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We introduce a simple and efficient lattice Boltzmann method for immiscible multiphase 
flows, capable of handling large density and viscosity contrasts. The model is based on 
a diffuse-interface phase-field approach. Within this context we propose a new algorithm 
for specifying the three-phase contact angle on curved boundaries within the framework 
of structured Cartesian grids. The proposed method has superior computational accuracy 
compared with the common approach of approximating curved boundaries with stair 
cases. We test the model by applying it to four benchmark problems: (i) wetting and 
dewetting of a droplet on a flat surface and (ii) on a cylindrical surface, (iii) multiphase 
flow past a circular cylinder at an intermediate Reynolds number, and (iv) a droplet 
falling on hydrophilic and superhydrophobic circular cylinders under differing conditions. 
Where available, our results show good agreement with analytical solutions and/or existing 
experimental data, highlighting strengths of this new approach.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Fluid–solid interactions are ubiquitous in nature. Common examples of practical interest include flow through porous 
media, aerodynamics, flow around structures, and colloidal suspensions, to name a few [1]. Within this context, three-phase 
(solid–liquid–gas) contact line dynamics is a challenging topic of significant global research interest with scientific and 
engineering applications spanning self-cleaning materials, oil and gas recovery, geological carbon sequestration, groundwater 
contamination by non-aqueous phase liquids, inkjet printers, microfluidics, etc. [2]. While of critical importance, simulating 
such systems still poses challenges in terms of accuracy, efficiency, and numerical stability.

Various numerical approaches to tackle this problem exist [3]. Within these, diffuse interface models [4–9] present a 
promising framework for studying three-phase moving contact line dynamics. In part, this is due to their intrinsic capacity 
to handle the singularity at the three-phase contact point while not requiring a velocity-slip model on the solid surface. 
Among diffusive interface models, phase-field models are a popular choice, wherein the interface between different phases 
is usually obtained by solving a Cahn–Hilliard like equation [10] or a conservative phase-field equation [11,12].

The interface tracking equation in phase-field models can be solved by any number of numerical methods, including 
finite difference or finite volume [13], as well as Lattice Boltzmann Methods (LBM) [14–18], the focus of this work here. 
Ease of implementation, straightforward handling of complex boundaries, highly scalable parallelization, and not having 
to solve an elliptical Poisson (pressure) equation are among the main reasons behind LBM’s success [19]. The fact that 
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interphase boundaries are essentially mesoscopic in nature [8] makes LBM, a mesoscopic approach based on kinetic theory 
of dense fluids [14–16], a powerful candidate for dealing with interfacial phenomena in general and for three-phase contact 
line dynamics in particular.

Over the past three decades, several LB models for multiphase flows have been proposed in the literature, including the 
color model [20,21], the pseudo-potential model [22–25], the free-energy model [26–28], and the mean-field model [29,30]. 
All these models, in their primitive forms, share an undesired feature: the inability to model multiphase systems with large 
density ratios. From first principles, He and Doolen [16] rigorously connected kinetic theory and LBM for multiphase flows. 
They then evaluated and identified weaknesses of the aforementioned models. This improved thermodynamic understanding 
enabled more advanced models to emerge [31–34].

Inamuro et al. [31] proposed an LB model for multiphase flows with large density ratios; the price for this achievement 
was the need to solve a time-consuming pressure-Poisson equation and inability to guarantee mass conservation due to 
using a cut-off value in updating of density. Lee and Lin [32] proposed a three-step (pre-streaming collision, streaming, and 
post-streaming collision) LBM by invoking the potential form of the surface-tension force in the interface tracking formula 
and the stress form in the momentum equation, as had been proposed by Jamet et al. [7]. Using a combination of central and 
biased finite-difference schemes, which is shown to compromise mass conservation [35], they achieved numerical stability at 
high density ratios. The main criticism of this model is its complicated and inefficient algorithm. Later it was shown that the 
three-step algorithm could be reduced to the conventional, two-step collision-streaming without losing accuracy or stability 
[36]. Zheng et al. [37] proposed a modified free-energy-based LBM for multiphase flows intended for high density ratios, but 
it has been shown that it is limited to density-matched fluids [38]. Fakhari and Rahimian [38] presented a phase-field LBM 
for binary fluids at high Reynolds numbers which is limited to moderate density ratios. Based on the Cahn–Hilliard diffuse 
interface model [13], Lee and Liu [36] presented an improved version of the free-energy model, which was later extended 
to multiphase flows at high Reynolds numbers [39]. However, the inconsistent use of central and biased finite differences 
means that these models [36,39] can violate mass and momentum conservation [40]. Mass conservation was remedied in 
Ref. [41] but momentum conservation issues remain.

Of important note to our problem of interest is that most of the aforementioned studies only consider multiphase 
flow in the absence of solid boundaries or with neutral wall boundary conditions at best [31–33,38]. Unlike immersed 
boundary methods, which are readily used to tackle curved boundaries on Cartesian grids [42], simulation of three-phase 
contact line motion on curved solid boundaries is still a challenging subject in LBM. The color model is widely used to 
this end [34], most likely due to its efficient implementation. Despite this, even with improvements over time, the color 
model has had limited capabilities in dealing with realistic multiphase flows with large density differences [43], with a 
recent exception [44]. Additionally, the resulting flow field can have very large so-called spurious currents or parasitic 
velocities, which are unphysical and potentially undesirable artifacts. In order to control the spurious velocities in the 
color model, Leclaire et al. [45] proposed a relationship for scaling the interfacial thickness with grid resolution. Also, 
some correction terms can be added to improve the numerical stability and accuracy of the color model for simulation 
of two-layer Poiseuille flow at high density and viscosity ratios [44,46]. The pseudo-potential model shares similar draw-
backs with even larger spurious velocities reported [47]. The mean-field model [30] is in our view more appealing as it 
has a strong physical foundation based on kinetic theory for dense fluids and is versatile in handling complex flow phe-
nomena with rapid topological changes such as interface disintegration and coalescence [48]. Improved versions of the 
mean-field model are even more practical particularly for simulation of multiphase flows at high density ratios [36,41], at 
high Reynolds numbers [38,39], for thermocapillary fluids [49], and most importantly for this work with fluid–solid inter-
actions [50].

Although wettability effects on a flat surface have been considered in some previous LB studies [36], for those cases the 
solid boundaries had to be co-located with lattice nodes, restricting their application to perfectly horizontal or vertical flat 
walls. In some other LB models, curved surfaces are approximated by stair-cased line segments in 2D (plain segments in 
3D), potentially reducing the physical accuracy of the simulations. For example, in a recent color model [34], the actual wall 
location is only considered for constructing the color variable at the solid boundaries, and no treatment is performed for 
the distribution functions. Also, the model in Ref. [50] requires significant care in dealing with boundary nodes and spatial 
derivatives at solid boundaries. It can also suffer violation of conservation laws.

In this work, we introduce a simple, yet robust, LB model for multiphase flows at high density ratios. The proposed 
model does not need biased or mixed finite differences, as are required in previous models for stability reasons [32,36,39], 
and therefore conserves both mass and momentum. Aside from two nonlocal distribution functions, the proposed model 
requires only one nonlocal variable (the phase field), compared with three to four nonlocal variables in some previous 
works [36,39,50]. This greatly enhances the simplicity and efficiency of the algorithm. We also propose a new algorithm 
for prescribing the three-phase contact angle on curved boundaries without using a stair-case approximation for the solid 
boundary. We start by presenting the macroscopic governing equations in Sec. 2, followed by introducing the conservative 
phase-field LB model in Sec. 3. The new algorithm for handling wetting boundary conditions on curved surfaces is described 
in Sec. 4. We test the proposed model by running various benchmark problems in Sec. 5 and conclude the paper with a 
summary in Sec. 6.
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2. Governing equations

2.1. Interface tracking equation

While most phase-field models rely on Cahn–Hilliard theory [10,9] for interface tracking, a fourth-order derivative that 
arises in taking the Laplacian of the chemical potential can cause difficulties and reduce the accuracy and efficiency of 
numerical approximations. In this study, we use a different form of phase-field equation that contains at most second-order 
derivatives, which is called the conservative phase-field equation [11,12].

For an incompressible binary-fluid system, we define a phase-field variable φ in such a way that it is zero in the light 
fluid and one in the heavy fluid. The following interface tracking equation is used to track the interface between different 
fluids [12]:

∂φ

∂t
+ ∇ · (φu) = ∇ ·

[
M

(
∇φ − 4

ξ
φ(1 − φ)n̂

)]
(1)

where t is time, u is the macroscopic velocity vector, M is the mobility, ξ is the interfacial thickness, and n̂ is the unit 
vector normal to the interface, with its direction pointing away from the heavy fluid, such that

n̂ = ∇φ

|∇φ| (2)

In diffuse-interface models, the equilibrium phase-field profile for an interface located at x0 is usually assumed to vary 
according to

φ(x) = 1

2

[
1 − tanh

( |x − x0|
ξ/2

)]
(3)

which is typically used to set the initial condition on φ.
In the absence of fluid interaction with solid walls, or in dealing with neutral wetting conditions (i.e. a 90◦ contact 

angle), Neumann boundary conditions are applied n̂w · ∇φ|xw = 0, where n̂w is the unit vector normal to, and outwards 
from, the solid wall. To impose a specified contact angle at a solid boundary, the following boundary condition has been 
proposed [6]:

n̂w · ∇φ
∣∣
xw

= �φw (1 − φw) (4)

where φw is the phase-field value at wall and � is related to the equilibrium contact angle θ by

� = −
√

2β

κ
cos θ (5)

where coefficients β and κ are related to the surface tension σ and interfacial thickness ξ by β = 12σ/ξ and κ = 3σξ/2.
Note that there are underlying differences between the present approach and other models for specifying the contact 

angle. The majority of previous studies use a geometric formula [51] to impose the wetting boundary conditions. In addition 
to producing larger parasitic currents, the geometric approach works only on flat walls where the normal to the surface 
aligns with lattice nodes. On the other hand, specifying a potential, similar to the one in Eq. (4), to model the interaction of 
different fluids with a solid surface is more consistent with the nature of phase-field models [5,6].

2.2. Navier–Stokes equations

The continuity and momentum equations that govern isothermal, incompressible, multiphase flows are

∂ρ

∂t
+ ∇ · ρu = 0 (6a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ ·

(
μ

[
∇u + (∇u)T

])
+ F s + F b (6b)

where ρ and μ are the local fluid density and viscosity, respectively, p is the macroscopic pressure, F b is the body force, 
and F s is the surface tension force, which can take the following form [5]:

F s = μφ∇φ (7)

where

μφ = 4βφ(φ − 1)(φ − 1/2) − κ∇2φ (8)

is the chemical potential for binary fluids.
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3. Multiphase flow solver: lattice Boltzmann method

3.1. LBE for interface tracking

The following LBE has previously been shown to recover Eq. (1) for the conservative phase field [52]:

hα(x + eαδt, t + δt) = hα(x, t) − hα(x, t) − heq
α (x, t)

τφ + 1/2
(9)

where hα is the phase-field distribution function, τφ is the phase-field relaxation time, and eα is the microscopic velocity 
set. For the D2Q9 lattice, which is used in this study [15]

eα = c

⎧⎨
⎩

(0,0), α = 0
(cos θα, sin θα), θα = (α − 1)π/2, α = 1–4
(cos θα, sin θα)

√
2, θα = (2α − 9)π/4, α = 5–8

(10)

where c = δx/δt = 1 and δx and δt are the lattice length scale and time scale, respectively (on uniform grids δx = δt = 1). 
The equilibrium phase-field distribution function is given by

heq
α = φ�α + wα

M

c2
s

[
4

ξ
φ(1 − φ)

](
eα · n̂

)
(11)

where

�α = wα

[
1 + eα · u

c2
s

+ (eα · u)2

2c4
s

− u · u

2c2
s

]
(12)

cs = c/
√

3 is the speed of sound in the system and wα is the weight coefficient set, where w0 = 4/9, w1−4 = 1/9, and 
w5−8 = 1/36. Mobility M is related to the phase-field relaxation time by

M = τφc2
s δt (13)

Equation (9) is usually solved with a two-step collision-streaming approach as

h∗
α(x, t) = hα − hα − heq

α

τφ + 1/2

∣∣∣∣∣
(x,t)

(14a)

hα(x + eαδt, t + δt) = h∗
α(x, t) (14b)

where the asterisk denotes the pre-streaming, or post-collision, state. After the streaming step, the phase field is updated 
by taking the zeroth moment of the phase-field distribution function

φ =
∑
α

hα (15)

and the density ρ is found by a simple linear interpolation

ρ = ρL + φ(ρH − ρL) (16)

where ρL and ρH are the densities of the light and heavy fluids, respectively.
It is worth noting that, aside from advantages in computational cost and efficiency, the conservative phase-field equation 

is much less dispersive when compared with the Cahn–Hilliard equation, particularly when implemented within the LBM 
framework. This lower-dispersion error hinders the phase-field variable from noticeably undershooting its lowest equilibrium 
value (here φmin = 0). Therefore the density, which is linearly interpolated from the phase-field via Eq. (1), is less prone to 
unphysically becoming negative and leading to numerical instabilities at high density ratios. This is a key factor in achieving 
numerically stable solutions with a high density ratio.

3.2. LBE for hydrodynamics

Based on the explicit approach proposed by He et al. [29], we use an improved hydrodynamic evolution equation [38] to 
update the pressure and velocity fields. The lattice Boltzmann equation for nearly incompressible multiphase flows can be 
written as

ḡα(x + eαδt, t + δt) = ḡα(x, t) + �α(x, t) + Fα(x, t) (17)

where ḡα is the modified hydrodynamic distribution function for the nearly incompressible fluids [30,39], �α is the collision 
operator, and the forcing term is [41]
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Fα = δt
[
(�α − wα)(ρH − ρL)c2

s + �αμφ

]
(eα − u) · ∇φ + δt�α(eα − u) · F b (18)

In this study we use a multiple-relaxation-time (MRT) model in the collision operator [53], which has superior stability 
and accuracy over single-relaxation-time (SRT) or Bhatnagar–Gross–Krook (BGK) models. The MRT collision operator is

�α = �MRT
α = −M−1ŜM

(
ḡα − ḡeq

α

)
(19)

where the modified equilibrium distribution function is defined by

ḡeq
α = geq

α − 1

2
Fα (20)

and

geq
α = pwα + ρc2

s (�α − wα) (21)

is the equilibrium distribution function for nearly incompressible fluids. M is an orthogonal transformation, which trans-
forms the distribution functions from physical space into moment space [53], and Ŝ is the diagonal relaxation matrix, which 
is chosen to be

Ŝ = diag(1, 1, 1, 1, 1, 1, 1, sν, sν) (22)

where

sν = 1

τ + 1/2
(23)

with τ being the hydrodynamic relaxation time (or simply the relaxation time), which is related to the kinematic viscosity 
of the system by ν = τ c2

s δt , and is calculated by using a harmonic interpolation from the phase field

1

τ
= 1

τL
+ φ

(
1

τH
− 1

τL

)
(24)

where τL and τH are the relaxation rates for the light and heavy fluids, respectively. If all the relaxation rates in Eq. (22) are 
set to sν , the BGK model is recovered.

After solving LBE (17) using a routine collision-streaming sequence, hydrodynamic properties are calculated as

u = 1

ρc2
s

∑
α

ḡαeα + δt

2ρ
(F s + F b) (25a)

p =
∑
α

ḡα + δt

2
(ρH − ρL)c2

s u · ∇φ (25b)

Note that velocity is updated before pressure.
It is worth mentioning that the only non-local macroscopic quantity in the proposed LB equations is the phase-field 

variable. Gradients of the phase field in Eq. (2) and Eq. (7), and its Laplacian in Eq. (8) are calculated using second-order, 
isotropic centered differences [54]. Moreover, we do not treat the eα · ∇φ term as a directional derivative along the lattice 
links [36], but instead compute the gradient of the phase field ∇φ using isotropic differences and then execute the dot 
product, which improves the isotropy in the solution. We avoid using a combination of central and biased differences as 
was done in previous studies [36,39], because it leads to violations of mass and momentum conservation [40]. Note that 
the main reason for using biased differences in Ref. [36] is to reduce the dispersion error in the numerical discretization of 
the advection term. Compared with the Cahn–Hilliard-based model in Ref. [36], the conservative phase-field LBE in Sec. 3.1
produces much less numerical dispersion, even when central differences are employed. This allows us to attain a stable 
numerical scheme at large density and viscosity ratios using a minimal number (three) of supporting nodes.

4. Curved boundary treatment

4.1. Wetting boundary condition for the phase field

In order to apply the wetting condition given in Eq. (4) on a curved boundary, we need the unit vector normal to the 
solid wall (n̂w) along with the gradient of the phase field ∇φ|xw

and its value φw at the wall. To this end we propose two 
different schemes.

A schematic implementation of the first approach for a typical boundary node is illustrated in Fig. 1. We use the fluid 
nodes, shown by blue dots, to obtain the unknown phase-field value at the boundary node (φi, j ), shown by a black dot, 
using the following procedure: first, we invoke a centered difference for the left-hand-side of Eq. (4) to obtain
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Fig. 1. Schematic depicting the bidirectional interpolation to obtain the unknown phase-field value, φi, j , at a typical boundary node (black dots). Blue dots 
are fluid nodes and nw is the normal vector pointing away from the solid wall. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 2. Unidirectional interpolation schemes. Schematic of boundary nodes and fluid nodes around a curve boundary.

n̂w · ∇φ
∣∣
xw

= ∂φ

∂nw

∣∣∣∣
xw

= φp − φi, j

2h
= �φw (1 − φw) (26)

where h = |xp − xw| is the distance between the solid wall and the interpolated point, which is known a priori given the 
location of the wall boundary. We eliminate φw in Eq. (26) by using φw = (φp + φi, j)/2. This yields a quadratic equation, 
the solution of which gives

φi, j = 1

a

(
1 + a −

√
(1 + a)2 − 4aφp

)
− φp, a = h� �= 0 (θ �= 90◦) (27)

For neutral wetting conditions (θ = 90◦), the trivial solution would be φi, j = φp. The only unknown quantity in Eq. (27) is 
φp, which can be determined by a biquadratic interpolation from the adjacent fluid nodes, as depicted in Fig. 1. The only 
caveat is that φi, j might appear in the resulting bidirectional interpolation scheme. As a remedy, we can either solve Eq. (27)
iteratively or use the value of φi, j from the previous time step. For slowly evolving flows, especially close to a stationary 
solid wall, φi, j is not expected to vary rapidly. As such, and also to avoid a costly iterative scheme, we choose the latter 
approach and use the value of φi, j from the previous time step in the bidirectional interpolation that is needed to find φp.

Alternatively, for our second approach, we can use unidirectional interpolations, either in the x-direction or in the 
y-direction, to find φp. A sketch demonstrating this approach is shown in Fig. 2. If the magnitude of the slope of the 
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Fig. 3. Schematic of boundary nodes and fluid nodes around a curved boundary.

vector normal to the boundary is bigger than one, which is the case in Fig. 2(a), then the (linear or quadratic) interpolation 
is carried out in the x-direction; otherwise, the interpolation is carried out in the y-direction, as depicted in Fig. 2(b), to 
find the value of φp. Because the location of the solid wall xw is no longer half-way between the boundary node xi, j and 
the interpolated point xp, Eq. (26) must be modified. The final result is

φi, j = s + h

2ah

(
1 + a −

√
(1 + a)2 − 4aφp

)
− s

h
φp, a = h� �= 0 (θ �= 90◦) (28)

where s = |xw − xi, j| is the distance between the boundary node and the solid wall.

4.2. Boundary conditions for the distribution functions

In addition to the wetting boundary condition for the phase field at the wall, the incoming distribution functions from 
the boundary nodes towards the fluid nodes must be determined. Referring to Fig. 3 for a typical boundary node xb, and 
defining α− such that eα− = −eα , the value of ḡ∗

α− (xb) before the streaming step is unknown (recall the asterisk denotes 
the pre-streaming, or post-collision, state). There are three common curved boundary models for specifying ḡ∗

α− at the 
boundary:

1. Filippova–Hänel model [55]:
The boundary treatment of Filippova and Hänel [55], with the modifications proposed by Mei et al. [56], is a widely 
used curved boundary condition in single-phase flows. Here, we use a variant of this model for a stationary solid 
boundary and a modified equilibrium distribution function to reduce the incompressibility error of the LBM. In essence, 
the following formula will be used to determine the unknown distribution functions at the solid boundaries

ḡ∗
α−(xb) = (1 − χ)ḡ∗

α(xf) + χ g̃α(xbf) (29)

where

g̃α(xbf) = geq
α (xf) + ρ(xf)wαeα · (ub − uf) (30)

and

ub =

⎧⎪⎪⎨
⎪⎪⎩

uff, χ = 2� − 1

τ − 2
, for 0 � � <

1

2
(a)

� − 1

�
uf, χ = 2� − 1

τ
, for

1

2
� � < 1 (b)

(31)

where

� = |xf − xw|
|xf − xb| (32)
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Fig. 4. Droplet wetting and dewetting on a (a) hydrophilic surface, and (b) hydrophobic surface.

2. Bouzidi–Firdaouss–Lallemand model [57]:
The following two-part formula was proposed by Bouzidi et al. [57]

ḡ∗
α−(xb) =

⎧⎪⎨
⎪⎩

2�ḡ∗
α(xf) + (1 − 2�) ḡ∗

α(xff), 0 � � < 1
2 (a)

1
2�

ḡ∗
α(xf) +

(
1 − 1

2�

)
ḡ∗
α−(xff),

1
2 � � < 1 (b)

(33)

3. Yu–Mei–Shyy model [58]:
Yu et al. [58] proposed a one-step relation to establish the incoming distribution functions according to

ḡ∗
α−(xb) = �

1 + �

[
ḡ∗
α−(xf) + ḡ∗

α(xf)
] + 1 − �

1 + �
ḡ∗
α(xff) (34)

It is worth noting that both Eqs. (33) and (29) recover the commonly used mid-way bounce-back on the link [59] when 
� = 1/2, while the one-step formula (34) does not. Despite this, all the aforementioned methods produce virtually identical 
results in all of our simulations. We will only present the numerical results obtained using the first model [56].

In order to eliminate mass leakage from the wall boundaries, and also for stability reasons, we use mid-way bounce back 
to determine the unknown phase-field distribution function at the boundary nodes such that

h∗
α−(xb) = h∗

α(xf) (35)

Since we are dealing with stationary solid walls in this paper, the proposed curved boundary conditions can be applied 
very efficiently by storing the necessary data at the beginning of the simulation. Given a prespecified curved boundary we 
can identify the boundary nodes (shown by black dots in Figs. 1–3) and store their coordinate indices (i, j) together with the 
necessary parameters s, h, dx, dy , and �. For some problems (e.g. flow through complex porous media) the computations 
would be more efficient if the curved boundary treatment is turned off. We can easily achieve this while still using the 
proposed model by replacing curved boundaries with appropriate stair cases and implementing mid-way bounce-back. We 
can also deal with moving boundary problems by adding additional terms related to the motion of the boundary to the 
curved boundary models above. Here we only deal with stationary solid walls and leave the moving boundary problems to 
future studies.

5. Numerical results

In this section we test and validate the proposed LBM by considering various interesting problems involving three-phase 
contact line dynamics. We start simple with a drop on a flat wall, for which an analytical relation between the equilibrium 
contact angle and the height of the drop can be derived, and progressively add to the complexity of the problems. All input 
parameters will be presented in lattice units, or in dimensionless form, unless otherwise stated.

5.1. Test 1: wetting/dewetting of a droplet on a flat surface

As our initial condition we place a semi-circular droplet on top of a flat wall with an initial contact angle of 90◦ , which 
would be the equilibrium solution for neutral wetting conditions. We then specify different contact angles by imposing 
boundary condition (4) and allow the droplet to evolve to its true equilibrium state. In the absence of gravity, the only 
mobilizing factor is interfacial tension. If θ < 90◦ the solid wall is said to be hydrophilic and the droplet starts wetting the 
surface spreading to increase its contact area with the surface until the equilibrium contact angle is attained. On the other 
hand, if θ > 90◦ then the solid wall is said to be hydrophobic and the droplet retracts in such a way as to reduce its contact 
area with the surface until the equilibrium contact angle is attained. Numerical results of these two states are shown in 
Fig. 4 for select contact angles. The simulation parameters are σ = 0.01, M = 0.02, ρH/ρL = 1000, and μH/μL = 100, where 
μL and μH are the bulk viscosities of the light and heavy fluids, respectively. The initial droplet is centered at (L0/2, 0), 
where L0 is the length of the domain. The computational domain of size L0 × L0/2 is resolved with 128 × 64 grid points. 
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Fig. 5. Contact angle (θ ) between a droplet and a flat surface.

Fig. 6. Contact angle versus dimensionless height of the drop on a flat surface.

The initial radius of the semi-droplet is R = L0/8 = 16. Periodic boundary conditions are applied in the x-direction and 
mid-way bounce-back is used on the top boundary.

To test the accuracy of the results, we compare an analytical relationship between the specified contact angle θ and the 
maximum height of the droplet hmax above the flat surface, as demonstrated in Fig. 5, at equilibrium for two different values 
of interfacial thickness, ξ = 3 and ξ = 4. The mass per unit density (area) of the droplet is Aeq = r2 (π − α + sinα cosα), 
where α = π − θ . Given an initial mass per unit density A0 = π R2/2, conservation of mass means

hmax

R
= (1 − cos θ)

√
π

2θ − sin 2θ
(36)

Fig. 6 shows a good agreement between numerical results and analytical solution over a wide range of contact angles. 
The results for ξ = 4 are slightly more accurate than those with ξ = 3, particularly when the equilibrium contact angle is 
further away from 90◦ . The maximum error, which occurs for a hydrophilic surface with θ = 30◦ , is measured at 16% for 
ξ = 3 and 9% for ξ = 4. In the rest of the simulations we use ξ = 4 with M = 0.02.

5.2. Test 2: wetting/dewetting of a droplet on a cylindrical surface

Next we will evaluate the accuracy of the proposed wetting boundary conditions on curved surfaces by placing a droplet 
on top of a circular cylinder in the absence of gravity. We specify contact angles ranging from 45◦ ≤ θ ≤ 135◦ . The droplet 
evolves until the prescribed contact angle at the three-phase contact point is reached. A schematic of the shape of the 
droplet resting on the circular cylinder is shown in Fig. 7. At equilibrium, the interfacial tension forces tend to minimize 
the free energy in the system by minimizing the peripheral area. Therefore, an arc with radius r is formed on top of the 
cylinder with radius Rs. Referring to Fig. 7, we can calculate the mass per unit density (area) of the circular droplet with 
radius r, whose center is distance k from the center of the circular cylinder, in terms of r and k(r, θ). The resulting relation 
is

A(r,k) = πr2 − r2 cos−1
(

k2 + r2 − R2
s

2kr

)
− R2

s cos−1
(

k2 − r2 + R2
s

2kRs

)
+ k

√√√√R2
s −

(
k2 − r2 + R2

s

2k

)2

(37)
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Fig. 7. Schematic of the contact angle between a droplet with radius r and a solid cylinder with radius Rs .

Fig. 8. Grid independency of the results for a droplet sitting on a cylindrical surface at tσ/μH R = 1800. Comparison between three resolutions: 64 × 64
(dotted green line), 128 × 128 (solid blue line), and 256 × 256 (dashed red line). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

where k is related to r and θ by the cosine law

k(r, θ) =
√

r2 + R2
s − 2rRs cos θ. (38)

We start the simulations by placing a circular cylinder centered at (L0/2, L0/4) and a droplet with radius R = Rs = L0/6
centered at (L0/2, L0/4 + Rs). The properties of the fluids are ρH/ρL = 1000 and μH/μL = 100. First we examine the grid 
independency of the results on three different grids with L0 = 64, 128, and 256. Periodic boundary conditions are used 
in the x-direction and mid-way bounce-back is applied at the bottom and top of the domain. The results are shown in 
Fig. 8 for two different contact angles, corresponding to a hydrophilic (θ = 45◦) and a hydrophobic (θ = 120◦) surface, at 
tσ/μH R = 1800. As can be observed, the drop interface is indistinguishable when increasing the number of grid points from 
128 × 128 to 256 × 256. Therefore, we will use the 128 × 128 grid, with σ = 0.01, to carry on the rest of the simulations in 
this section.

Fig. 9 shows qualitative results for three different contact angles. Using r = k = Rs in Eq. (37) gives us the initial mass 
per unit density of the drop

A (Rs, Rs) =
(

π

3
+

√
3

2

)
R2

s (39)

By equating the initial mass of the drop in Eq. (39) with its equilibrium mass in Eq. (37) we obtain an implicit relation 
between r and θ . We solve the resulting relation iteratively using the secant method. We can then measure Hmax (the 
distance between the top of the droplet and the center of the cylinder) in the simulations, and compare it with the analytical 
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Fig. 9. Equilibrium profile of a droplet on a cylindrical surface for three different contact angles.

Fig. 10. Comparison between the analytical solution and numerical results for a droplet in contact with a cylindrical surface.

results (Hmax = k + r). Variation of the dimensionless height of the drop (Hmax/R) versus contact angle is plotted in Fig. 10. 
In addition to the numerical results obtained by the proposed curved boundary treatment, results obtained by approximating 
the curved wall as a stair-case (with bounce-back on the link), as is commonly done, are compared with the analytical 
solution. As can be seen in Fig. 10, approximating the curved wall with a stair-cased boundary leads to erroneous results, 
becoming progressively worse as the contact angle deviates more and more from neutral conditions. On the other hand, the 
numerical findings obtained by the present curved boundary model are in excellent agreement with the analytical solution. 
The maximum error, which occurs for a droplet in contact with a hydrophilic surface at θ = 45◦ , is less than 1% for the 
curved boundary model while it is about 5% for the stair-cased approximation.

5.3. Test 3: unsteady flow past a circular cylinder

Single-phase, incompressible, uniform flow past a circular cylinder is a standard and widely studied problem with very 
well documented results [60–68]. Once the Reynolds number supersedes a threshold value, Recr ∼ 49 [63], the flow becomes 
unstable and the so-called von Kármán vortex street forms downstream of the cylinder. Here we extend this problem to 
a multiphase flow past a circular cylinder and compare the findings, particularly the drag and lift coefficients, with the 
available data for single-phase flow.

The computational domain is shown in Fig. 11. A circular cylinder of diameter D is centered at x = 8D from the inlet. 
The length and height of the computational domain are L = 32D and H = 16D , respectively. In order to expedite initiation 
of vortex shedding, the cylinder is displaced from the centerline by one lattice node in the y-direction. The no-slip boundary 
condition on the surface of the cylinder is realized by applying the boundary conditions in Eq. (29). A uniform flow (u, v) =
(U0, 0) is imposed at the inlet and along the top and bottom of the domain by invoking the nonequilibrium bounce-back 
rule after the streaming step [69]

fα− = fα + f eq
− − f eq

α (40)

α
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Fig. 11. Schematic of the computational domain and boundary conditions for uniform flow past a circular cylinder.

Table 1
Average drag coefficient, peak-to-peak lift coefficient, and Strouhal number 
for unsteady flow past a circular cylinder at Re = 100.

Reference CD Cpeaks
L St

Liu et al. [66] 1.350 ±0.339 0.165
Calhoun [67] 1.330 ±0.298 0.175
Present (L0 = 256) 1.377 ±0.324 0.170
Present (L0 = 512) 1.400 ±0.348 0.172
Present (L0 = 1024) 1.408 ±0.355 0.172

where fα ∈ (hα, ̄gα) denotes the unknown incoming distribution function after the streaming step. For example, for the 
nearly incompressible LBM proposed by He and Luo [70], which is used in our single-phase flow simulations, the non-
equilibrium bounce back at the inlet gives

ḡα− = ḡα + 2wαρ0U0 (41)

where α− ∈ {1, 5, 8}, α ∈ {3, 7, 6}, and ρ0 is a constant representing the density of the single-phase fluid. Convective bound-
ary conditions for the macroscopic properties (such as p, u, v , etc.) are applied at the outlet by solving the following 
equation using an implicit, upwind finite-difference scheme:

∂q

∂t
+ U0

∂q

∂x
= 0 (42)

where q is a placeholder for the macroscopic properties. Then the non-equilibrium bounce-back is invoked at the outlet to 
find the incoming distribution functions. The initial condition is the potential flow solution around a circular cylinder in an 
infinite domain. The Reynolds number of the flow Re = U0 D/ν is fixed at Re = 100. The momentum-exchange method [71]
is used to calculate the force exerted on the cylinder such that

F (t) = − 1

c2
s

∑
xb

∑
α−

eα−
[

ḡ∗
α−(xb, t) + ḡ∗

α(xf, t)
]

(43)

where the summation at x = xb is taken over the α−–directions that are pointing away from the circular cylinder. After 
calculating the force on the cylinder, the drag and lift coefficients are computed as

CD = Fx

1/2 ρ0U 2
0 D

CL = F y

1/2 ρ0U 2
0 D

(44)

Additionally we calculate the Strouhal number, defined as St = f s D/U0, where f s is the shedding frequency determined 
from the alternation of the lift force on the surface of the cylinder.

5.3.1. Single-phase flow simulations
First, the time-averaged drag coefficient is calculated on three different grids of differing resolution, which are 256 ×128, 

512 × 256, and 1024 × 512, to examine grid independence of the results. The numerical findings, together with available 
experimental and numerical data, are provided in Table 1. As can be seen, the calculated drag coefficient and the Strouhal 
number are in reasonable agreement with the available data in the literature. Also, increasing the resolution from 512 × 256
to 1024 × 512 has minimal effect on the predicted values for the drag and Strouhal number. Therefore, the 512 × 256 grid 
will be used for further simulations. Variation of drag and lift coefficients versus dimensionless time t∗ = tU0/D is also 
plotted in Fig. 12.
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Fig. 12. Variation of the drag and lift coefficients for the unsteady single-phase flow past a circular cylinder at Re = 100.

Fig. 13. Unsteady flow past a circular cylinder at Re = 100. Left: vorticity (flooded contour) in the single-phase flow; right: vorticity (flooded contour) and 
interface location (black line) in the multiphase flow.

Table 2
Average drag coefficient, peak-to-peak lift coefficient, and Strouhal number 
for multiphase flow past a circular cylinder at Re = 100.

C D Cmin
L Cmax

L St

θ = 30◦ 1.284 −0.131 0.078 0.159
θ = 150◦ 1.281 −0.077 0.167 0.159

5.3.2. Multiphase flow simulations
Now we consider the dynamics of binary fluid flow past a circular cylinder. In order to study the effect of surface 

tension, the density ratio and the viscosity ratio are set to one and the wettability of the cylinder is examined by changing 
the equilibrium contact angle. We consider two different contact angles: θ = 30◦ and θ = 150◦ with σ = 0.002. Qualitative 
comparison between the single-phase flow and multiphase flow simulations is shown in Fig. 13. Although the vorticity 
contours for both cases are similar, the interfacial tension forces in the binary fluid case compete with viscous forces and 
cause more dissipation in the flow field as is evident from the faded vorticity contours in the multiphase flow.

Similar to the single-phase flow simulations, we can monitor the variation of drag and lift coefficients versus time and 
measure the resulting Strouhal number. The drag and lift coefficients are plotted in Fig. 14 for two different contact angles. 
As can be seen in Table 2, the averaged drag coefficient for both cylinders are almost identical and the values are lower than 
those in the single-phase flow case. Similar reductions in drag coefficient have been observed in simulations of viscoelastic 
polymeric flows around cylinder [72]. With regard to the lift, it is interesting to note that the average lift coefficient for both 
cases is non-zero. The circular cylinder with θ = 150◦ produces a slightly positive lift coefficient while the other cylinder 
with θ = 30◦ results in a slightly negative value for the average lift coefficient. The magnitude of the peak-to-peak lift 
coefficient or both cylinders are almost identical (due to antisymmetry in the equilibrium contact angles) but with opposite 
direction. The reason for this phenomenon becomes clear by referring to Fig. 15, which shows the equilibrium profile of a 
quiescent two-layer fluid in the vicinity of the cylinder for both cases. As can be inferred from Fig. 15(a), the fluids exert a 
negative (downward) lift force on the cylinder with θ = 30◦ while the net lift force experienced by the other cylinder with 
θ = 150◦ in Fig. 15(b) is positive (upwards). This is the reason we observe a nontrivial average lift coefficient in Fig. 14.



A. Fakhari, D. Bolster / Journal of Computational Physics 334 (2017) 620–638 633
Fig. 14. Variation of the drag and lift coefficients for the unsteady multiphase flow past a circular cylinder at Re = 100.

Fig. 15. Equilibrium profile of a two-layer binary fluid around a solid cylinder for (a) θ = 30◦ , and (b) θ = 150◦ .

Fig. 16. Computational domain for a droplet falling on a cylindrical surface.

5.4. Test 4: droplet falling on a circular cylinder

In order to show the versatility of the proposed model in dealing with three-phase contact line dynamics on curved 
surfaces, we consider droplet impact dynamics on a circular cylinder with different wettability properties. Droplet impact 
onto spherical and cylindrical objects has been investigated experimentally [73–76] and numerically [77,42]. Most of these 
are for drop impact at large velocities (high Weber numbers). Our computational setup is depicted in Fig. 16. A circular 
droplet with radius R = L0/10 is centered at (L0/2, 3L0/2) in a domain of size L0 × 2L0, where L0 = 128. A circular cylinder 
with radius Rs = R is also centered at (L0/2, L0). The droplet accelerates from rest towards the solid cylinder due to gravity, 
which is incorporated in the LBE via a body force F b = −ρgy ĵ, where gy is the magnitude of gravitational acceleration. The 
pressure field is initialized with a hydrostatic distribution. Periodic boundary conditions are applied in the x-direction and 
link bounce-back are applied at the bottom and top of the domain.

This problem is characterized by contact angle and four other dimensionless groups: density ratio ρH/ρL, viscosity ratio 
μH/μL, gravity Reynolds number ReGr = ρH

√
gy D3/μH and Eötvös or Bond number Bo = gy(ρH − ρL)D2/σ . Gravity-based 
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Fig. 17. Droplet impact on a hydrophilic cylindrical surface with θ = 40◦ . ρH/ρL = 1000, μH/μL = 100, ReGr = 25, Bo = 2.2 (Oh = 0.06). See supplementary 
materials for simulation videos.

Fig. 18. Droplet impact on a hydrophilic cylindrical surface with θ = 40◦ . ρH/ρL = 1000, μH/μL = 100, ReGr = 25, Bo = 6.6 (Oh = 0.11). See supplementary 
materials for simulation videos.

dimensionless time is defined by t∗
g = t

√
gy/D . In the literature, results are often also presented in terms of alternative 

dimensionless groups, the Reynolds and Weber numbers, where Re = ρHUi D/μH and We = ρHU 2
i D/σ , respectively. These 

are based on the velocity of the droplet at the instant of impact, Ui . They can be combined to form the Ohnesorge number 
Oh = √

We/Re, which quantifies the ratio of viscous forces to surface tension forces. In all examples here we set the prop-
erties of the fluids such that ρH/ρL = 1000, μH/μL = 100, and ReGr = 25. We then examine the effects of surface tension 
and contact angle at relatively small Bond numbers, Bo ∼O(1).

Results for a droplet impacting a hydrophilic surface with θ = 40◦ are shown in Fig. 17 for Bo = 2.2 (Oh = 0.06) and 
in Fig. 18 for Bo = 6.6 (Oh = 0.11). For the lower Bond number in Fig. 17 the drop tends to adhere to the surface of 
the hydrophilic cylinder and evolve slowly. It then engulfs the perimeter of the hydrophilic cylinder at t∗

g = 6 and starts 
stretching at t∗

g = 8 due to the influence of gravity. External gravitational forces are not strong enough compared with the 
surface tension force between the droplet and the hydrophilic cylinder, causing the drop to momentarily hang from the 
circular surface while covering its whole area. On the other hand, the gravitational force in Fig. 18 is strong enough to 
prevail over the interfacial tension between the drop and the solid surface, causing the droplet to break up and detach from 
the surface of the hydrophilic cylinder.

In order to consider wettability effects of the cylindrical surface we increase the contact angle to θ = 170◦ , which 
corresponds to a superhydrophobic surface. Dealing with a superhydrophobic surface numerically is rather challenging and 
its simulation poses interesting interfacial dynamics. As such, we consider droplet impact on the superhydrophobic cylinder 
for three different Bond numbers. Results are shown in Fig. 19 for Bo = 2.2 (Oh = 0.06), in Fig. 20 for Bo = 3.3 (Oh = 0.07), 
and in Fig. 21 for Bo = 6.6 (Oh = 0.11).

For the lowest Bond number in Fig. 19, the droplet retracts after hitting the cylindrical surface. The superhydrophobicity 
of the cylinder clearly overcomes the gravitational pulling force, causing the droplet to bounce on top of the surface a couple 
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Fig. 19. Droplet impact on a superhydrophobic cylinder with θ = 170◦ . ρH/ρL = 1000, μH/μL = 100, ReGr = 25, Bo = 2.2 (Oh = 0.06). See supplementary 
materials for simulation videos.

Fig. 20. Droplet impact on a superhydrophobic cylinder with θ = 170◦ . ρH/ρL = 1000, μH/μL = 100, ReGr = 25, Bo = 3.3 (Oh = 0.07). See supplementary 
materials for simulation videos.

of times until it settles. This phenomenon is similar to the bouncing of a droplet after impact on a flat hydrophobic surface 
[78], and is also in line with recent numerical simulations in axisymmetric coordinates [42].

Comparing Fig. 19 and Fig. 17 at t∗
g = 8, we can see the effect of wettability of the cylindrical surface on the outcome of 

droplet impact. The hydrophilic surface in Fig. 17 allows the drop to wet its entire perimeter while the superhydrophobic 
surface in Fig. 19 repels the drop. By increasing the Bond number to 3.3 in Fig. 20, the drop gains enough momentum 
to break up upon contact with the upper pole of the cylinder, while being repelled from the superhydrophobic surface. 
Eventually, the drop disintegrates into two daughter droplets which are completely detached from the surface of the cylinder 
at t∗

g = 4.4, experiencing a free fall. Further increasing the Bond number to 6.6 leads to an interesting disintegration of the 
impacting drop into several droplets of various sizes in Fig. 21. Interested readers can refer to supplementary materials for 
simulation videos of these droplet impacts on the cylindrical surface.

The film thickness, h f on top of the cylindrical surface can be measured and compared with experimental data [75]. The 
normalized film thickness is defined by h∗ = h f /hi , where hi is the height of the drop at the instant of impact. Another 
dimensionless time is defined as t∗ = (t − ti)Ui/D , where ti is the instant of impact between the drop and solid surface. 
The temporal variation of the film thickness at the north pole of the cylinder is plotted in Fig. 22 alongside theoretical and 
experimental expectations [78,75]. According to [75] the film thickness is expected to vary as h∗ = 1 − t∗ at early times, and 
as h∗ = 0.15t∗−2 at intermediate times [75]. As can be seen in Fig. 22, our simulations approximately obey the power-law 
fitted curves of [75]. Any deviations are likely due to the unrealistic nature of our 2D simulations as well as the lower 
impact velocities in the current simulations compared with the experiments [75], which are conducted for a drop impact 
on a spherical surface with a drop diameter to target diameter ratio of 2.6/3.2 at Re = 4806 and We = 131. Despite these 
obvious limitations, our results are qualitatively promising.
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Fig. 21. Droplet impact on a superhydrophobic cylinder with θ = 170◦ . ρH/ρL = 1000, μH/μL = 100, ReGr = 25, Bo = 6.6 (Oh = 0.11). See supplementary 
materials for simulation videos.

Fig. 22. Temporal variation of the film thickness on top of the solid cylinder. ρH/ρL = 1000, μH/μL = 100, and ReGr = 25. Solid black line and dashed red 
line are the power-law curves from experimental data [75]; red squares correspond to θ = 40◦ and Bo = 2.2 (Re = 30 and We = 3); green circles correspond 
to θ = 40◦ and Bo = 6.6 (Re = 32 and We = 12); blue triangles correspond to θ = 170◦ and Bo = 2.2 (Re = 21 and We = 2); and gray deltas correspond to 
θ = 170◦ and Bo = 6.6 (Re = 26 and We = 7). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

6. Summary and conclusion

In this paper we proposed a numerical technique to implement wetting boundary conditions on curved surfaces without 
approximating the curved boundary as a stair-case. We introduced a rather simple lattice Boltzmann method, implemented 
on uniform Cartesian grids, which is capable of simulating multiphase flows with large density ratios. In contrast to other 
existing LB models for multiphase flows, there is only one nonlocal macroscopic property in our model – the phase field. 
This feature is advantageous for parallel implementation of the algorithm. We conducted various benchmark studies, look-
ing at three-phase contact line dynamics, to assess the proposed model. Where available, the numerical results were found 
to be in good agreement with analytical solutions and experimental data. The successful simulation of drop impingement 
on a superhydrophobic cylinder highlights the great potential of the proposed model for multiscale study of contact line 
dynamics within diffuse-interface models. Although some major studies have addressed the sharp-interface limit of Cahn–
Hilliard-based models [9,79], there is little to no work on this issue for conservative phase-field models [11], particularly 
when contact line motion is considered. Moreover, parameterizing the interplay between the mobility and interfacial thick-
ness is another important topic worthy of investigation for accurate modeling of multiphase flows using the phase-field 
models. Both these issues present important future research avenues.
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