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Concentration statistics for transport in random media
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We study the ensemble statistics of the particle density in a random medium whose mean transport dynamics
describes a continuous time random walk. Starting from a Langevin equation for the particle motion in a single
disorder realization, we derive evolution equations for the n-point moments of concentration by coarse graining
and ensemble averaging the microscale transport problem. The governing equations describe multidimensional
continuous time random walks whose waiting time distribution is given in terms of the disorder distribution.
We find that the concentration is not self-averaging even for normal mean behavior. The relative concentration
variance for anomalous is larger than for normal mean behavior. These results may have some impact on risk
and extreme value analysis in stochastic dynamic systems.
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In the frame of effective approaches for transport in dis-
ordered media, it is of paramount importance to quantify the
reliability of the predicted mean behavior. This implies the
quantification of the ensemble statistics of concentration and
more specifically the self-averaging behavior of the particle
density as measured by its relative ensemble variance. Effec-
tive models can be obtained by phenomenological consider-
ations or derived using stochastic models for the spatiotem-
poral fluctuations of the disordered medium. In the latter
case it is possible to relate the characteristics of the disorder
distribution to the parameters and constitutive equations of
the effective transport model and quantify the fluctuations of
the state variables and, ideally, their full statistical distribu-
tion.

We consider transport in disordered media, whose mean
behavior can be described by continuous time random walks
(CTRWs) [1,2]. CTRW is an ensemble averaged transport
theory [3] that is ubiquitously used in many fields ranging
from solid-state physics to financial physics to biology to
groundwater hydrology [2,4,5]. It has been used to model a
series of dynamical phenomena including the diffusion of
carriers in disordered media [1], turbulent diffusion [6],
anomalous diffusion in intermittent chaotic systems [7],
anomalous dispersion of light in disordered optical materials
[8], and non-Gaussian contaminant transport in geological
media [9,10].

Klafter and Silbey [3] showed that CTRW can be obtained
by ensemble averaging over a certain not further specified
disorder distribution. Eisenberg er al. [11] addressed the
problem of asymptotic concentration fluctuations for an un-
biased CTRW which describes anomalous diffusive mean be-
havior.

Here the aim is to quantify the ensemble statistics for
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transport in random media which on average is given by a
CTRW. Transport in a single realization of such a medium
can be described by the Langevin equations [12],

dx(s) = v[x(s)|ds + \2Dds&, ~di(s) = 6(s)ds. (1)

The drift v(x) is induced by a deterministic external field, D
is the molecular diffusion coefficient, and & is a Gaussian
random vector characterized by zero mean and unit variance.
The deterministic drift v(x) is characterized by the typical
value v(. The small scale medium fluctuations are reflected
in the time increment 6(s)ds>0. The heterogeneity coeffi-
cient 6(s) is modeled as a stationary random variable. The
fluctuations of the random medium are characterized by the
heterogeneity scale [. Equation (1) describes the movement
of a particle in a random environment under a deterministic
external drift force and subject to white noise. The typical
drift v, the diffusion coefficient D, and the heterogeneity
scale [/ define the Péclet number Pe=vy//D. The initial con-
ditions for Eq. (1) are x(0)=0 and #(07)=0; #(s) denotes the
time when the particle leaves x(s).

Note that the particle position x(z) is an implicit function
of time, x(¢)=x[s(7)]. Thus, the particle distribution c(x,?) in
a single realization of 6(s) is given by

c(x,1) = (S{x = x[s()]}), 2)

where the angular brackets denote the white-noise average.
The nth ensemble moment of the particle distribution then is
given by

¢(x.1) = (lx ~x[s(O )", (3)
where the overbar denotes the disorder average over the en-

semble {6(s)}. Expression (3) can be written in terms of #(s)
as
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)= | dsx-xs)) o) dr-1s)], @)
0
where we used that & f(¢)]=[df/dt]"' dt—t,] with t, as the
only zero of f().
In the following we consider the more general n-point
moments of concentration

bu(X,1) = f dSH<5[X(’>—X<’)(S)]>><H(S)é[t—t(S)]
(5)

We define the nd-dimensional position vector X

=[xV, .. x(”)’]’ where the prime denotes the transpose.
Each of the x(s) satisfies the Langevin Eq. (1). The nth
moment of the particle distribution in terms of the n-point
density [Eq. (5)] is ¢"(x,1)=¢,[xV=x,...,x"=x,1]. Spe-
cifically, the mean density is given by c(x t)=¢,(x,1); the
density variance is given by 02(x,1)=¢,(x,x,1)— ¢ (x,1)%
Note that Eq. (5) is not the n-point displacement density as
studied in Ref. [13], for example. In the notation used in this
Rapid Communication the n-point displacement density
reads as c(Xy,f;;...;Xy,Ly).

In order to perform the ensemble average in Eq. (5) we
need to specify the statistics of 6(s) and the spatial organi-
zation of the random medium. As outlined above, the me-
dium fluctuations are characterized by a typical (micro-
scopic) heterogeneity scale, that is, the correlation scale of
the medium fluctuations, given by /. For illustration, we con-
sider only a single heterogeneity scale. In general, the spatial
organization of the medium can be more complex and char-
acterized by a hierarchy of length scales. We focus on an
observation scale much larger than / on which the medium
can be considered uncorrelated so that 6(s) is completely
characterized by its single variable distribution P(6). We
choose the heterogeneity scale [ as the new spatial support
scale, which introduces the typical advection time 7,=//v as
the new temporal support scale. Note that coarse graining is
a key step here because it allows us to take into account the
information on the medium organization.

We now discretize the operational time s in terms of 7.

That is, we set s=N7, and identify x?(s)= x(’) 0(s) = 6y,
and
N N
f ds'0(s') = >, 7,0,. (6)
0 n=0

The sum starts at n=0, which implies that the particle leaves
the initial position xy=0 at the random time 7y=7,6,. The
discretized version of Eq. (5) is now given by

¢n()2’t) = TUE ]._[ <6[X(l) - Xl(\l/)]>

N=0 i=1

e N-1
X | dt' Oyo(t—1t' —7,6y) | ., .
fo N vIN 5[; -2 m}

n=0
(7)

For observation times much larger than 7, we approximate
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08(t — 7,0) = T;lf

7,

dopP(0). (8)

Upon defining the transition time 7= 67, and its distribution

(1) as
(1) = T;]P(T/TU) 9)

expression (7) for the n-point density is
—t
(X, 1) = f dr'[1- J di" (") IR(X,t"), (10)

where we define

R(%,1) = 2 (%= &yD) ot — 1) (11)

N=0

The discrete (nd+ 1)-dimensional process (Xy,y) satisfies

A A AlA [P
Xy=Xy_1+ V(XN_])TU + \’2DTU§N, (123)

tN=tN—1+TN—l’ (12b)
where the éN is an nd-dimensional Gaussian distributed in-
dependent random vector with zero mean and unit variance,
the nd-dimensional drift is given by ¥=(v',...,v’)’. The in-
dependent time increments are distributed according to (7).
Note that ty denotes the time at which the particle reaches
the position Xy. The initial conditions are X,=0 and 7,=0.
Equations (10), (11), (12a), and (12b) define a classical de-
coupled CTRW in the presence of a deterministic external
drift force field.

The generalized master equation corresponding to the
CTRW [Egs. (10), (11), (12a), and (12b)] then is given by [1]

a¢"(x ! fdtfdx’ “ID(x|R")

XM(t_t,)[d)n(i,’t’)_¢n(ivl)]v (13)
where the transition probability ®(£|X’) is given by
DR[R)=(AR-Xy]) |,2N_]=,2/ [14]. The memory function M (%)
reads in Laplace space as

AT, (N
meoy = 2 (14)
L= (\)
The Laplace transform is denoted here by an asterisk, the
Laplace variable is A.
A Kramers-Moyal expansion [14] of Eq. (13) up to sec-
ond order gives the following generalized Fokker-Planck
equation for ¢,(X,1):

‘?‘/’"a(t" D ¥ 90) - ¥D@)]
xf dt'M(t—1t")¢,(%,t"), (15)
0

where the colon denotes a tensor product. The dispersion
tensor D(X) is given by
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D(X)=1,,D+ Mr (16)

with 1,,; the nd-dimensional identity matrix. For n=1, we

denote D by D.

For the exponential heterogeneity  distribution
P(6)=exp(—6) the memory function M(s) reduces to
M(t)=58(t), and Eq. (15) reduces to a Fokker-Planck equa-
tion, which means that mean transport is normal. For illus-
tration in the following, we consider a constant external drift
force v(x)=v=const, which allows us to obtain closed form
expressions for the concentration statistics. The solutions to
Eq. (15) for an exponential disorder distribution then are
given by the nd-dimensional Gaussian pulse

_exp[- (%= V0D~ (% - ¥1)/41]
[(4m1)"det D]V

()Dnd()zata‘/}7]j) ) (17)

with D! as the inverse of D. Specifically, the mean concen-
tration ¢(x,1)=¢,(x,7) is given by a Gaussian pulse, that is,
transport is normal.

In the limit of Pe=0, i.e., in the force-free case, the vari-
ance is zero, which means that the concentration is exactly
self-averaging [11]. In the presence of an external field, this
is different. Aligning the one direction of the coordinate sys-
tem with the direction of the drift v so that v;=d;;v, we
obtain the explicit expression for the concentration variance

(x; —v) v,
PP Gy 0+ o)
o= : = _1]|. (18)
V(D +v27,)D

Note that this implies that even in the case of normal mean
transport, the relative variance 0'5/52 increases exponentially
for increasing distance from the center of mass of the aver-
age distribution. In the limit of large times, the relative vari-
ance diverges exponentially with time. This means that in
contrast to the force-free case, the relative concentration
variance is always finite or, in other words, the concentration
is a non-self-averaging observable. That is, the ensemble
mean concentration is not (asymptotically) equal to the
coarse grained or spatially averaged concentration in a single
medium realization. Similar non-self-averaging behavior has
been observed in Ref. [15] for the first passage time distri-
bution in a one-dimensional disordered medium.

For arbitrary disorder distributions, the solution of Eq.
(15) can be expressed in terms of the Laplace transform of
Eq. (17) as

Gr(%,N) = @i XN VM (N), DM*(N)]. (19)

Thus, the general Laplace space solutions for the mean and
mean-squared concentrations in d=1 dimension are

|x|v Dy,
exp| — l+4——"—
2D11 Mx()\)v2

M*(\) \/ | pa—Pu |
v M*(\)v?

(20)

c*(x,\) = explxv/(2D,;)] X
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B exp[xv/(D +v°7,)]
- 2
|x|v D +v°r,
Ko\ 52\ 1+2h
D+vT, v=M*(N)
M*(MV(D +v21,)D

& (x,\)

(21)

In the following we consider the concentration variance for
non-Fickian mean transport as observed for the truncated
power-law distribution [16]

1 0-1

P(6) exp[— (m + T)}(G— nh (22)

with #=1. In the time regime 7,<r<<T7,0. transport is
anomalous that is for 0 <8< 2 the mean and variance of the
particle trajectory scale anomalously with time (e.g., [17]).
For times > 7,6, the mean behavior asymptotes toward nor-
mal [18] and the concentration variance is asymptotically
given by Eq. (18). These results are compared to Monte
Carlo simulations based on the numerical solution of the
Langevin equation

vdt N 2Ddt
R[x(1)] R[x(1)]

dx(f) = § (23)

which is equivalent to Eq. (1) for a constant drift force. This
can be seen by performing the subordination transformation
dr=R[x(s)]ds (e.g., [19]), approximating x(s) = vs and iden-
tifying 6(s) =R(vs).

Figure 1 shows the squared mean concentration and con-
centration variances obtained by Laplace inversion of Eqs.
(20) and (21) using Eq. (22) for two different cut-off values
(6,=10,10%), B=3/2 at t=10%7, in d=1. Notably, the uncer-
tainty of concentration increases as mean transport becomes
more anomalous, i.e., for increasing cut-off value 6,. The
dots denote the Monte Carlo results obtained by numerical
solution of Eq. (23) for 10? particles in 2 X 10* disorder re-
alizations characterized by the truncated power-law distribu-
tion [Eq. (22)]. The simulated behavior agrees well with the
model predictions. In both cases the absolute variance in-
creases as the concentration values increase. Large concen-
tration values are spatially more localized than small values
and thus subject to larger uncertainty. For anomalous mean
transport, which is characterized by a spatial backward tail
[Fig. 1(b)], this behavior is amplified as the spatial distribu-
tion of large concentration values is broader than for normal
mean transport.

In conclusion, we have presented a method that allows for
the determination of the full concentration statistics for trans-
port in random media whose mean behavior can be modeled
as a CTRW. We have studied the concentration variance for
normal and anomalous mean transport behavior and have
found that the concentration distribution is in general not
self-averaging in the presence of an external field. Experi-
mentally determined concentration values are usually ob-
tained as spatial or temporal averages. Our results imply that
the point values of concentration can significantly deviate

010101-3



DENTZ, BOLSTER, AND LE BORGNE

0.06 T T T T T T T
0.05
0.04

0.03

S2n1), c(x 1)’

0.02 |-

0.01

0

52

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 80, 010101(R) (2009)

0.03 T T T T T T T

0.02

2 2
G,(x,1), c(x,1)

FIG. 1. Concentration variances (solid lines) and squared mean concentrations (dashed lines) in d=1 dimension obtained by inverse
Laplace transform of Egs. (20) and (21) for the disorder distribution [Eq. (22)] with 8=3/2 and the cut-off parameters (a) §,=10 and (b)
6.=10>. The Péclet number is Pe=10 and the observation time r=10%r,. The corresponding Monte Carlo results for the squared mean
concentrations (X ) and concentration variances (+) are obtained by numerical solution of the Langevin Eq. (23) for the movements of 103
particles in each of 2 X 10* disorder realizations. The relative variance of concentration increases as the mean transport behavior becomes

more anomalous.

from the measured mean. Specifically, we find that the rela-
tive concentration variance for anomalous mean transport be-
havior is larger than the one for normal mean transport. This
implies that for non-Fickian mean transport as frequently

observed in real systems, the uncertainty of the observed
concentration values can be significant, which is of impor-
tance for extreme value studies and risk analysis in disor-
dered systems.
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