numerical method (finite-volume, finite-element, integrated

finite-difference, etc.), PFLOTRAN ( Lichtner et al., 2013 ), TOUGHRE-

ACT ( Xu et al., 2014 ), HYDROGEOCHEM ( Yeh et al., 2004 ), FEHM

( Zyvoloski, 1997 ) and NUFT ( Nitao, 20 0 0 ) use a 1 st -order spa-

tially accurate ( O(�x ) ) upwind advection scheme (although NUFT

allows an iterative scheme to improve accuracy ( Smolarkiewicz,

1984 )). The TOUGH and TOUGHREACT family of codes is routinely

used to simulate CO 2 injection and reaction (e.g., Oldenburg et al.,

2009 ; Audigane et al., 2007) . Hammond and Lichtner (2010) use

PFLOTRAN to simulate Uranium transport and speciation on the

several-kilometer scale. Navarre-Sitchler et al. (2013) use PFLO-

TRAN, and Keating et al. (2013) use FEHM to simulate the release

of metals and Uranium, respectively, from CO 2 -acidified aquifers.

None of these studies specify values for dispersivity or diffusivity,
o it is likely that the authors rely on numerical error, which is

 function of discretization and local velocity, to emulate real dis-

ersion. Regardless of which code is selected, the effects of real-

stic dispersion on reaction are often ignored and the fastest and

east accurate transport algorithm is used ( Johnson et al., 2004 ).

teefel (2009) and White and Oostrom (1997) recognize the impor-

ance of spurious dispersion and mixing (particularly transverse to

ow) on reactions and implement a 2 nd -order accurate variant of

eonard’s ( Datta-Gupta et al., 1991; Leonard, 1991 ) 3rd-order total-

ariation-diminishing (TVD) scheme. However, these codes use a

st-order upwind scheme when the simultaneous implicit reac-

ion and transport option is chosen. Finally, reaction algorithms

i.e., PHT3D ( Barry et al., 2002; Prommer et al., 2002 )) based

n transport in the MT3DMS code ( Zheng and Wang, 1999 ) may

hoose among several advection schemes including 1st and 3rd-

rder ( O(�x 3 ) ) TVD algorithms. One may also choose a mixed

agrangian/Eulerian scheme in which advection is performed by

articles and dispersion/reaction are performed on a grid after

apping particle masses back into gridded concentrations simi-

ar to the scheme by Tompson and Dougherty (1992) . It is notable

hat Prommer et al. (2002) compare the strictly Eulerian methods

o the hybrid Lagrangian/Eulerian advection/dispersion scheme in

T3DMS and find that this Lagrangian/Eulerian scheme is supe-

ior to the 3rd-order Eulerian scheme in MT3DMS. Those authors

ecommend the use of particle-tracking for advection as a gen-

ral rule, and a similar conclusion was reached by Herrera et al.

2010) with their SPH model. 

While more accurate (higher order) grid-based advection

chemes have been developed (see, e.g., ( Toro, 2009 )), including

he weighted essentially non-oscillatory (WENO) and advection-

iffusion-reaction (ADER) families of methods, they have not been

idely adopted in studies of aquifer geochemical reactions. One

ossible reason is the relatively complex nature of these methods,

hich reconstruct (interpolate) the profiles of the advected quan-

ities using n th-order polynomials. The polynomials can be ana-

ytically advected with (n + 1) th -order accuracy in 1- d , but the

onstruction process is somewhat complicated and a matter of

hoice. Moving the methods to multi-dimensions is also tricky, be-

ause maintaining high-order accuracy requires an algorithm that

ooks in all directions (not simply a combination of 1-D sweeps)

 LeVeque, 2002; LeVeque, 2005; Toro, 2009 ). The higher-order

olynomial reconstruction can be extended to arbitrary-order poly-

omial basis functions in finite-element implementations ( Ayuso

nd Marini, 2009; Cockburn and Shu, 1998; Lv and Ihme, 2014 )

ith analogous results to the WENO finite volume algorithms (e.g.,

uzmin, 2010) . A further complication to many higher-order meth-

ds is the potential for negative concentration oscillations and/or

ass balance errors when spurious negative masses are quashed.

nother method used to increase accuracy uses adaptive grid re-

nement to decrease grid size in areas of large concentration gra-

ients (e.g., ( Constantinescu et al., 2008; Mansell et al., 2002;

olfsberg and Freyberg, 1994 )). These and other effort s to improve

he efficiency, accuracy, and parallel implementation of Eulerian

ethods for advective flux continue (e.g., Ketcheson et al., 2013 ;

uang et al., 2015) . But the situation remains that 1st- through

rd- order accurate, directionally split, upstream weighting is the

revailing solution method in aquifer transport and reaction stud-

es; therefore, we investigate these schemes. 

One issue with the various Eulerian implementations in that ar-

ificial mixing is exacerbated by low Courant numbers (low veloc-

ties). As a result, the artificial dispersion in the transverse, low-

elocity direction can be as great as either the spurious or real

ispersion in the longitudinal direction. This spurious transverse

ixing is responsible for overestimating reactions for many bound-

ry value problems ( Cirpka et al., 1999 ). To address this problem,

irpka et al. (1999) developed a gridding-along-streamlines ap-
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roach. In 2- d the streamlines can be solved analytically, but in

- d , particles must be used to trace streamlines or streamtubes in

he areas of interest. The domain is re-discretized along stream-

ines so that advective fluxes do not cross cells in the transverse

irection. Solving dispersion and reaction is then either done on

he Eulerian grid, or the particles used to trace streamlines can be

reated via SPH kernels, and the problem is reduced to minimizing

rror in the longitudinal direction. In complex flows, however, ex-

ess longitudinal dispersion can deplete reactants that are rotated

nd placed into lateral contact, so depending on the configuration

f reactants, longitudinal errors in one location can influence re-

ction errors in another (see, e.g., de Barros et al. (2012) ; Engdahl

t al. (2014) ; Le Borgne et al. (2014) ). 

The various issues with purely Eulerian and mixed La-

rangian/Eulerian methods motivated the development of purely

agrangian transport and reaction algorithms. The Lagrangian

article-tracking (PT) method for simulating passive scalar trans-

ort has several features that have justified their continued devel-

pment and implementation ( Bechtold et al., 2011; Labolle et al.,

996; Salamon et al., 2006b ). These include (1) independence of

he simulation speed from the underlying velocity (and hydraulic

onductivity) discretization, (2) computationally simple represen-

ation of temporal ( Benson and Meerschaert, 2009; Salamon et al.,

006a ) and/or spatial nonlocality ( Zhang et al., 2006 ), and (3)

he lack of artificial mixing and negative concentrations. The PT

ethod was extended to simulate chemical reactions by calculat-

ng the physically-based probability of particle collision and subse-

uent conditional probability of reaction ( Benson and Meerschaert,

008; Bolster et al., 2016 ). In this framework, the chemical reac-

ions occur without an explicit calculation of concentrations, thus

emoving the need for interpolation onto an Eulerian grid or using

PH kernels for dispersion and reaction calculation (e.g. Tompson

nd Dougherty, 1992 ; Prommer, 2006 ; Avesani et al., 2015) , which

an reintroduce numerical dispersion and other interpolation er-

ors. Instead, the proximity of particles in the flow field dictate

he occurrence of reactions. This point highlights a potential ad-

antage of the PT method over Eulerian reactive transport mod-

ls because imperfect mixing and chemical spatial heterogeneity

re represented by particle numbers and proximities at all scales

 Paster et al., 2013; 2014 ), whereas perfect mixing is assumed at

ome scale in grid-based models. Furthermore, this PT reaction al-

orithm can be derived and applied to experimental data without

he need for empirical parameters such as effective reaction radii

r rates, providing a direct link to the physical mechanics of chem-

cal reactions ( Ding et al., 2012 ). 

One of the goals of the work on PT methods is to provide a

heoretical basis for upscaling effective reaction rates in hetero-

eneous flow fields within larger-scale Eulerian codes, based on

ubgrid fluid deformation metrics ( de Barros et al., 2012; Engdahl

t al., 2014 ). When an incompressible fluid moves through porous

edia, the velocity field influences reactions by deforming a hy-

othetical fluid parcel. Gradients in the velocity field will cause

tretching of the fluid parcel in one dimension which is accom-

anied by compression in others. Compression can bring fluids of

ifferent composition into closer proximity, facilitating mixing and

mmediate (or future) reactions. In 3-D, twisting flow and eddy-

ike whirls can significantly add to enhanced mixing by fluid de-

ormation ( Bakker and Hemker, 2004; Chiogna et al., 2014 ). Fluid

eformation enhances mixing, which cannot be undone ( Cirpka

t al., 2011; Werth et al., 2006 ). This mixing is poorly constrained

n many grid-based models, leading to incorrect effective reaction

ates. The PT reaction theory has been used to estimate the in-

reased reaction rates that may accompany any sort of fluid de-

ormation ( Engdahl et al., 2014 ). This work parallels similar work

hat examines Eulerian deformation metrics ( de Barros et al., 2012;

e Borgne et al., 2014 ) and the similarities may provide a connec-
ion between the Eulerian and Lagrangian methods for simulating

eformation-enhanced reactions. In other words, the PT methods

rovide a computationally simple way to inform larger upscaled

rids about the increased reaction rates that are engendered by

ubgrid fluid deformations. 

However, it remains to be shown the conditions under which

he PT and Eulerian methods converge to the same solutions for a

iven boundary value problem (BVP). Because mixing-driven reac-

ions can be highly non-linear, the simulated mass of the products

nd reactants may be highly sensitive to any transport errors. In

his work we construct a few simple problems that isolate (and/or

liminate) potential sources of error to investigate the supposed

imilarity of the methods used to simulate a basic set of n coupled

dvection-diffusion-reaction equations (ADRE) 

∂C i 
∂t 

= −∇ · ( v C i − D ∇C i ) + R (C 1 , C 2 , . . . , C n ) ; i = 1 , . . . , n, (1)

here C i is the concentration of species i , v is the local mean ve-

ocity vector, D is a dispersion tensor, and R () is a reaction function

f all n species. We investigate simulation of dispersion using ei-

her a constant D i j = D m 

δi j or a velocity-dependent D i j = (| v | αT +
 m 

) δi j + (αL − αT ) v i v j / | v | , where D m 

is a diffusion-like constant,

L ≥ αT are longitudinal and transverse dispersivities, and δij is

he Kronecker delta. The reaction rate is typically dictated by the

aw of mass action, and non-equilibrium rates must often be esti-

ated empirically ( Apello and Postma, 2005 ). 

In general terms, any grid-based approximation of (1) will in-

ur several types of error. Foremost is the difficulty in represent-

ng a sharp interface with points spaced some distance away from

ach other in the hyperbolic (advection) portion, along with lesser

mounts in the parabolic (dispersive) portion. Additional error in

he reaction term arises by representing the various (subgrid) con-

entration values for each species in a cell by single values. Less

bvious are errors incurred in the approximation of the velocity

ectors ( Benson et al., 1998 ), and error from sequentially solving

everal components of the equation by operator splitting ( Toro,

009 ). In any realistic heterogeneous flow field simulation, the var-

ous errors will have different magnitudes in different regions of

he flow domain because of different velocity magnitudes, orien-

ations relative to a grid, and different concentration, velocity, and

ispersion coefficient gradient magnitudes and orientations. 

On the other hand, the discrete and potentially stochastic na-

ure of the PT simulations means that simulation of a determinis-

ic BVP can be numerically taxing, as an ensemble of simulations is

ften needed to ascertain statistics of the solutions. Moreover, the

eactions have been shown to depend on the number of particles

sed: we specify only the positions of particles, so that the initial

oncentration is approximated by a sum of Dirac delta functions.

he initial concentration can only be everywhere equal when the

umber of particles goes to infinity. Conversely, smaller numbers

f particles represent greater heterogeneity in the initial concen-

ration field (in this case, greater correlation length of concentra-

ion fluctuations ( Paster et al., 2014 )). This heterogeneity may in-

rease over the duration of the simulation. Finally, it is currently

ecessary to solve the transport and reactions sequentially, so that

rror is incurred in the operator splitting. Therefore, it is unclear

f the PT simulations will converge to a “correct” solution for a re-

listic problem, or if a small number of realizations is sufficiently

epresentative of the ensemble mean. 

Our goal is to compare various aspects of Eulerian and PT sim-

lations of (1) . To do so we set up a series of simulations with

ncreasing complexity. The first problem considered here is sim-

le 1- d flow aligned along an x -axis in a 2- d domain. Diffusion is

patially uniform and isotropic. Reaction is limited to a simple (al-

eit non-linear) irreversible bimolecular system A + B → P, as this

ystem has been widely used to analyze reactive transport behav-
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ior and has been shown to be a fundamental building block of

more complex reaction chains ( Gillespie, 1977; 20 0 0 ). The reaction

term in Eq. (1) is R (C A , C B ) = −k f C A C B . For ease of visualization, the

product P is made immobile. In uniform flow, all of the advection

algorithms used here can be made free of error, so we can isolate

diffusion/reaction errors. Following this comparison of PT and Eu-

lerian convergence, a more complex heterogeneous velocity field is

used to check the magnitude of errors introduced by Eulerian ap-

proximations of the heterogeneous advective fluxes. 

2. Overview of error in Eulerian solutions 

A common approach to solving the ADRE (1) on a grid is to

use operator splitting and sequentially solve the advection, diffu-

sion, and reaction terms. The many algorithms (e.g., Sweby, 1984 ;

Leonard, 1991; LeVeque, 2002 ; Bokanowski and Zidani, 2007) for

the hyperbolic advection portion are well-known to produce vary-

ing degrees of numerical dispersion and/or oscillation and over-

shoot due to the truncation of higher-order space and time deriva-

tives in the representation of the variability of the concentration.

We investigate the family of TVD models (including the simplest

and best known first-difference upwind weighted scheme) with

a forward Euler time approximation on uniform space-time grids

of ( �x, �t ). We choose these algorithms because for a Courant

number defined in any direction i by λ = v i �t/ �x i of unity, the

advection term is known to be free of numerical dispersion. The

Courant number is a measure of how far solute is allowed to tra-

verse any grid block, and most grid-based solutions require λ ≤ 1.

In a heterogeneous flow domain, the Courant number is never uni-

formly unity, and higher-order algorithms that use Courant-based

flux limiters are more accurate; however, numerical error is never

eliminated entirely from the solution, and these algorithms require

more computation time. The benefit is a reduction in the number

of nodes required to get “equivalent” solutions to the lower-order

algorithms. As well, many other schemes can be adopted to man-

age the error and computational cost of Eulerian methods includ-

ing adaptive refinement of grids where necessary (e.g., ( Henshaw

and Schwendeman, 2003 )) or more accurate timestep interpolation

(e.g., ( Tambue et al., 2010 )). However, there is no consensus on the

most appropriate algorithm, and solutions based on 1st-, 2nd-, and

3rd-order accuracy in space on uniform grids are common. 

Generally speaking, the discretized diffusion operator is thought

to be sufficiently error-free, relative to any advective error. On the

other hand, application of the law of mass action for the reaction

term assumes perfect mixing within any Eulerian block. The ef-

fect of subgrid concentration perturbations are not resolved by the

numerical method. Recent studies have focused on this effect and

shown that incomplete mixing effects can be strong, leading to sig-

nificantly altered reaction rates ( Benson and Meerschaert, 2008;

Chiogna and Bellin, 2013; Paster et al., 2013; 2014; Porta et al.,

2016 ) compared to those predicted by the assumption of perfect

mixing. The non-linear nature of the reactions can make the sim-

ple act of concentration averaging highly variable (e.g., Battiato

and Tartakovsky, 2011 ; Battiato et al., 2009 ; Schwede et al., 2008) .

Newer formulations of the reaction term can account for subgrid

concentration variability by assuming both a distribution of con-

centration and a subgrid mixing rate, but this method requires cal-

ibration with measured reactions at the approprtiate scale (e.g.,

( Chiogna and Bellin, 2013 )). In short, the “spikier” the unknown

subgrid concentration heterogeneity and the more nonlinear the

reaction, the greater the averaging error that will occur. 

3. Overview of error in Lagrangian solutions 

In the PT simulations at hand, the advection of individual par-

ticles can be made essentially free from error by using Pollock’s
lgorithm ( Pollock, 1988 ). For the explicit Euler approximation we

se here, the advection error is negligible as long as the veloc-

ty field is fairly smooth ( Benson et al., 1998 ). The diffusion op-

rator can be made arbitrarily accurate in the mean by using mo-

ions that solve the correct Fokker-Planck equation ( Bechtold et al.,

011; Labolle et al., 1996; Salamon et al., 2006b ). For example,

f a spatially heterogeneous dispersion equation is being solved,

hen the motions are generated according to an Itô implementa-

ion of the nonlinear Langevin equation for Gaussian random walks

( Labolle et al., 1996; Salamon et al., 2006b ), and see Appendix C ).

f post-simulation reconstruction of the concentration field is re-

uired, errors arise with variance related to the particle numbers,

inning size and smoothing kernels used (e.g., Chakraborty et al.,

009 ; Pedretti and Fernàndez-Garcia, 2013) . A similar problem to

he “subgrid” concentration fluctuation is present for PT methods,

n that a sufficient number of particles must be used to resolve the

mall-scale correlation structure of the concentration fields ( Ding

t al., 2012 ). 

There are several methods for calculating the chemical reactions

mong the particles. Many are based on an on-off (binary) type

f reaction calculation based on the hard-shell particle “radius”

odel ( Doi, 1976; von Smoluchowski, 1917 ). If two particles are

ocated within this radius, then a reaction takes place ( Edery et al.,

009; Hansen et al., 2014 ). Others are based on a calculation of

he probability that two particles will be collocated based on dis-

ersion motion ( Benson and Meerschaert, 2008; van Zon and ten

olde, 2005 ). This method is readily extended to spatially nonlocal

ispersion (e.g., Bolster et al., 2012) . The co-location probability is

hen multiplied by the conditional probability that two co-located

articles will react. This latter probability is a simple statement of

he thermodynamic reaction rate ( Gillespie, 20 0 0; Isaacson, 2013 )

o the particles are not forced to react (i.e., slow reactions may re-

uire multiple co-locations, while fast ones may require very few

efore a reaction actually occurs). In these models, no lattice is

sed, so the separations are real-valued and the probability of col-

ision is not binary. This approach can be made arbitrarily accu-

ate without the need for empirical parameters ( Paster et al., 2014 ).

olster et al. (2016) extend the algorithm by replacing the prob-

bility of conversion with a particle mass-fraction loss. Their al-

orithm gains resolution of low concentrations but has not been

igorously tested for convergence to the original particle birth-

eath algorithm, so we partially address this issue here. In particu-

ar, the original bimolecular algorithm of Benson and Meerschaert

2008) converts entire reactant A and B particles into entire prod-

ct P particles, so that number of A + P particles remains constant

n these simulations. However, the lowest possible resolved con-

entrations are O(1 /N A ) , where N A is the original number of A par-

icles. ( Bolster et al., 2016 ) convert portions of each particle’s mass

uring a reaction, so that low concentrations are infinitely resolv-

ble, but: (1) numerically, a nearby P particle must be located, or

2) the product mass must be mapped to a fixed grid of concen-

ration, given some binning procedure. Here we choose the latter

ith product mass mapped to the nearest square grid. 

. Convergence of the diffusion/reaction operations 

Because we later investigate the solutions in heterogeneous

- d velocity fields, we first choose identical 2- d solutions with ho-

ogeneous velocity to isolate the diffusion/reaction portion of the

DRE. A series of simulations was constructed using geologically-

elevant parameters for transport and interaction of two fluids in

 10 0 0 m × 10 0 0 m aquifer domain. Two fluids are placed next

o each other in 15.6 m strips, separated by an initially sharp

nterface ( Fig. 1 a). The aquifer has a mean hydraulic conductivity

 = 1 m/d, a uniform head gradient in the x -direction of 0.01, and

 porosity of 0.3. The fluid velocity is uniform at 1/30 m/d aligned
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Fig. 1. (a) Aquifer domain showing location of initial reactants A (red rectangle) and 

B (blue rectangle) for both PT and Eulerian simulations. Also shown are the single- 

realization locations of individual particles of product P (black) and reactants A (red) 

and B (blue) for initial particle numbers N A (t = 0) = N B (t = 0) = 5 , 0 0 0 . (b) Base-10 

logarithm of binned product concentrations (colorbar shows log 10 ( Molar )) from an 

ensemble of 10 particle-number preserving ( Bolster et al., 2016 ) simulations, using 

bin size of �x = �y = 4 m. The colorbar is scaled to match later plots – it does 

not show all of the low-concentration detail. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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ith the x -axis. The dispersion is made uniform and isotropic at

.001 m 

2 /d, representing an isotropic local dispersivity of 0.03 m.

t is made homogeneous to allow comparisons with 1- d analytic

odels ( Appendix B ). The fluids are placed at mean concentrations

f 1 M (molar), and the reaction follows the law of mass action

 (C A , C B ) = −k f C A C B with rate coefficient k f = 0 . 01 (M d) −1 . We as-

ume unit activity coefficients for simplicity. This rate was chosen

o that a significant fraction of the reactants (on the order of 20%)

ill be consumed after 10,0 0 0 days of transport in the simplest

ase. Approximate measures of the reaction versus transport rates

re given by either the advective or diffusive Damköhler numbers

a v = k f C 0 / ( v /L ) and Da D = k f C 0 / (D/L 2 ) , where L is a characteris-

ic scale of transport. For local-scale Da , we choose L ≈ 1m, so for

he uniform velocity case, we have Da v ≈ 0.3 and Da D ≈ 10. Nei-

her of these numbers point to particularly slow or fast reactions

elative to transport. 
To compare the grid-based and PT codes, we should choose

imilar initial conditions (ICs). It has been shown that the PT codes

nherently represent spatial variability in the initial condition and

lso as the particles diffuse and react: the spatial autocovariance

ecreases with increased particle number. Paster et al. (2014) show

hat, for the Dirac-delta function particles that we use here, the

nitial particle number N 0 is related to the auto-covariance struc-

ure of the initial concentrations by N 0 = C 2 0 A strip / (σ
2 

C l 
d ) , where

 strip is the area over which the particles are placed, and σ 2 
C 

l d 

s the d -dimensional integral of the covariance function (i.e., the

oncentration variance times the d -dimensional correlation length).

he concentration IC becomes smoother as the number of parti-

les gets larger. Therefore, for the grid-based codes we choose ini-

ial concentrations that are deterministically uniform. We also uni-

ormly and randomly distribute the particles in the same size strips

s in the Eulerian codes ( Fig. 1 ) and vary the number of particles. 

.1. L 1 convergence 

The Eulerian code was run at different discretizations while

olding the Courant number λ = 1 . The first check of convergence

s the integrated mass of product after 10,0 0 0 days (i.e., the spa-

ial L 1 convergence). The Eulerian solutions appear to converge in

his sense at �x ≤ 1 m and a total reaction completion of 22.08%

 Fig. 2 ). Because of the 2- d nature of the problem and a low-to-

ntermediate value of Da v ≈ 0.3, we only have an approximate an-

lytic solution to this problem (B.1) , so the check of convergence is

elative stability of the solution at 22.08%. 

Because the initial particle locations and the dispersion motions

oth have random components, the PT simulations are stochas-

ic in nature: each solution will give slightly different results.

ere we show the mean and standard deviations of the integrated

ass of product for an ensemble of 20 particle-killing simulations

 Fig. 2 ). The non-deterministic nature implies that the initial condi-

ions have some inherent randomness that should be constructed

o represent the actual physical heterogeneity ( Ding et al., 2012 ).

he number of particles encodes the spatial autocorrelation of ini-

ial concentrations, and simulations with different number of ini-

ial particles are supposed to give different results. Therefore, our

heck of convergence follows two tacks: varying the number of

articles and the time-step size. As the former becomes larger, the

ffective concentration correlation length becomes a smaller frac-

ion of the size of the specified initial condition structure (i.e., a

etter-mixed I.C.) and should mimic the homogeneous determinis-

ic initial condition and solution given by the Eulerian simulations.

ndeed, increasing the number of particles shows this kind of con-

ergence to a reaction completion of 22.10% in the particle-killing

imulations ( Fig. 2 ). The inter-simulation variability also decreases

hen the particle density increases, as expected. It appears that

he converged Eulerian (with �x = 0 . 98 m) and Lagrangian solu-

ions are very similar when the initial number of A and B particles

s 20,0 0 0 (22.05% and 21.94%, respectively). 

We also checked the solutions when the timestep size was var-

ed, and also checked the newer algorithm ( Bolster et al., 2016 )

hat does not kill reactant particles (instead, the particle masses

re allowed to decrease). These simulations are more accurate at

ower concentrations with the tradeoff of longer simulation times.

e checked the simulations for initial particle numbers of 10,0 0 0

t different �t over a very large range. The means of the particle-

illing and particle-preserving algorithms are not statistically sig-

ificantly different at the particle number and timestep resolutions

uplicated here ( Fig. 2 inset). 

As explained by Paster et al. (2014) (and reiterated by Hansen

t al. (2014) ), there is a potential for multiple particle collisions

uring a single timestep that may be under-estimated by large �t .

he neglect of the diminishing survival probability should tend to



20 D.A. Benson et al. / Advances in Water Resources 99 (2017) 15–37 

Fig. 2. Degree of reaction completion within Eulerian (solid squares) and PT simulations (whiskers denoting ± 1 σ ). Red and blue denote �t = 10 and 1 d, respectively. 

The top x-axis represents initial number of both A and B particles; the bottom x-axis is the number of finite-difference grids for 1,0 0 0 m domain (i.e., �x = 1 , 0 0 0 /N g m). 

All solutions appear to converge to a reaction completion of 22.1%. Based on similarity, convergence, and speed of solution, the “base-cases” of 40,0 0 0 particles and 1024 

finite-difference grids (both highlighted) are chosen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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over-estimate reactions for too large a �t . On the other hand, too

small a timestep reduces the area “probed” by a particle and re-

duces the number of potential reaction partners, until, as �t →
0, only the nearest neighbors are allowed to react. So too small

a timestep should tend to underestimate reaction rates. The cor-

rect �t lies between a lower value dictated by the average particle

density and an upper number dictated by several stability crite-

ria. We may bracket the timestep size by the ratio of the effective

search radius for a particle pair undergoing diffusion to average

particle spacing 0 . 25 < 2 
√ 

8 D m 

�t / �x < 1 . 5 ( Paster et al., 2014 ).

The factor 8 in the square root differs from pure diffusion and

comes from the convolution of two Gaussians representing the co-

location probability ( Appendix C ). The initial condition area A strip 

over the particle number of one species N A ( t ) gives a first-order

approximation of inter-particle spacing. In the simulations at hand,

D m 

= 0 . 001 m 

2 /d, and average inter-particle distance A strip /N A (t =
0) ≈ 0 . 78 m, so 1.2 d < �t < 340 d . Varying the timestep over a

wide range shows that the solutions have an inflection point be-

tween too little and too much reaction at the point surrounding

the smaller of the two values ( Fig. 2 inset). From approximately �t

≤ 10, the mean product concentrations are not significantly differ-

ent, so in general we recommend setting �t < 0.16 �x 2 / D m 

. 

4.2. Pointwise (L ∞ ) convergence 

Because the Eulerian simulations are deterministic, we may also

look at the shapes of the product distributions to assess qualita-

tively the pointwise convergence ( Fig. 3 ). The peak concentrations

in the 1st-order upwind simulations continue to rise significantly
ver the range of discretizations tested (the finest discretization

odel comprised over 4 million cells), so that pointwise conver-

ence was not seen in these simulations. Similar, but lower mag-

itude, issues were seen in simulations using 2nd- and 3rd-order

VD simulations ( Appendix A ). If maximum concentrations are a

oncern to the user, a finer discretization will be required than one

erived (later in this paper) for accuracy in the L 1 norm. 

In the PT simulations, the concentrations are only created by

inning the particles, hence the concentrations will be functions

f bin size and any kernels used to model the spatial influence of

articles (see, e.g., Fig. 1 b). In an effort to compare to the Eule-

ian results, the mean concentrations along the centerline of the

roduct plume for ensembles of simulations are compared ( Fig. 4 ).

he concentrations are simple sums of particle masses in square

ells of size �x = 4 m. A similar effect in the PT relative to the

ulerian simulations is found when the number of initial parti-

les increases: more particles tend to resolve higher peak mean

oncentrations. The effect is not enhanced a great deal by the

hoice of bin size; however, bigger bins will tend to smooth out the

igher peak concentrations ( Fig. 4 ). Furthermore, those PT simula-

ions that have total masses of product similar to the Eulerian sim-

lations (for example, 20,0 0 0 particles corresponding to �x = 0 . 98

) also have similar mean peak concentrations. It should be noted

hat there is considerable variability in the binned product concen-

rations from the particle-killing algorithm along the plume direc-

ion. For example, at the peak location in the 50,0 0 0 particle, 256

in simulation, the product concentrations had a standard devia-

ion of approximately 0.0065 M (compared to the mean concen-

ration of 0.037 M). 
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Fig. 3. Product concentrations along horizontal slices of the aquifer for all upstream Eulerian schemes (because all have zero numerical dispersion for Courant number λ = 1 ) 

using different discretizations. Any deviations are due to different mixing at different discretizations. 

Fig. 4. Averaged product concentrations from particle-killing PT simulations along horizontal slices of the aquifer using different number of initial particles N A (0) and bin 

sizes (indicated by number of bins in x -direction). The vertical whisker bar denotes ± 1 σ for the 50,0 0 0 particle peak concentration. 
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. Eulerian velocity error 

The spatial approximation using 1st-order upwind advection

cheme used here has a known numerical dispersion of magni-

ude | v | �x 
2 (1 − λ) ( LeVeque, 1992 ). A similar magnitude error is

ncurred by the forward Euler time-stepping, so the total error is
f order | v | �x (1 − λ) . Here we investigate (1) the combined ef-

ect of changing both �x and λ in a simple homogeneous velocity

eld and (2) the effect of spatially variable λ in a more realistic

eterogeneous field. We also implement a 3rd-order TVD and the

article-number-preserving Lagrangian algorithms on the same ve-

ocity fields. 
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Fig. 5. Amount of product produced in Eulerian simulations at 10,0 0 0 days by the 1st-order upwind (filled symbols) and 3rd-order TVD schemes (open symbols) with 

different space and time discretizations. Lines added to aid visualization. 

Fig. 6. Maximum product concentration in Eulerian simulations at 10,0 0 0 days by the 1st-order upwind (filled symbols, solid connecting lines) and 3rd-order TVD schemes 

(open symbols, dashed connecting lines) with different space and time discretizations. Lines added to aid visualization. 
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Fig. 7. Anisotropic, or matrix-scaling fractional Brownian motion K field. Color bar represents values of ln ( K ) in m/d. 

Fig. 8. Pure advection of a line of 500 particles (black dots) initially placed at the location of reactant interface x = 256 m. The blue line connects initially adjacent particles 

that were placed 1 m apart. The background colors are the logarithm of velocity magnitudes, with higher velocities represented by warmer colors. The colorbar shows the 

velocities converted to Courant ( λ) and grid Peclet ( P g ) numbers. Highlighted areas show regions of shear, compression, and dilation relative to local flow direction. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Base-10 logarithms of simulated product concentrations at 10,0 0 0 days using constant D = 0 . 001 m 

2 /d: (a) (Eulerian) first-order upwind, (b) (Eulerian) third-order 

TVD, (c) Ensemble average of particle-preserving PT, and (d) Single realization from (c). Colorbars denotes Molar product concentration. TVD simulations have large areas of 

negative concentrations, so plots only show concentrations above 10 −20 M. 
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5.1. Homogeneous velocity 

For the homogeneous velocity case, the Courant number λ was

varied between 0.1 and unity for three levels of discretization ( �x

= 0.49, 0.98, and 1.95). The reacted masses at 10,0 0 0 days in-

creased, in some cases dramatically, at all λ < 1 ( Fig. 5 ) due to

spurious numerical dispersion and erroneous mixing, particularly

in the 1st-order upwind algorithm. The amount of product doubled

or tripled at the lowest Courant numbers and highest Peclet num-

bers. In Appendix B we demonstrate semi-analytically how changes

in dispersion coefficient might affect the total mass of product pro-

duced. The total mass of product produced, for either fast or slow

bimolecular reactions, scales approximately as 
√ 

D , meaning that

any errors in D , arising from numerical dispersion, can result in

significantly larger masses of product. For 1st-order, explicit for-

ward Euler solutions, the numerical dispersion has a maximum on

the order | v | �x so the grid Peclet number ( P g = v max �x/D ) is a

measure of the ratio of spurious to real dispersion. For velocity-

dependent dispersion this reduces to P g ≈ �x / αL . A value of P g = 2

means that real and spurious dispersion are of the same order, and

excess product on the order of 
√ 

2 times the correct amount is pro-

duced. In general, the maximum amount of error is approximately√ 

1 + P g / 2 − 1 , so that obtaining 5% mass error from a 1st-order

accurate algorithm would require P g ≈ 0.2. 

The 3rd-order TVD scheme appears to give reasonable reaction

totals (in the integrated L 1 sense) over a large range of λ for �x ≤
0.5 m , which corresponds to a classical �x / αL ≤ 16. Note that for

the particle tracking schemes the results with advection are iden-

c  
ical to those without advection presented in the previous section

ue to the principle of Galilean invariance (i.e., a uniform advec-

ion merely shifts all particle locations, but does not change their

elative distance from one another, which is all that is required for

eaction). 

The peak concentrations in these Eulerian simulations were

lso tracked, and at all discretizations there were substantial er-

ors introduced by the advection approximations ( Fig. 6 ). Although

ot shown here, the 3rd-order advection algorithm converged to

ess than 5% error in this L ∞ sense at about �x = 0 . 1 m, while at

his smallest discretization (representing P g = 4 ) the 1st-order had

eak concentrations approximately 50% too high. Also noticeable

n these plots is the error due to the diffusion and reaction oper-

tors at a Courant number of unity. These numbers correspond to

he different peak concentrations shown in Fig. 3 . 

.2. Spatially variable velocity 

A random fractal K field with anisotropic-, or operator-scaling,

as generated using Fourier filter methods ( Benson et al., 2013 ).

perator-scaling in this context means that transects of the K field

re fractional Brownian motions with different Hurst coefficients in

he x - and y -directions of 0.44 and 0.36 (with uniform weighting

n the axes) so that there is greater correlation of the underly-

ng Gaussian increments in the x -direction ( Fig. 7 ). The geometric

ean K is 1 m/d to match the uniform velocity field in the pre-

ious section. The porosity is set to 0.3 and the mean hydraulic

radient to 0.01. The K and steady-state velocity fields were cal-

ulated using a block-centered scheme at a uniform discretization



D.A. Benson et al. / Advances in Water Resources 99 (2017) 15–37 25 

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

10

9

8

7

6

5

4

3

2

1

x-coordinate (m)

y-
co

or
di

na
te

 (m
)

log10(P)
0

Fig. 10. Overlay of advection-only particle traces ( Fig. 8 ) above base-10 logarithms of simulated product concentrations at 10,0 0 0 days from an ensemble average of particle- 

preserving PT (reproduced from Fig. 9 d). Higher reaction rates are consistently found in places where the fluid deformation shows folding and compression lateral to mean 

flow. Colorbars denotes Molar product concentration. 
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f �x = �y = 0 . 98 m. To illustrate the general features of the ve-

ocity field, a line of uniformly-spaced inert particles was placed

long a transect at the initial A / B reactant interface at x = 256 m

 Fig. 8 ) and tracked at 10 0 0-day intervals (with a blue line joining

nitially adjacent particles). The lines and particles allow a rough

stimation of the local components of fluid deformation, including

hear and dilation/compression transverse to the mean flow direc-

ion. Because of the divergence-free (incompressible) flow, any di-

ation in the flow direction must be accompanied by compression

n the orthogonal direction and vice-versa ( de Barros et al., 2012;

ngdahl et al., 2014 ). 

.2.1. Isotropic, spatially constant dispersion 

Fluid deformation, including shear, can put reactants into closer

roximity and increase reaction rates ( Engdahl et al., 2014 ), as

erified visually by the locations of generated product particles

mapped to log 10 (concentration) on a grid of 0.98 × 0.98 m cells)

n a 40,0 0 0-particle simulation ( Fig. 9 d). The regions of high de-

ormation, as indicated by stretching and/or shearing flowlines, are

xpected to be regions of extremely high or hyper-mixing ( de Bar-

os et al., 2012; Bolster et al., 2011a ). Indeed they tend to be heav-

ly populated with product particles ( Fig. 9 d). The total amount

f product, i.e., the completion of the reaction after 10,0 0 0 days,

s 37.4% in this simulation, or roughly 70% greater than the total

mount of product (22.1%) in the homogeneous domain, all other

actors being equal. This increase is due entirely to fluid deforma-

ion. An ensemble mean of 10 simulations shows the same fea-

ures ( Fig. 9 c), demonstrating that the strong zonation of reaction
ntensity is not an artifact of random variations between realiza-

ions ( Fig. 10 ). 

The 3rd-order TVD solutions have unphysical negative con-

entrations spread throughout the lower-concentration regions, so

nly concentrations greater than 10 −20 are shown here. A 1st-order

ulerian simulation with the same velocity field and parameters

ith �x = �y = 0 . 98 m (or a domain of 1024 × 1024 ≈ 10 6 nodes)

ives a total amount of product of 53%, or roughly double the in-

rease seen in the PT simulations going from homogeneous to the

eterogeneous velocity fields ( Fig. 9 a). This overestimation is con-

istent with the overestimations by the Eulerian simulators in a

omogeneous domain for smaller Courant numbers ( Fig. 5 ). Calcu-

ated velocities in the heterogeneous domain spanned over three

rders-of-magnitude; therefore, the local Courant numbers go from

ssentially zero to unity across the entire domain ( Fig. 8 ). The

umerical dispersion in both the longitudinal and transverse di-

ections (because flow is seldom exactly parallel to the x -axis in

he heterogeneous flow field) leads to substantial overestimation of

he spatial extent of reaction in both high and low velocity zones

 Fig. 9 a). The 1st-order Eulerian method does not resolve the fine

threading” of reaction that takes place in areas of high fluid de- 

ormation. 

The 3rd-order TVD method is visually better at restricting spu-

ious lateral dispersion and preserving structure within the plume

 Fig. 9 b), and has an integrated product concentration closer to the

T simulations (at 39.4%). For this algorithm, another level of grid

efinement (at a cost of 8 times the computation time, addressed

n a subsequent section) would be necessary for the simulation to

dequately match the PT results. For the first-order algorithm, the
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Fig. 11. Base-10 logarithms of simulated product concentrations at 10,0 0 0 days using velocity-dependent D with αL = 0 . 1 m : (a) (Eulerian) first-order upwind, (b) (Eulerian) 

third-order TVD, (c) Ensemble average of particle-preserving PT, and (d) Single realization from (c). Colorbars denotes Molar product concentration. TVD simulation has 

negative concentrations, so plots only show concentrations above 10 −20 M. 
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values of �x and �t would need to be reduced to bring the grid

Peclet numbers substantially below unity to reduce numerical mix-

ing to less than the real mixing (see Appendix B ). In the example

used here, on the order of 1 to 100 billion cells would be required,

which is far outside the computational resources available to us. 

5.2.2. Anisotropic, velocity-dependent dispersion 

All of the transport and reaction algorithms are straightfor-

ward to extend to velocity-dependent and anisotropic dispersion

( Appendix C , ( Salamon et al., 2006b; Zheng and Wang, 1999 )). The

dispersion coefficient (and local dispersivity) at this scale repre-

sent subgrid velocities that are not resolved and are a function of

flow field variability. Because we are not following the assump-

tions of low velocity variability and finite and fixed correlation

lengths, there are no analytic expressions for effective block dis-

persivity ( de Barros and Dentz, 2016 ). Instead we use a common

assumption that sub-grid dispersion is some fraction of the size of

the block (the size at which velocity is resolved). Here we chose
L = 0 . 1�x, where �x was held at 0.98 m based on the resolu-

ion of the velocities. The transverse dispersivity is set to one-tenth

he longitudinal. The timestep size was chosen to maintain λ = 1

t the highest velocity (which is constant for the Eulerian simula-

ions but may change based on the highest velocity experienced at

ny time by the particles). 

Due to the lower values of dispersion in low-velocity ar-

as (compared to the previous example with D = 0 . 001 m 

2 

d 
I), the

article-number-preserving PT simulations have lower integrated

eaction product of 29.4% relative to the 37.4% in the isotropic D

ase ( Fig. 11 c and d). 

For the 1st-order upwind simulations, the common block-size

ased dispersivity choice gives P g = 10 . This simulation is very sim-

lar, both visually and quantitatively, to the previous isotropic D

imulation (compare Figs. 9 a and 11 a). Each 1st-order simulation

ndicates reaction completion at about 50% – neither can resolve

he subtle differences in the formulation of dispersion. The mix-

ng is dominated by error. The 3rd-order simulation over-estimates
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Fig. 12. Vertical cross sections A —A ′ (see Fig. 11 ) of product concentrations: (a) Eu- 

lerian simulations, and (b) PT simulations—single and ensemble mean of 10 realiza- 

tions, each with 40,0 0 0 particles. 
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s  
he reactions by several percent (at 33.8%), consistent with the

sotropic dispersion and homogeneous velocity cases. However, for

oth Eulerian simulations, spurious over-mixing in the source area,

ombined with excess transverse dispersion, depletes the reactants

ar downstream so that the peak concentrations modeled at the

xit area of the aquifer are roughly 3 to 10 times lower than in the

T simulations (compare exit zones in Fig. 11 a–d). 

A clear feature of the more accurate PT and 3rd-order simula-

ions is the high degree of variability and structure of the product

istribution in space ( Fig. 11 b–d). There is more structure in this

imulation than the isotropic D case because of the lower values of

ransverse dispersion, which limits mixing where the reactant in-

erface has been sheared or folded. A comparison of cross-sections

f the product concentrations in the middle of the plume ( Fig. 12 a

nd b) shows that the ensemble mean PT and 3rd-order simula-

ions are in agreement, but that a single realization, which repre-

ents a potential pathway of an initially heterogeneous plume, has

ubstantially greater variability. Even at a mean transport distance

f ≈ 250, some product concentrations are 100 times different

ithin ≈ 5 m of each other. The peaks and valleys are co-located

n the single realization and ensemble plumes, but the combina-

ion of fluid deformation and perturbed concentrations in the ini-

ial conditions are amplified by the nonlinear reaction. The first-
rder Eulerian simulation is a poor indicator of reaction hetero-

eneity. 

.3. Computation time 

For a consistent means of comparing computation times, all of

he codes were implemented in Matlab on a laptop machine with

 2.7 GHz Intel Core i7 processor and 8GB of 1333 MHz DDR3

AM (and OSX 10.9.5 operating system). As long as there is enough

AM space, a table of execution times ( Fig. 1 ) verifies that the Eu-

erian codes require a minimum time T ≈ K 1 �x d+1 + K 2 , where T

s execution time [s], d is the number of dimensions ( d = 2 here),

 1 is a constant that depends on the number of executions per

ode, and K 2 [s] is a small overhead term that accounts for one-

ime processes such as initialization of arrays. For the homoge-

eous velocity case, the maximum Courant number of unity forces

 minimum execution time with K 1 ≈ 175 and 285 for 1st- and

rd-order algorithms. The latter takes about 60% longer to run, all

hings held constant. The PT simulations are somewhat harder to

uantify in the homogeneous velocity case, because there is no

ourant number stability restriction. The particle-killing algorithm

s more efficient in general, and for a range of values of �t , it

s clear that the computation time increases linearly with 1/ �t

 Fig. 13 ). The particle-killing algortithm also scales approximately

inearly with the initial number of particles ( N ), while the particle-

umber-preserving algorithm scales about linearly with small N

ut appears to scale with the (constant-in-time) number of par-

icles to the 1.2 to 1.6th power for larger numbers ( Fig. 13 ). This is

ue to the larger number of particles within some constant search

adius given as a multiple of 
√ 

8 D �t . For the same reason, for large

article numbers, decreasing �t does not cause a linear slowdown

f the particle-preserving method (see the converging computation

imes for �t = 50 and 10 s in Fig. 13 ). In other words, because the

earch becomes more efficient when the search radius decreases,

he cost is lessened when the timestep is made smaller. Compar-

ng the PT methods to Eulerian, it is clear that single realizations

f either PT method takes less time than the stable Eulerian meth-

ds. Also, achieving better results in the Eulerian methods by grid

efinement is much more taxing than adding particles or changing

imestep size in the PT methods. 

In the heterogeneous velocity fields, the Eulerian methods still

cale with T ∝ �x 3 in 2- d , but there is an additional penalty of

bout 20 × due to the higher maximum velocity in the field. The

T methods also run slower in the heterogeneous fields, but the

enalty is only about 1.3 × to 5 × because the Courant num-

er of unity applies to the fastest particle, not the fastest veloc-

ty anywhere in the domain. Because the velocity distribution is

ighly skewed (Fig. B.3 ), the maximum particle velocity is far less

han the maximum domain velocity most of the time. Additionally,

he number of particles is a modeler’s choice dictated by the het-

rogeneity of the initial conditions. Similarly, the choice of �t is

ot as restrictive as in the grid-based methods, so that simulation

imes for the PT method can be reduced without causing numer-

cally unstable conditions (unlike the Courant requirement of the

ulerian models). In theory, Pollock’s method can be used analyti-

ally in steady flow and semi-analytically in transient flow to de-

ermine a particle’s advected position over any time interval ( Maier

nd Bürger, 2013; Pollock, 1988 ), so the chosen timestep is limited

y the diffusion and reaction steps. 

The reaction step also leads to a particle number stability

onstraint that arises when dispersion is small: For the particle-

umber preserving method, the relative change of a particle’s mass

hen reacting with another particle is maximized when two parti-

les (subscripts 1 and 2) are coincident, and then in 2- d , dm 1 /m 1 =
 f m 2 / (4 π

√ 

det(D ) ) (see ( Bolster et al., 2016 )). The values dm 1 / m 1 

hould be less than unity, so this can be checked at the start of a
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Fig. 13. Execution times for PT simulations for different particle numbers and timestep sizes (symbols) and best-fit lines. Particle-killing simulations (open symbols) scale 

linearly with initial particle numbers; Particle-preserving algorithm scales with N 1.7 . Both scale with 1/ �t . 

Table 1 

Execution times (seconds) for Eulerian and PT simulations using uniform, isotropic and heterogeneous, anisotropic 

dispersion. All Eulerian simulations and PT simulations in heterogeneous velocity use a maximum Courant number 

of unity. Shaded rows highlight approximately similar solutions in the λ = 1 homogeneous velocity case. 

Homogeneous velocity, D = 0 . 001 I

Eulerian Lagrangian (per realization) 

�x �t 1st-order upwind 3rd-order TVD N �t Particle-killing Particle-preserving 

0 .49 15 1500 2390 40,0 0 0 50 170 560 

0 .98 30 190 332 20 0 0 0 50 83 187 

1 .96 60 27 48 10,0 0 0 50 43 74 

50 0 0 50 23 32 

40,0 0 0 10 780 1207 

20,0 0 0 10 387 498 

10,0 0 0 10 195 209 

50 0 0 10 104 105 

Heterogeneous velocity, αL = 0 . 098 m ;αT = 0 . 0098 m 

0 .98 1 .33 4106 6669 40,0 0 0 varies 935 1650 

20,0 0 0 O(5–10) 472 684 

10,0 0 0 245 320 

50 0 0 140 173 
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simulation when m 2 is largest, and det (D ) is checked at its small-

est location. Then the number of particles is increased until m 2 is

a small enough number. 

6. Conclusions 

The ADRE (1) can be approximated by grid-based or PT algo-

rithms. When the advection error is completely eliminated in ho-

mogeneous flow conditions, the diffusion and reaction portion of

both Eulerian and PT methods converge in an L 1 sense to a “cor-

rect” solution. Neither method shows a tendency to converge in

a pointwise sense given the limitations of desktop-scale computa-

tional resources: as �x is made smaller or the number of particles

made larger, the peak concentrations in the domain tend to rise.

This point was not exhaustively investigated but has implications

for studies concerned with maximum concentrations within a do-

main. 

As expected, the errors associated with the approximation of

advection dominate the behavior of the grid-based simulations. For
isplacement of one reactant with another starting with square

ulse initial conditions, the errors in a classical 1st-order upwind

ethod are remarkably large. The nonlinear interaction of reac-

ants means that this algorithm would need grid Peclet numbers

ar less than unity to achieve reasonable solutions in terms of in-

egrated product (i.e., total effective reaction rate). Higher-order

ethods can have spurious over- or under-mixing, depending on

he algorithm and shapes of reactant plumes ( Appendix A ). The

rd-order algorithm offers potentially the best balance for cur-

ent Eulerian methods in use, and appears to require classical grid

eclet numbers �x / αL � 10 for visually acceptable results in het-

rogeneous velocity fields. The additional computational cost of

he 3rd-order method over simple upwind weighting is about 60%,

hich is certainly justified for the additional accuracy. Quantita-

ively, when moving from homogeneous to heterogeneous veloci-

ies (all other things held equal with a constant D ) the 3rd-order

lgorithm produced too much product by about 2% percent (go-

ng from 22.1% to 39.4%) relative to PT methods (from 22.1% to

7.3%). This increased reaction due to fluid deformation (17.3% ver-
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us 15.2%) is too great by a factor of 1.14. The grid-based advection

rror has several interesting effects, including increased volume of

eaction, large areas of negative concentrations, and depletion of

eactants so that product cannot be formed farther downstream. 

The PT methods, whether particle-killing or preserving, have

ery similar amounts of product produced realization to realiza-

ion, although the peaks and valleys within single realizations are

ore pronounced due to the interplay of fluid deformation and

oncentration fluctuations. Computationally, the particle-killing PT 

ethod is, in general, much faster than the grid-based meth-

ds for comparable conditions. The particle-preserving algorithm

s also faster, but not drastically so, compared to the Eulerian

ethods. The particle-preserving method is more accurate than

ny of the studied algorithms, particularly at lower concentra-

ions, and requires fewer realizations to get an estimate of the

nsemble average. If initial conditions are known exactly and de-

erministically, only one Eulerian run is required, so an advan-

age is found there. It is impossible to directly compare compu-

ation times for Eulerian and PT methods, but the former scales

ith �x d+1 , and the latter with N / �t (particle-killing) to N 

1 / �t

o N 

1.7 / �t (particle-preserving). A new criterion for timestep size

 . 25 < 2 
√ 

(8 D m 

�t)(N(t) /A ) < 3 / 2 is proposed (for 2- d ), assum-

ng isotropic diffusion. Time steps falling within this range per-

it enough diffusion to allow sufficiently high collision probabil-

ties while limiting long range, diffusive jumps for a given particle.

dditionally, we find that the particle-preserving methods requires

hat 1 > k f m p / (4 π
√ 

det(D ) ) , where m p is the initial particle mass.

Because of the lack of advection error and favorable compu-

ation times, the PT method can be used to examine the subtle

hanges to local reaction rates that arise in heterogeneous flow

elds along with spatially heterogeneous chemical distributions. At

resent, the particle methods have only been extended to relatively

imple reaction chains (e.g., Michaelis–Menton ( Ding and Benson,

015 )). Based on the advantages of the PT methods, an examina-

ion of further extensions is warranted. 
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ppendix A. Review of finite-difference schemes 

In multiple dimensions, there are several finite volume/finite

ifference algorithms for scalar transport (see, e.g., ( Toro, 2009 )).

n attractive component of several schemes is the TVD require-

ent, which eliminates spurious oscillations and is a “single-pass”

ethod. The TVD schemes can be applied in single sequential 1-

 sweeps by spatial operator splitting. However, these schemes

re 1 st -order at best ( Toro, 2009 ). Other schemes can increase the

rder of convergence accuracy with varying degrees of computa-

ional overhead, such as stricter, smaller Courant number criteria,

r predictor-corrector type formulations. Toro (2009) provides an

xcellent overview. Here, for exposition, we choose the TVD meth-

ds and show their optimal behavior in 1- d . 

For concentrations q , the wave equation q t = −v · q x has an Eu-

er approximation at the i th location and the n th timestep of q n 
i 

=
 i − (�t/ �x )( f i +1 / 2 − f i −1 / 2 ) , where f are the fluxes at cell faces.

he lack of superscript implies values from the previous ( n − 1 )

imestep. In the simplest case of uniform positive velocity in 1-

 and constant �x , this simplifies to q n 
i 

= q i − (v �t/ �x )(q i +1 / 2 −
 i −1 / 2 ) . A first-order upwind or “donor-cell” scheme uses q i −1 / 2 =
 i −1 . Higher-order methods adjust the flux at a cell face to rep-

esent the change in concentration over a timestep. This can be

erived in several ways ( LeVeque, 1992; 2002 ), including higher-

rder estimates of the concentration derivatives or predictor-

orrector techniques generally referred to as flux corrected trans-

ort (FCT) (applications to hydrology problems include ( Cirpka

t al., 1999; Hills et al., 1994 )). We will not investigate the FCT

ethods here, focusing instead on the efficient one-step TVD

ethods. The second-order methods use a (linear) estimate of

he slope S i of the concentration in an upwind cell that leads to

 change of flux over the timestep. Then integrating the linear

hange of concentration over a timestep gives a new estimate of

he upwind concentration 

 i −1 / 2 = q i −1 + S i −1 (�x − v �t) / 2 (A.1) 

= q i −1 + S i −1 �x (1 − λ) / 2 (A.2) 

 natural choice of slope S i −1 = (q i − q i −1 ) / �x gives the Lax–

endroff scheme. These calculated slopes will be discontinuous

nd can lead to overshoot and oscillation, so the amount of al-

owable flux can be limited according to the values of neighbor-

ng slopes. If discontinuities are found, the slopes are adjusted.

eplacing S i −1 �x in the last Eq. (A.1) with a general function

nd the difference in the two surrounding known concentrations

(r i −1 / 2 )(q i − q i −1 ) gives the flux-limited form 

 i −1 / 2 = q i −1 + 

(1 − λ) 

2 

φ(r i −1 / 2 )(q i − q i −1 ) (A.3)

here r i −1 / 2 = (q i −1 − q i −2 ) / (q i − q i −1 ) is a ratio of upstream and

ownstream gradients relative to the donor cell i − 1 . Generaliza-

ions to variable velocity magnitude and direction are straight-

orward. For reference, the Lax–Wendroff 2nd-order formula sets 

(r) = 1 and leads to overshoot and oscillation. Various schemes

ave been developed based on eliminating spurious fluctuations.

 common method requires that the total variation of q , given for

xample by ∫ | dq / dx | dx , must not increase. Given this constraint of

otal variation diminishment (TVD), and keeping the requirement

hat the solution be second-order accurate, Sweby (1984) showed

hat the allowable values of φ( r ) must lie in the shaded area of

ig. A.1 . Schemes that follow the bottom of the region are the

ost diffusive; schemes along the top are least (and can be com-

ressive, leading to overly steep shock fronts). The four limiters

hown on the plot – Roe’s superbee, (see ( Sweby, 1984 )), Van Leer

 van Leer, 1974 ), minmod ( Roe and Baines, 1982 ), and Leonard’s

rd-order ( Datta-Gupta et al., 1991; Leonard, 1991 ) – are chosen

ere to represent the range of behaviors. The first-order upwind

cheme uses φ(r) = 0 and can obviously be coded without look-

ng at three nodal concentrations per face and is faster. The 3rd-

rder solution adjusts the form of φ( r ) based on the local value

f λ ( Fig. A.1 ) according to φ(r, λ) = max [0 , min { min (2 , 2 r) , 1 3 ((2 −
) + (1 + λ) r) } ] . 

For an illustration of the effects of the TVD schemes, the ADRE

as coded in 1- d using operator splitting. Parameters were held

he same as in Section 4 . The number of grid blocks was held

t 512, or 1/4 the maximum number used in Section 4 , roughly

epresenting equivalent computational effort. For the square-pulse

nitial condition specified ( Fig. 1 ), the least diffusive flux limiter

superbee) is clearly most accurate over the full range of Courant

umbers tested ( Fig. A.2 ). Based on this plot, one might assume

hat the superbee limiter is best; however, its compressive (anti-

iffusive) nature is well suited to discontinuous concentrations.

moother fields are artificially sharpened. To illustrate, a similar

nitial condition is specified in which equal, but Gaussian-shaped

asses of reactants A and B are placed near each other ( Fig. A.3 ).

he total product masses are lower at λ = 1 because the centers

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/501100001871
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Fig. A1. Region of acceptable TVD flux-limiters ( Sweby, 1984 ). Limiters for this 

study are the 2nd-order maximally diffusive minmod (dash-dot line), minimally dif- 

fusive superbee (large dashes), intermediate Van Leer (small dashes), and Leonard’s 

3rd-order, which depends on local Courant number and smoothly interpolates the 

region between λ = [0 , 1] (red solid lines). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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of A and B mass are farther apart, but it is clear that the superbee

limiter is under-predicting the overlap and mixing of the plumes

at later times ( Fig. A.4 ). In fact, the reaction for λ = 0 . 1 has nearly

ceased at the end of the simulation (not shown). Clearly, there

is no optimal advection scheme for all types of plumes or mix-

tures of Courant numbers that will be found in a heterogeneous

flow field. It is also important to note that extending the higher-

order TVD methods to multiple dimensions is not straightforward.

Typically, the higher-order methods are applied sequentially in
Fig. A2. 1- d solutions to the adjacent square-pulse initial con
- d sweeps via directional operator-splitting. LeVeque (2002) notes

hat any method that is TVD in 2- d is, at most, 1st-order accu-

ate, although some multi-dimensional techniques appear to main-

ain higher-order accuracy in simultaneous multi-dimensional cal-

ulations (e.g., ( Colella, 1990; Thuburn, 1996 )). Performing sequen-

ial 1- d sweeps through a multi-dimensional domain is presently

he best technique used in water resource applications (especially

ithin readily-available codes), even though that method does not

xplicitly account for cross-derivatives that naturally come up in

he addition of the higher-order anti-diffusion. 

ppendix B. Semi-analytical solutions for mass of product 

roduced 

Solutions are tractable under two end-member conditions: fast

nd slow reactions. 

.1. Slow reaction – A perturbation solution approach 

In 1-d the ADRE (1) is given by 

∂C i 
∂t 

+ u 

∂C i 
∂x 

= D 

∂ 2 C i 
∂x 2 

− kC A C B i = A, B (B.1)

his equation can be rewritten in dimensionless forms by defining

imensionless variables t ∗ = t u 
l 
, x ∗ = x/l, and C ∗ = C/C re f , where l

s a characteristic distance (e.g., the initial width of the plume in

ur simulations) and C ref is a characteristic concentration (e.g., the

nitial concentration). For ease of notation we drop the stars and

n dimensionless form (B.1) becomes 

∂C i 
∂t 

+ 

∂C i 
∂x 

= 

1 

P e 

∂ 2 C i 
∂x 2 

− DaC A C B i = A, B (B.2)

here Pe = 

ul 
D is the Peclet number and Da = 

kC 0 l 
u the Damköhler

umber. We are considering the limit of slow reactions and thus

ake Da as small. Doing this we can write the following expansion

or concentration ( Van Dyke, 1975 ): 

 i = 

∞ ∑ 

n =0 

C (n ) 
i 

Da n (B.3)
dition problem using different TVD advection schemes. 
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Fig. A3. 1- d versions of the two initial conditions of reactants A (red) and B (blue). The square pulses (dotted) mimic the original 2- d simulations in Section 4 . An additional 

set of I.C.s is shown that place identical masses in nearby Gaussian pulses (solid red and blue curves). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. A4. 1- d solutions to the adjacent Gaussian-pulse initial condition problem using different TVD advection schemes. 
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Then at O ( Da 0 ) 

∂C (0) 
i 

∂t 
+ 

∂C (0) 
i 

∂x 
= 

1 

P e 

∂ 2 C (0) 
i 

∂x 2 
i = A, B (B.4)

Recognizing that the effect of advection is just a Gallilean shift, we

move into a moving reference frame z = x − t and 

∂C (0) 
i 

∂t 
= 

1 

P e 

∂ 2 C (0) 
i 

∂z 2 
i = A, B (B.5)

In an infinite domain the solution to these equations is given by 

 

(0) 
i 

= 

√ 

P e 

4 πt 

∫ ∞ 

−∞ 

e 
−(z−ξ ) 2 Pe 

4 t C i (t = 0) dξ (B.6)

At O ( Da 1 ) 

∂C (1) 
i 

∂t 
= 

1 

P e 

∂ 2 C (1) 
i 

∂z 2 
− C (0) 

A 
C (0) 

B 
i = A, B (B.7)

Given this equation and truncating series (B.3) for concentrations

at O ( Da 1 ) the total mass of the product will be given by 

M(t) = Da 

∫ ∞ 

−∞ 

∫ t 

0 

C (0) 
A 

(z, t ′ ) C (0) 
B 

(z, t ′ ) dt ′ dz (B.8)

Thus in principle for any initial condition we can now calculate

the produced mass to within approximation of the perturbation se-

ries. Any error introduced via numerical dispersion will manifest

as an error in the concentration fields C (0) 
A 

(z, t ′ ) and C (0) 
B 

(z, t ′ ) via

a modified Pe = (ul) / (D + D numerical ) , which will compound in an

error in the resultant product mass. 

The nonlinear and initial condition specific nature of the reac-

tion makes it difficult to make general statements on how this er-

ror will manifest. For demonstration purposes, consider the follow-

ing simple example, an infinite domain half filled with A and half

filled with B , separated by a sharp interface at x = 0 . At short times

(i.e., when the diffusive length is much less than the initial plume

width) this mimics the example setups studied in this work. For

this setup the initial conditions are given by 

 A (t = 0) = 1 − ∞ < x < 0 

 B (t = 0) = 1 0 < x < ∞ (B.9)

and zero elsewhere, which means 

 

(0) 
A 

(z, t) = 

1 

2 

erfc 

[ 
z 
√ 

P e √ 

4 t 

] 
C (0) 

B 
(z, t) = 1 − 1 

2 

erfc 

[ 
z 
√ 

P e √ 

4 t 

] 
(B.10)

Thus solving (B.8) is trivial and gives 

M(t ) = 

2 

3 

Da 

√ 

2 

πP e 
t 3 / 2 (B.11)

The key feature is that M(t) ∝ 

1 √ 

Pe 
, or in dimensional terms

that the mass or product produced is proportional to 
√ 

D . Given

that in the Eulerian numerical models the dispersion coefficient

will be D = D actual + D numerical , any error in the dispersion coeffi-

cient induced by numerical dispersion will increase the predicted

amount of mass produced in this manner. The results for the spe-

cific initial conditions studied in this paper are cumbersome and

provide little insight and are thus not shown. However, to leading

order it can be shown that the initial condition studied in this pa-

per has the same scaling. 

B.2. Fast reactions 

Now if we consider the other extreme when Da is large, we

can treat the reaction as instantaneous, which in previous studies

has been shown to be a good assumption for Da > 10 ( Sanchez-

ila et al., 2007 ). Under this assumption A and B cannot coexist,
eaning that the lesser will be consumed entirely. Now following

he development of Gramling et al. (2002) , define two conservative

seudo-tracers as 

 A = C A + C P U B = C B + C P (B.12)

These are governed by a conservative transport equation be-

ause upon summation of the ADREs (1) for C A and C P , the reaction

erms disappear (because A and B disappear at the same rate as P

y stoichiometry). For the initial conditions considered in (B.1) 

 A (t = 0) = 1 − ∞ < x < 0 

 B (t = 0) = 1 0 < x < ∞ (B.13)

hich means that at all times 

 A (t) = 

1 

2 

erfc 

[ 
(x − ut) 

√ 

P e √ 

4 t 

] 

 B (t) = 1 − 1 

2 

erfc 

[ 
(x − ut) 

√ 

P e √ 

4 t 

] 
(B.14)

ow since A and B cannot coexist, the concentration of product is

iven by 

 P = min (U A , U B ) (B.15)

nd the total mass of product for the semi-infinite sources (follow-

ng Gramling et al. (2002) ) is given by 

 = 

∫ ∞ 

−∞ 

C P dx = 2 

∫ ∞ 

0 

U A dx = 2 

√ 

t 

P eπ
(B.16)

A more accurate equation for the finite (in the x -direction)

ources is 

 C (t) = 

√ 

4 t 

πP e 
(1 − e −

Pe 
4 t ) + 1 − erf 

[ √ 

P e 

4 t 

] 
(B.17)

hich recovers (B.16) for l → ∞ . The 20,0 0 0 particle simulations

ollow formula (B.17) fairly closely at later time ( Fig. B.1 ) using the

ntial condition l = 15 . 6 m for an estimation of the scaling length.

he early time discrepancy is most likely due to the fact that our

eactions are not instantaneous, but take some time (albeit small)

o develop. 

.3. Slow reactions generalized to a higher order reaction −kC n 
A 

C m 

B 

To demonstrate how these effect might be influenced for higher

rder reactions, consider taking r = −kC n 
A 

C m 

B 
. Following the same

rocedures as above for slow reactions (i.e. Appendix B.1 ) the total

ass produced will be 

(t) = 

∫ t 

0 

∫ ∞ 

−∞ 

Da 
P e 

n + m 
2 

(4 πt ′ ) n + m 2 

n ∏ 

i =1 

∫ 0 

−∞ 

e 
−(x −ξi ) 

2 Pe 

4 t ′ dξi 

m ∏ 

j=1 

∫ ∞ 

0 

× e 
−(x −ηi ) 

2 Pe 

4 t ′ d η j d xd t ′ (B.18)

ow rescale all the length scales by 

√ 

Pe 
4 t ′ , i.e. 

′ = ξ

√ 

P e 

4 t ′ η′ = η

√ 

P e 

4 t ′ x = x 

√ 

P e 

4 t ′ (B.19)

hen 

(t) = 

∫ t 

0 

∫ ∞ 

−∞ 

Da 

√ 

4 t ′ 
P e 

1 

π
n + m 

2 

n ∏ 

i =1 

∫ 0 

−∞ 

× e −(x −ξi ) 
2 

d ξi 

m ∏ 

j=1 

∫ ∞ 

0 

e −(x −ηi ) 
2 

d η j d xd t ′ (B.20)

hich gives 

(t) = W 

2 Da 

3 

√ 

2 

P e 
t 3 / 2 (B.21)
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Fig. B1. Evolution of the mass of product in the 20,0 0 0 particle simulations in a homogeneous velocity field (symbols), along with the solution to the analytical expression 

(B.17) . 
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here the constant W is given by 

 = 

1 

π
n + m 

2 

∫ ∞ 

−∞ 

n ∏ 

i =1 

∫ 0 

−∞ 

e −(x −ξi ) 
2 

d ξi 

m ∏ 

j=1 

∫ ∞ 

0 

e −(x −ηi ) 
2 

d η j d x (B.22)

The specific value of W is unimportant to the central message.

rom (B.21) we see again that the total amount of mass produced

as the same proportionality as before of M(t) ∝ 

1 √ 

Pe 
. At this point

t is not clear how to generalize the fast reactions scenario to

igher order reactions. 

.4. Error estimates 

The foregoing sections of this Appendix show that the mass

roduced is roughly proportional to 
√ 

D . This allows the construc-

ion of some rules-of-thumb for error estimation. The ratio of mass

roduced with numerical error to mass produced without error is
 

D actual + D numerical / 
√ 

D actual . Therefore the excess amount of mass

roduced in error expressed as a fraction of the real amount is

rror = 

√ 

1 + D numerical /D actual − 1 . For isotropic, fixed D actual in our

rst-order upwind scheme, we have 

rror = 

√ 

1 + 

| v | �x 

2 D actual 

(1 − | v | �t/ �x ) − 1 (B.23) 

n the case of velocity-dependent dispersion in which the longitu-

inal dispersion is given by D actual = αL | v | , the error is 

rror = 

√ 

1 + 

�x 

2 αL 

(1 − | v | �t/ �x ) − 1 (B.24) 

he latter of these two errors is greater for regions of smaller

elocity in the domain, as the former goes to zero for | v | → 0.

ig. B.3 shows the magnitude of these two error estimates for

easonable values in the example heterogeneous domain ( �x = 1

, max (v ) = 1 . 46 m/d), along with a histogram of the velocities
ithin the (log-normal) K field. For a large portion of the do-

ain experiencing low velocity, the error is greater for a velocity-

ependent dispersion. 

ppendix C. PT simulation of anisotropic dispersion and 

eaction. 

We solve (1) via PT using operator-splitting as follows: The

nite-time discretized Langevin equation applied to each particle’s

osition X for the backward Kolmogorov transport portion of Eq.

1) follows X t+�t = X t + ( v + ∇D )�t + B W, where B = 

√ 

2�tD af-

er D is diagonalized by rotation into a coordinate system along the

ow direction, and W is a standard multiGaussian random vector

 Labolle et al., 1996 ). 

The velocities are calculated at cell faces following an itera-

ive solution of the continuity equation for constant-density fluid

 · K∇h = 0 followed by v = −K∇h/θ . Constant values of h at the

eft and right boundaries, along with no-flow ∇h · n = 0 along

he top and bottom boundaries maintain the desired mean gra-

ient from left to right. The K is constant within each rectilin-

ar volume (cell), porosity θ is constant everywhere, and v is cal-

ulated at cell faces and linearly interpolated to each particle’s

ocation within the cells. Dispersion components for each parti-

le use these linearly-interpolated velocities. Because the calcula-

ion of the gradients of dispersion coefficients at the exact par-

icle location are relatively time consuming by bilinear interpo-

ation (see ( Labolle et al., 1996 )), we make a simplification that

he gradients can be well approximated as constant within each

ell. This follows directly from the linear velocity interpolation

nd linear dispersion dependence on velocity. For example, in 2-

 with indices i, j in the x, y -directions, the components D xx and

 yx are calculated at the i − 1 / 2 and i + 1 / 2 faces, while D yy and

 xy are calculated at the j − 1 / 2 and j + 1 / 2 faces. So for the

, j block, dD xx 
dx 

= (D xx (i + 1 / 2) − D xx (i − 1 / 2)) / �x, 
dD yx 

dx 
= (D yx (i +
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Fig. B2. Analytic solutions (using (B.17) ) for mass created at 10,0 0 0 days incorporating the errors due to numerical dispersion for the upwind scheme. 

Fig. B3. Histogram (blue bars) of velocity magnitude in the heterogeneous domain pictured in Fig. 8 . Estimates of the excess mass production error (red curves) by the 

upwind advection algorithm as a function of velocty (hence grid Peclet and Courant numbers) for fixed dispersion value 0.001 m 

2 /d and a velocity-dependent dispersion 

with αL = 0.03 m. The right-hand labels are for excess error as a multiple of the real production value. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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 / 2) − D yx (i − 1 / 2)) / �x, 
dD yy 

dy 
= (D yy ( j + 1 / 2) − D yy ( j − 1 / 2)) / �y,

dD xy 

dy 
= (D xy ( j + 1 / 2) − D xy ( j − 1 / 2)) / �y . 

In the operator-split method, we enforce zero-diffusive flux BCs

n the random walk by reflecting all particles back into the do-

ain (e.g., Salamon et al., 2006b) . Particles that move by advec-

ion into boundary cells are removed, enforcing J = n · v C, where n

s the unit normal to the boundary and the relation of concentra-

ion to particle mass is thought of as the spatial convolution of any

article’s mass with some kernel function with unit integral in d -

imensions. A nice discussion of all types of boundary conditions

or advection and dispersion via the PT method is given by Koch

nd Nowak (2014) . 

Reactions between particles may either follow the formulas

iven in ( Benson and Meerschaert, 2008 ) or ( Bolster et al., 2016 )

or particle-killing or particle-preserving methods, respectively. For

he latter, each A particle with unique mass m A ( t ) at time t is cho-

en and sequentially subjected to reaction with nearby B particles

ith unique mass m B . The change in masses for a single reac-

ion are d m A = d m B = −�t k f m B (t ) m A (t ) v (s ) . Then the net change

ums over all reaction partner pairs m A (t + �t) = m A (t) + 

∑ 

dm A .

he co-location density v ( s ) given a separation vector s between

n A and B particle pair is given by a multi-Gaussian 

 (s ) = 

1 

(8 π�t) d/ 2 | D | 1 / 2 exp 

(
− 1 

8�t 
s ′ D 

−1 s 

)
. (C.1)

he search radius for nearby particles was restricted to

 

√ 

8 max (D i j )�t , and the kd-tree algorithm ( Bentley, 1975 ) for

earby particle searching was used as coded in the “rangesearch”

lgorithm in matlab. 

We assume, for calculation speed, that the dispersion tensor is

imply that of the “central” A particle. The differences in dispersion

ensors between the A and each nearby B particle was ignored,

.e., D = D A . For isotropic dispersion, the above procedure was used

ith D = D I. 
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