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A B S T R A C T

The Spatial Markov Model (SMM) is an upscaled model that has been used successfully to predict effective mean trans-
port across a broad range of hydrologic settings. Here we propose a novel variant of the SMM, applicable to spatially
periodic systems. This SMM is built using particle trajectories, rather than travel times. By applying the proposed SMM
to a simple benchmark problem we demonstrate that it can predict mean effective transport, when compared to data from
fully resolved direct numerical simulations. Next we propose a methodology for using this SMM framework to predict
measures of mixing and dilution, that do not just depend on mean concentrations, but are strongly impacted by pore-scale
concentration fluctuations. We use information from trajectories of particles to downscale and reconstruct pore-scale ap-
proximate concentration fields from which mixing and dilution measures are then calculated. The comparison between
measurements from fully resolved simulations and predictions with the SMM agree very favorably.

© 2016 Published by Elsevier Ltd.

1. Introduction

Predicting transport of chemical species in flows through porous
media is challenging due to complex non-uniform flows at pore scales
(Poate et al., 2015). While advances have been made in effective mod-
els that predict downstream transport of conservative species, open
challenges remain to predict the transport of reactive species at large
scales (Dentz et al., 2011). In particular, when predicting transport of
reactive species it is typically not sufficient to develop a model that
can predict mean concentrations, but one that can also incorporate sub-
scale fluctuations (Berkowitz et al., 2016; Dentz et al., 2011). Reac-
tions can be highly localized events, governed by complex nonlin-
ear dynamics, meaning that fluctuations about the mean do not triv-
ially average out when upscaling. Indeed accurately capturing fluctu-
ations of concentrations about mean values is key to predicting mix-
ing driven reactions in setups ranging from simple closed systems
(Benson and Meerschaert, 2008; Bolster et al., 2014; Paster et al.,
2014), non-uniform flows (Paster et al., 2015), one dimensional
porous columns, (de Anna et al., 2013; Ding et al., 2013; Edery et al.,
2010; Gramling et al., 2002) and highly heterogeneous porous media
(Le Borgne et al., 2015). Any sound effective model should be able to
accurately predict mixing processes, at the very least in some global
sense, to have a hope of predicting the amounts of mixing driven reac-
tion that occur.

Effective models that predict mean concentrations in complex
flows date back to the seminal work of Taylor (1953). He showed

⁎ Corresponding author:
Email address: dbolster@nd.edu, diogobolster@gmail.com (D. Bolster)

that after sufficient time, three dimensional transport in laminar flow
through a tube can be described by a one dimensional advection dis-
persion equation with an effective dispersion coefficient. These ideas
were generalized to more complex flows via the method of moments
(Brenner, 1980), volume averaging (Plumb and Whitaker, 1988) and
homogenization (Hornung, 1997), among others. This model also
grounds the concept that solute dispersion in porous media can be
treated via a Fickian model, i.e. with a constant dispersivity parameter
(Bear and Cheng, 2010).

Taylor dispersion models have proved indispensable and are used
to great effect across the hydrologic sciences and beyond
(e.g. Chilukuri et al., 2015; Christov and Stone, 2014; Beard, 2001;
Howard et al., 2016; Dagan, 2012; Brenner, 1979; Sané et al., 2015;
Bolster et al., 2009b; Probstein, 2005). As with all models, they are
built on assumptions and have limits. Strictly, these ideas are only
valid at large times, typically defined as times greater than

where L is a characteristic length scale and D the diffu-
sion coefficient (Salles et al., 1993). This is the characteristic time for
molecular diffusion to homogenize concentration over length scale L.
From the perspective of predicting mixing this is also useful since at
these late times mean concentration is representative of actual con-
centrations; that is, fluctuations about the mean are small. Thus at
these late times, knowing the mean (spatially averaged) concentra-
tion is sufficient to quantify most features of transport. Depending on
the system in question, this characteristic time can be prohibitively
long and difficult to estimate. Additionally there is abundant evidence
that in real complex porous media advection velocities span orders
of magnitude and that structural complexity makes it impossible to
define a unique characteristic length scale (e.g. Bijeljic et al., 2013;
Siena et al., 2014). Thus the existence of a unique Péclet number to
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delineate advection and diffusion dominance is questionable
(Porta et al., 2015). This also implies that characteristic time τD at
which a transition to a Fickian transport regime can be expected is un-
known a priori and may be quite long.

At times before this characteristic time, significant subscale fluc-
tuations in concentration can exist, which impact the prediction of
longitudinal downstream transport, mixing and reaction processes
(e.g. LeBorgne et al., 2012; Bolster et al., 2011; Porta et al., 2012;
2016). Several efforts have extended the above mentioned approaches
to predict mean concentrations at pre-asymptotic times,(Lunati et al.,
2002; Richmond et al., 2013; Wood et al., 2003a) as well as mixing
processes (Bolster et al., 2011). While powerful, other studies have
shown that many assumptions required to close these models are
restrictive, confining regimes of validity (Battiato and Tartakovsky,
2011; Battiato et al., 2009).

An alternative upscaling approach to those mentioned above, built
from a Lagrangian perspective, is the Spatial Markov model (SMM),
first proposed by Le Borgne et al. (2008a) to model effective transport
in highly heterogeneous porous media. The SMM is a random walk
model that describes a plume in terms of a large number of discrete
particles that transition through space and time following a set of spe-
cific probabilistic rules; the SMM, unlike other random walk models,
fixes the size of spatial jumps particles make and then enforces cor-
relations between successive transitions, a step that is essential to ac-
curately capturing effective behavior, particularly for advection dom-
inated systems (Bolster et al., 2014). As with most upscaling efforts
one of the goals with the SMM is a model that can be run efficiently
at larger scales than the representative elementary volume and com-
putational savings with the SMM can often be on the order of sev-
eral orders of magnitude in terms of computational time (Sund et al.,
2015a). The SMM is also built on assumptions that restrict its regime
of validity; e.g. it can only be applied at spatial scales where corre-
lation effects are monotonically decreasing in an exponential manner
(Sund et al., 2016). However, it can typically be applied at temporal
and spatial scales much smaller than those set by the characteristic
Taylor dispersion time τD (Sund et al., 2016). The SMM has to date
been successfully applied to predict mean transport of conservative
solutes across a broad range of flows, ranging in complexity and scale
(Bolster et al., 2014; De Anna et al., 2013; Kang et al., 2014; 2011;
2015; Le Borgne et al., 2008a; 2008b; LeBorgne et al., 2012; Sund
et al., 2015a). While it has been extended to include heterogeneous
first order reactions (Sund et al., 2015b), to date mixing, and by exten-
sion mixing driven reactions, have not been explicitly included.

Here we propose a novel methodology with a twofold aim: (i)
model longitudinal transport in periodic domains and (ii) extend the
SMM to model dilution and mixing. We apply our approach to a
model problem characterized by a simple spatially periodic domain,
described in Section 2. Note that many approaches, including the
aforementioned method of moments and volume averaging, typically
involve solving a closure problem assuming some periodic repre-
sentative elementary volume. As discussed extensively in the litera-
ture, this should not be regarded as a restriction of the approach (e.g.
Renard and De Marsily, 1997; Wood et al., 2003b). To date the SMM
for a periodic system is parameterized by measuring the travel time
distribution of particles across two successive periodic elements and
measuring correlation effects via a transition matrix (Le Borgne et al.,
2008a). We argue that, specifically for the case of a spatially peri-
odic domain, this effort can be reduced to measuring particle trajecto-
ries across a single periodic element. Then, we couple our longitudinal
transport model with an additional procedure to predict dilution and
mixing of solute mass in the periodic domain. Both the longitudinal

transport and mixing models are obtained by exploiting information
on pore-scale particle trajectories, as detailed in Section 3.

2. Model system

In this paper we focus on a particular unit cell geometry, a chan-
nel with sinusoidal boundaries, which in the context of porous me-
dia was first studied by Dykaar and Kitanidis (1996) and Cao and
Kitanidis (1998). While simple, it has been shown to capture some
very rich dynamics, representative of complexities in real porous me-
dia. Multiple studies have used this, or very similar, geometries to ex-
plore moderate to high Reynolds number flow and transport (Bolster
et al., 2014; Bouquain et al., 2012; Chaudhary et al., 2013; 2011;
Richmond et al., 2013) and to study the impact of geometry on macro-
scopic dispersion (Bolster et al., 2009a; Cardenas, 2008; 2009;
LeBorgne et al., 2012) and dilution (Cao and Kitanidis, 1998). The
system is well studied and serves as an ideal benchmark against which
to test our modeling approach.

2.1. Geometry flow

The flow domain used in this study is shown in Fig. 1. The walls
of the channel are described by where

x is the horizontal coordinate, h(x) is the half-aperture, is the mean
half-aperture, h′ is the amplitude fluctuation of the half-aperture and
L is the length of a single cell. Here, we focus on the case where

and . Fig. 1 also depicts the streamlines for the flow,
calculated using a semi-analytical solution (Dykaar and Kitanidis,
1996; Kitanidis and Dykaar, 1997). The solution assumes Stokes flow,
with Reynolds number much less than one, meaning inertial effects are
negligible, which is generally a good approximation for porous me-
dia. Details on the flow solution are available from multiple sources
(Bolster et al., 2009a; Dykaar and Kitanidis, 1996; Kitanidis and
Dykaar, 1997) and so are not presented here.

Fig. 1. Schematic of flow domain (top) and the unit cell ‘pore’ (bottom) for flow
and transport modeling in this work. Streamlines for the flow are calculated using the
semi-analytical solution for Stokes flow developed by Kitanidis and Dykaar (1997).
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2.2. Simulation of transport at the microscale

We consider transport governed by the advection diffusion equa-
tion at the pore-scale,

where is concentration, is the advective velocity field,
and D is the diffusion coefficient. Hats over the symbols mean that we
are referring to quantities defined at the pore scale. Boundary condi-
tions are no-flux at the walls. In all cases we consider a pulse initial
condition, flux weighted along the pore throat. Note also, that due to
the natural symmetry of the system about we will only ever sim-
ulate half of the domain, imposing a symmetry (no flux) condition at

.
To solve this system, we implement a random walk (Risken, 1984),

where the plume is discretized into N particles. For a time step Δt, par-
ticle i moves as

where and are the horizontal and vertical position of particle i re-
spectively and ξ and η are independent identically distributed Gauss-
ian variables with zero mean and unit variance. No flux boundaries are
modeled by elastic reflection.

We use a Lagrangian random walk because for periodic flow do-
mains it is possible to consider transport over large distances through
many unit cells without the need for prohibitively large numerical
meshes, as only a particle’s position relative to the unit cell is ever
needed. Additionally, for sufficiently smooth velocity fields, random
walk methods do not suffer numerical dispersion. For all cases one
million particles were used with time steps of which for
this geometry have been shown to produce converged results
(Bolster et al., 2009a).

Concentrations are calculated by discretizing the space into square
cells with sides of length Δx, counting the number of particles within
each cell (np), and calculating where . For
boundary cells which intersect the wall it is straightforward to adjust
the volume of fluid accordingly. The mass of a particle as
we inject a pulse of unit mass in all instances considered here. In gen-
eral, we used a value of for the spatial grid. This value was
chosen based on a convergence test whereby results were invariant
when the grid spacing was halved or particle numbers doubled. The
same grid and formula described above is used to calculate concen-
tration as well as dilution and mixing metrics for our fully resolved
simulations, denoted by variables with hats, as well as our effective
modified SMM, which will be denoted by variables with tildes and are
described in detail below in Section 3.

This system is primarily characterized by the dimensionless Péclet
number, . While the flow solution assumes small Reynolds
number Re < 1, the Péclet number for many solutes in water is typi-
cally 2–3 orders of magnitude larger, meaning that while flow may be
viscosity dominated, transport can be advection dominated with typ-
ical values of 0.1 < Pe < 103 (Dykaar and Kitanidis, 1996). Here we
focus on Pe ≥ 100, as these cases can be harder to upscale since the

asymptotic time and length scales where Taylor dispersion works are
largest. In all cases Pe is tuned by setting (in arbitrary
units) and choosing D appropriately.

2.3. Observables to test the effective model

Here we define several observables that we will measure explicitly
from high resolution direct numerical simulations, using the random
walk method in (2). These observables will be treated as the ground
truth against which our effective model will be tested for validation.

2.3.1. Breakthrough curves
To test our model’s ability to capture mean effective transport, the

observable we will focus on is a concentration breakthrough curve
(BTC). BTCs at multiple downstream distances of 10L, 25L
and 50L will be measured. Several locations are chosen so as to test
the veracity of the model. An ability to capture one breakthrough
curve can be achieved by parameter tuning, but being able to ac-
curately capture BTCs at all four locations suggests a robustness
that only a physically consistent model should be able to capture
(Dentz and Bolster, 2010). For example, a model may be able to inter-
pret the transport behavior at the smallest distance or times, but might
fail to make accurate predictions at larger space-time scales or vice
versa (e.g. Le Borgne et al., 2008a; De Anna et al., 2013).

2.3.2. Dilution index and scalar dissipation
As outlined in the introduction one of the objectives of this work is

to extend the Spatial Markov model in such a way as to predict mix-
ing. To this end, we measure the temporal evolution of the dilution in-
dex (Kitanidis, 1994) as well as the second concentration moment, the
time derivative of which is related to another known metric for mix-
ing, the scalar dissipation rate (Bolster et al., 2011; Le Borgne et al.,
2010; Pope, 2000). For the considered pulse initial condition, the dilu-
tion index is defined by,

and the second concentration moment as,

where C(x, t) refers generically to either the microscale concentration,
or the SMM predicted concentration, that will be de-

fined in Section 3. The scalar dissipation ξ rate is closely related to this
measure as .

3. Transport and mixing - A Spatial Markov Model

A common goal of effective transport models, such as those dis-
cussed in the introduction, is to reduce the dimensionality of the trans-
port problem to a single dimension in the direction of flow. To that
end, here we propose and describe an SMM. As with any random
walk, we discretize our solute into a large number of particles and
then have them march through space and time following a defined set
of deterministic and stochastic rules. For our Spatial Markov model
we fix the size of the spatial jump that a particle makes and treat the
amount of time the particle takes to make that jump as random. At

(1)

(2)

(3)

(4)
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step k, a particle’s state is defined by its position and time .
Note that, as desired, vertical location is projected out and thus this
framework without further modification can only provide a represen-
tation of vertically averaged concentration. The equation for transport,
a Langevin equation that updates space and time of each particle, is
given by

Consistent with previous works (Bolster et al., 2014; LeBorgne
et al., 2012; Sund et al., 2015a; 2015b), for our SMM,

L is a spatial jump of fixed size that particles make during any step;
for a periodic domain, the length of the periodic unit cell, or integer
multiple thereof, seems most appropriate. The random component in
(5) is the time τ required for each particle to travel the distance L. This
reflects the broad distribution of transport velocities, typical within a
porous domain. The distribution from which this time step is sampled,
is given by the travel time distribution that it takes particles to traverse
one unit cell of length L.

Some of the most common implementations of (5) are random
walks where successive τ’s are independent and identically distrib-
uted, but increasingly models where successive steps are correlated
are becoming commonplace. Here we advocate for the case where
successive steps are correlated, which has been shown to be particu-
larly important in highly advection dominated systems (Pe > O(100))
(Bolster et al., 2014; Sund et al., 2016; 2015b). To date correlations
have been most typically imposed using the idea of a transition ma-
trix (Le Borgne et al., 2008a). Here, we will take a slightly different
approach, taking advantage of the spatially periodic nature of our do-
main. Moreover, our method provides a novel approach to predict the
evolution of mixing in time. To summarize, the key novel elements
of our procedure, are (i) the methodology employed to compute the
travel times τi

k and (ii) that we provide a downscaled approximation
of the position of the particle from which to estimate mix-
ing (e.g., through (3) and (4)) not included in currently available SMM
implementations. The following sections present the parameterization
and the implementation of our proposed approach.

3.1. Characterization of pore-scale transport trajectories

Before describing our novel approach, let us first explain why cor-
relation between successive steps is important. To this end, consider
the sample particle trajectories that are depicted in Fig. 2 and which
are obtained through simulation of pore-scale transport in the model
geometry using the random walk technique described in Section 2.2.

Fig. 2. Sample particle trajectories for . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

The blue and red lines depict the trajectories of two particles injected
into the fastest moving part of the flow along the center line of the
channel. This suggests both particles traverse the first unit cell very
quickly and then, due to the fact that they continue on comparably fast
streamlines, they pass through the second and third unit cell quickly
also. The mechanism that will cause these particles to eventually jump
to a slow trajectory is diffusion across streamlines. However, the lo-
cal impact of diffusion is considerably smaller with respect to advec-
tion, given that we consider here a largely advection-dominated case
( ). Likewise, the slowest trajectories represented in Fig. 2
(i.e. purple, cyan and green) persist in being slow across successive
pores.

The parameterization of the SMM is typically performed using a
statistical characterization of particle travel times, obtained by sim-
ulating pore-scale transport of a set of particles across a representa-
tive unit cell. In previous studies correlations have been imposed by
measuring the travel time statistics of particles across two successive
unit cells and building a transition matrix to represent jumps between
travel time classes (Le Borgne et al., 2008a). While this method has
been shown to provide a robust characterization of the distribution of
the travel times, it requires simulation across two successive elements.
Here we propose an alternative method that only requires simulation
across a single element. The key to our approach is to recognize that
what sets a particle’s travel time across a periodic element is its ver-
tical location at the inlet. Based on where it starts its journey across
the pore, a particle has a finite range of travel times as well as possi-
ble vertical locations where it will exit the pore. By virtue of the fact
that these are non-inertial memoryless particles, the vertical location
where it exits the previous pore serves as the vertical location from
where it starts its next transition. Fig. 3 highlights the idea by show-
ing three sets of particle trajectories originating from three inlet loca-
tions, which are identified by different colours. Results for
and are shown. For the smaller Péclet number, while all
trajectories identified by the same colour start at the same inlet loca-
tion, at the outlet they can span a broad range of outlet locations. For
the larger Péclet number the outlet locations associated with a single
inlet location are much less disperse, due to less relative influence of
diffusion. Almost no overlap between the three sets of trajectories are
observed when .

As anticipated above, the parameterization of the SMM requires
the simulation of pore-scale transport for a number of particles NPS.
This implicitly defines a set of of trajectories

si, which all travel from the inlet to the outlet cross sections of the
unit cell. Our model entirely relies on the information carried by si.
Each trajectory si is directly associated with an inlet location yin(si),
an outlet location yout(si) and a travel time τ(si). Moreover, we de-
fine a specific order of the trajectories si by setting

. Relying on this ordering, the tra-

jectories are subdivided into a number of Nbin subsets,

(5)

(6)
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Fig. 3. (left) Sample particle trajectories for (top) and (bottom) with a zoomed in region where particles exit the domain. Blue trajectories start in the fastest
region of the pore throat, red an intermediate region and green the slowest region. (right) The corresponding transition matrices with 10 bins depicting the probability of transitioning
to a new bin of inlet locations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

where

Definition (6) introduces a mapping between any location yin at the
inlet section and a bin number jbin which will be key to parameter-
ize transport in our SMM. Note that, while other definitions are pos-
sible, according to (7) the number of trajectories is the same for each
subset . In the numerical examples presented below we apply
these definitions, fixing and so that each sub-
set comprises 104 trajectories.

The definitions provided establish a direct link between the loca-
tion of the particle at the inlet section and the travel time through the
trajectory si. As discussed above, the outlet position associated with
trajectory si serves as the inlet position for the next transition. The
rightmost column of Fig. 3 demonstrates the correlation between suc-
cessive inlet positions, by showing the probability of jumping from
one bin to another in two successive cells. This representation resem-
bles the transition matrices which are typically employed in previ-
ous implementation of the SMM for longitudinal transport. It should
be noted, however, that we will never actually use this matrix in our
model and its representation in Fig. 3 is merely intended to demon-
strate the influence of correlation. For the transition prob-
abilities are almost uniform, while there is a strong signal of correla-
tion associated with ; particles which start close to the cen-
ter of the considered wavy channel are most likely to have their next
transition close to the center too, while particles closer to the bound-
ary are likelier to have their next transition start there. This merely
quantifies the already discussed qualitative effect shown in the mid-
dle column of the figure. It is worth noting that these transition matri-
ces need not be symmetric, as they clearly are not here. The threshold
of Pe > O(100) for correlation to become important is very much in

line with previous studies (Bolster et al., 2014; Sund et al., 2016;
2015b).

Our idea is to further employ the information contained in trajecto-
ries si to predict the evolution of mixing within the system. This, due
to the nonlinear dependence on concentration evident from Eqs. (3)
and (4), requires knowledge of subscale fluctuations in concentra-
tion; merely knowing average concentrations does not suffice. Thus,
one possibility is to downscale information from our upscaled model
back down to a more resolved smaller scale at locations in space and
time where we need it. A distinctive feature of our proposed Spatial
Markov model with respect to previous implementations is that we fo-
cus on sampling particle trajectories. It is logical to continue within
this framework and encode in our model more information on parti-
cle trajectories si, rather than just focusing on travel times alone. To
this end, we store a discretized counterpart of the trajectory si which
allows us to reconstruct the path of si inside the cell and the related
travel time. For each trajectory we introduce a discretized counterpart
which can be defined in matrix format,

where the pairs (χ, η)ω identify the locations along the trajectory si
which correspond to a travel time equal to with .
Here, n is the chosen number of intervals with which to approximate
each trajectory and is a key parameter of our discretization approach.
Note that our methodology yields positions along the trajectory which
are equidistributed in time. In order to downscale the positions along
the trajectories at intermediate times, we linearly interpolate between
the positions stored in P(si) in order to obtain the complete mapping
between the travel time domain and the location along the trajectory.

Fig. 4 displays what some sample interpolated trajectories look
like relative to actual trajectories for a variety of possible paths. For
the intents of this paper we found that reasonable results can be ob-
tained with (see Fig. 4), although this can cause small prob-
lems in regions where the velocities are largest in the pore throats

(7)

(8)
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Fig. 4. Sample particle trajectories si - with subsampled interpolations P(si) superim-
posed. The red lines are the actual particle trajectories, while the green and blue lines
are the interpolated paths with and respectively. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of
this article.)

(see for example that some interpolated trajectories actually leave the
domain) and so more may be needed. As can be seen, for the larger
value of n, the paths are reconstructed almost perfectly, while for the
lower value of n some clear issues arise (e.g., some of the trajectories
cross the liquid-solid boundary). In light of this observation, we iden-
tify the number of discretization points n as a key numerical parameter
for our methodology.

3.2. Modeling procedure

In this section we describe how the information on pore-scale tra-
jectories described in Section 3.1 is practically employed to simulate
the evolution of solute concentration and of mixing. The numerical
procedure is represented schematically in a flow chart in Fig. 5.

Our SMM considers transport of a set of Np particles within a time
window t ∈ [0, Tend]. In the following, we present separately the mod-
eling steps associated with longitudinal transport of particles in the
SMM, represented in blue in Fig. 5, and those related to the downscal-
ing procedure employed to approximate mixing, represented in green
in Fig. 5.

3.2.1. Longitudinal transport
To exemplify our proposed modeling strategy, let us consider

transport of a particle pi which is introduced in the system at the inlet
boundary, located at . In the SMM we assign to pi an initial lo-
cation . Here the location is selected to obtain a flux-weighted
injection, consistent with the implemented direct numerical simulation
(DNS). This location can then be used to assign the particle to a bin
jbin through (6), using the trajectories si obtained from the pore-scale
characterization of transport in the unit cell. Then, we randomly se-
lect a trajectory s1(pi) from the set and set that the transi-
tion of particle pi happens along s1(pi). The travel time associ-
ated with the first transition of particle pi is consequently assigned as

in (5). At the next time step the same procedure
can be followed upon assigning and so on for all

Fig. 5. Algorithm to predict one-dimensional longitudinal transport (blue loop) and mixing evolution (green loop). i, j, and k are indices of particles, time steps, and longitudinal
transport steps, respectively. Thus and are the longitudinal spatial location and the temporal location of the ith particle at the kth longitudinal transport step. Based on which bin
the particle is in, jbin, at each modeling step particle i (pi) chooses a trajectory (sk(pi)) to follow from the set of trajectories in its bin ( . This trajectory sets the particle’s travel
time and ending position (yin, yout, τ). The time level tM, j is from a set of user defined times to measure the evolution of mixing, the times at which we find the particle’s estimated
position along its trajectory through interpolation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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steps k, until the desired number of transitions has occurred. This pro-
cedure is graphically sketched by the blue loop in Fig. 5.

3.2.2. Dilution and mixing
We define a user-defined set of times at

which we aim to evaluate metrics (3) and (4). We illustrate here the
procedure employed to retrieve the approximate position of particle pi
in the system at a generic time tM, j, which is labeled as . First
we march the particle through steps such that .
Then we compute which locations along the discretized trajectory the
particle is between based on the fraction of the total travel time which
is associated with the time difference i.e.,

where floor rounds down to the lower integer. We then employ the
matrix P(sk) (Eq. (8)) to obtain the position of the particle within the
cell. According to the discretization of the particle pathways intro-
duced in Section 3.1 (see Fig. 3), the particle lies somewhere between
(χ, η)ω and . We then define,

to linearly interpolate the position of pi such that,

The particle position is then stored and can be employed to reconstruct
an approximated concentration field . Dilution and mix-
ing can be then quantified upon substituting in (3) and
(4). The procedure is represented in the green loop in Fig. 5.

Note that the transport model identified by the blue loop is
stand-alone, i.e., it can be run independently from the evaluation of
mixing and dilution. On the other hand, the procedure employed to
predict mixing (green loop) is fully nested within the transport mod-
eling procedure (blue loop), as it relies on the information associated
with the trajectories, which are selected along the transport simulation.

4. Results

4.1. Breakthrough curves

Fig. 6 depicts breakthrough curves located at distances 5L, 10L,
25L and 50L downstream of the injection location. Two sets of data
are shown corresponding to the measurements from the small scale di-
rect numerical solutions as well as predictions with our novel SMM.
The agreement between the two can be seen to be very good with
the SMM predictions matching well at all times and all locations.
This is the case for both Péclet numbers. Our modified SMM, de-
signed for periodic flow domains, appears to match mean effective be-
havior well, working comparably to previous SMM models applied
to similar geometries (e.g. LeBorgne et al., 2012; Bolster et al., 2014).
It is also worth noting that the computational time for running the
SMM to produce these curves is on the order of 100 times faster
than the DNS results, although neither code was fully optimized for

Fig. 6. Breakthrough Curves for two Péclet numbers, (top) and 1000 (bot-
tom), comparing measurements from the high resolution direct numerical simulations
(green solid line) to predictions by the SMM model (black dots). Breakthrough curves
are at distances 10L, 25L and 50L. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

performance. Note that it is also straightforward to use this frame-
work to calculate effective longitudinal dispersion coefficients, which
compare favorably with predictions using classical theories and mea-
surements from DNS simulations (e.g. LeBorgne et al., 2012; Bolster
et al., 2014; Sund et al., 2015a, 2015b).

4.2. Scalar dissipation and dilution index

Fig. 7 depicts the evolution over time of the dilution index as well
as the second concentration moment, the two observables we identi-
fied for mixing and dilution. In the same way as for the BTCs in the
previous subsection, two sets of data are shown corresponding to mea-
surements from the direct numerical solutions as well as predictions
with our novel modified SMM, implementing the algorithm depicted
in Fig. 5. Again, the match between measured values and those pre-
dicted by our effective model is good, matching well for both con-
sidered Péclet numbers over the full range of modeled times, which
span pre-asymptotic to asymptotic. The fact that the SMM predictions
match the DNS data well over all times for both Péclet numbers and
both metrics, suggests that our proposed SMM is robust.

4.3. Convergence test

One of the critical features of the novel downscaling element of the
proposed SMM is the number of points that are stored in matrix P(si)
defined in Eq. (8), that is the number of points along a particle’s tra-
jectory that one stores between which to interpolate and reconstruct a
particle’s location. In this work we used and in the previous
section demonstrated that this reconstructed the evolution of our cho-
sen global mixing measures well.

To address the issue of how many points one should use in a more
rigorous manner on Fig. 8 we show the predicted evolution of the di-
lution index for varying n, all the way from (interpolating di-
rectly between a particle’s inlet and outlet location) up to . Re-
sults are shown for both Péclet numbers of interest with very similar
trends. We focus only on the dilution index as trends for the second

(9)

(10)

(11)
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Fig. 7. A comparison of the Dilution Index and Second Concentration Moment M as measured from the small scale direct numerical simulations (black solid line) and predictions
with the SMM (red circles) for two different Péclet numbers ( and ). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 8. A comparison of the Dilution Index predicted with the SMM for varying values of n the number of interpolation points used in the downscaling of the concentration field.
Results are shown for both Péclet numbers ( and ).

concentration moment are very similar. In both cases vastly
underpredicts the evolution of the dilution index, meaning that the
model predicts that the plume occupies less space than it should. Phys-
ically this makes sense as a direct interpolation from the inlet face
to the outlet face does not allow the full pore volume to be occu-
pied and unphysically restricts locations where particles can be po-
sitioned; that is particles cannot take an absolute |y| value anywhere
above restricting particles to locations confined between the
thinnest section of the pore and leaving a lot of empty space that can-
not be filled. As n increases more and more space can be filled and
eventually appears to converge to reasonable values for the

results of which are visually indistinguishable from which is
in turn indistinguishable from the DNS results, as shown in Fig. 7.

Likewise Fig 9 plots the mean absolute relative error (MARE), de-
fined as,

where EDNS and ESMM are the dilution index measured from the

(12)
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Fig. 9. Mean Absolute Relative Error for the dilution index as a function of the number
of interpolating points used for and .

fully resolved direct numerical simulations and predicted by the SMM
respectively. Clearly the small values of n do a terrible job, as was
already visually evident from Fig. 8, with the results converging as
n increases. For our chosen value of the errors are less than

meaning that predicted and measured values of the dilution in-
dex are within 1% of another. Interestingly the MAREs for
are lower than those for which is the reverse of what one
might intuitively expect given that for correlation effects
are known to be much more important in the context of SMMs. How-
ever, we believe that for the location of a particle is less cer-
tain due to the nature of diffusion and so an accurate reconstruction of
its path is more challenging. However, for both cases the case
yields very satisfactory results.

5. Conclusions

We have introduced a novel variant of the Spatial Markov Model,
a class of model that has previously been used with great success to
predict effective transport across a wide range of applications of hy-
drologic interest. The novelty of the present SMM is that rather than
focusing on only the travel time statistics of particles as they transition
through space, we build the model by focusing on specific trajectories
that particles can take, which includes information on both the current
travel time a particle will have as well as the limited number of tra-
jectories that it can sample during its next transition. This means that
the model can be parameterized with information on transport across
one unit cell, rather than two as has been the case for previous imple-
mentations. The SMM also brings with it a significant computational
cost saving relative to running the full blown DNS. While the codes
written for this paper were not written with optimization in mind, the
SMM code is about 100 times faster than the DNS, offering a consid-
erable speedup, which under further optimization could be improved
even further.

In its current form, the model can be applied to a spatially peri-
odic domain, recognizing that the potential trajectories a particle can
sample are set by its position when it enters the domain. While the
requirement for a periodic domain might be regarded as a potentially
limiting feature of this model, it should also be noted that solving
a closure problem on a periodic unit cell is required for many well
established upscaling procedures. Several in depth discussions in the
literature highlight that this should not be seen as a disadvantage of

any of these approaches (e.g. Renard and De Marsily, 1997;
Wood et al., 2003b).

By applying the model to a simple benchmark periodic flow, we
demonstrate that this novel SMM is able to faithfully represent effec-
tive transport for two Péclet numbers, and cho-
sen because these transition to the regime where previous studies have
shown correlation effects to be important, requiring an upscaled model
that accounts for these, which the SMM does.

Recognizing that we can store more details on the trajectories that
particles take, including the specific location of a particle at fixed tem-
poral increments along a trajectory, we also propose a methodology
for using the modified SMM to downscale the mean effective model
to provide a physically sound estimate of a particle’s location at a spe-
cific time. By providing the approximate position of particles at a spe-
cific time we can reconstruct the full concentration field at a micro-
scopic level and use this reconstructed concentration field to measure
quantities that are sensitive to subscale fluctuations, such as the dilu-
tion index or moments of concentration. For our benchmark model,
for both of the considered Péclet numbers we demonstrate that this
methodology works well at predicting both the dilution index and the
second moment of concentration. In all cases the comparison between
the direct numerical simulations where all processes are fully resolved
and the modified SMM are excellent. To our knowledge this is the first
time that an SMM has been used to successfully predict the temporal
evolution of global mixing metrics such as the dilution index and sec-
ond moment of concentration, demonstrating its potential in this re-
gard as well as opening an avenue for its potential use in predicting
mixing driven reactive transport. Additionally the fact that our modi-
fied SMM appears to be able to predict volume averaged quantities as-
sociated with subscale fluctuations suggests that it may be a promising
model that could be used in some hybrid manner to speed up the com-
putation of closures that arise during formal upscaling, e.g., by volume
averaging (e.g. Porta et al., 2016). We also envision that our approach
can be extended to mixing within heterogeneous non periodic systems,
possibly extending existing models recently developed for this pur-
pose (e.g. Porta et al., 2015). Additionally, given structural similari-
ties between our approach and streamline based upscaling approaches
(e.g. Crane and Blunt, 1999), with some modification we may be able
to readily integrate our methodologies into established codes and nu-
merical frameworks. These are issues that must be addressed in future
efforts to assess the full potential of our modified SMM framework.
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