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We study transport in an idealized porous medium characterized by a spatially
varying retardation factor, which models linear instantaneous chemical adsorption of
a solute. Using a stochastic modelling approach, we study the impact of disorder
correlation on the large-scale dispersion behaviour. We consider short, long-range and
intermediate-range disorder correlations, and demonstrate that (truncated) power-law
correlation causes anomalous dispersion, even in the presence of weak heterogeneity.
We identify different preasymptotic and asymptotic regimes of anomalous dispersion
that shed new light on the disorder and local-scale transport mechanisms leading to
non-Fickian behaviour. The analytical results are complemented by numerical random
walk particle tracking simulations, which are found to be in good agreement with
the derived dispersion behaviour. We conclude the paper by deriving an effective
transport equation for this system, which can be shown to be tied to the family of
continuous-time random walk models.
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1. Introduction
Making accurate predictions of transport in the subsurface is notoriously difficult

due to the heterogeneities that occur naturally in geological systems (Dagan
1984; Gelhar 1992; Tartakovsky & Winter 2008). Spatial heterogeneity of physical
parameters is known to have a significant effect on transport on the large scale
(Koch & Brady 1985, 1987; Dagan 1997). In particular, it is known that physical
heterogeneity can lead to anomalous transport (e.g. Jones & Young 1994; Moroni &
Cushman 2001; White & Nepf 2003), which means that spreading of the plume is
not Fickian. Anomalous transport has been observed extensively in the laboratory (e.g.
Silliman & Simpson 1987) and in the field (e.g. Gelhar, Welty & Rehfeldt 1992). The
rate of spreading can be quantified by the temporal evolution of the spatial moments of
the plume (e.g. Aris 1956; Gill & Sankarasubramanian 1970).
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Studies of dispersion in moderately heterogeneous media typically result in Fickian-
type spreading of plumes, suggesting that the non-Fickian behaviour observed in
the laboratory (e.g. Levy & Berkowitz 2003) and in field experiments (e.g. Adams
& Gelhar 1992) can be attributed to large degrees of heterogeneity. This certainly
agrees with observations in highly heterogeneous systems (e.g. Adams & Gelhar
1992; Herrick et al. 2002; LeBorgne, Dentz & Carrera 2008), but does not explain
observations in systems with relatively weak degrees of heterogeneity (e.g. Benson,
Wheatcraft & Meerschaert 2000). In fact, anomalous transport can arise due to
broad distributions of disorder point values as well as strong disorder correlation
(e.g. Bouchaud & Georges 1990; Dentz & Castro 2009; Dentz & Bolster 2010). For
transport in heterogeneous permeability fields, anomalous dispersion has been shown
to occur in stratified media (e.g. Matheron & de Marsily 1980) as well as in media
characterized by hierarchies of heterogeneity length scales of the random permeability
field (e.g. Neuman 1990; Glimm & Sharp 1991; Dagan 1994; Rajaram & Gelhar 1995;
Di Federico & Zhang 1999; Fiori 2001). Models that describe anomalous transport
in highly heterogeneous porous media include multirate mass transfer (MRMT),
continuous time random walk (CTRW) approaches and fractional advection–dispersion
equations (e.g. Berkowitz et al. 2006; Neuman & Tartakovsky 2009). Such models
describe anomalous transport caused by a broad heterogeneity distribution, which is
mapped onto a distribution of characteristic transport time scales.

In this paper we study the impact of strong disorder correlation on large-scale
anomalous dispersion. We consider an idealized heterogeneous porous medium that is
characterized by spatial variability in linear equilibrium sorption–desorption properties
as quantified by the retardation factor. The medium is assumed to be physically
homogeneous even though in general there is a correlation between the retardation
properties and the distribution of hydraulic conductivity in geological media (e.g.
Bellin et al. 1993; Attinger et al. 1999; Dentz et al. 2000). As noted in Attinger
et al. (1999), within the stochastic perturbative approach employed in this paper, the
contributions to the dispersion coefficients due to different disorder sources simply
add up. Here we focus on contributions due to heterogeneity in the retardation factor
and disregard heterogeneity in hydraulic conductivity. Heterogeneity in the chemical
properties of a medium, such as spatial variability of retardation, can have a significant
impact on the transport properties of a dissolved substance (Chrysikopoulos, Kitanidis
& Roberts 1990; Bellin et al. 1993; Miralles-Wilhelm & Gelhar 1996; Cvetkovic,
Dagan & Cheng 1998; Attinger et al. 1999; Lenz & Kumar 2007; Dentz, Bolster
& LeBorgne 2009; Dentz & Castro 2009). Retardation does not affect the fluid
flow field, but plays a role on transport. Variations in the retardation coefficient
affect solute spreading (e.g. Bellin et al. 1993; Attinger et al. 1999) and can lead to
local accumulation and release of the solute (e.g. Sanchez-Vila & Bolster 2009). The
quantification of the impact of heterogeneity on sorption–desorption reactions plays a
key role in the fate of many natural and anthropogenic contaminants such as organic
compounds, heavy metals, transition metals and radionuclides (e.g. Grathwohl 1998).

A systematic method to capture the impact of heterogeneity in retardation on
large-scale dispersion is a stochastic modelling approach (e.g. Chrysikopoulos et al.
1990; Bellin et al. 1993; Miralles-Wilhelm & Gelhar 1996; Andricevic & Cvetkovic
1998; Attinger et al. 1999; Rubin et al. 1999; Dentz & Castro 2009), which models
spatially fluctuating retardation properties as statistically stationary random fields. The
effective transport behaviour is derived by appropriately averaging over the ensemble
of all possible disorder realizations. Large-scale solute transport is quantified by
the evolution of effective and ensemble dispersion coefficients (e.g. Attinger et al.
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1999), which are evaluated using a second-order perturbation theory approach in the
fluctuations of the random retardation factor. While Attinger et al. (1999) analysed
the behaviour of the ensemble and effective dispersion coefficient for short-range
disorder correlation, here our focus is on the impact of long-range correlation of
the retardation factor on anomalous large-scale dispersion. Furthermore, within this
stochastic approach, we derive a large-scale transport equation for the average solute
concentration, whose properties are studied using second-order perturbation theory.
Discussions of possible limitations of perturbation methods for transport in porous
media can be found in Bellin, Salandin & Rinaldo (1992), Trefry, Ruan & McLaughlin
(2003) and Jarman & Tartakovsky (2008).

The paper is organized as follows. Section 2 presents the heterogeneous system that
we study in this work. In § 3 we analytically develop and calculate the dispersion
coefficients associated with this system. In § 4, for validation purposes, we compare
our analytical predictions to the results of efficient numerical random walk simulations.
In § 5 we develop the effective upscaled CTRW model, and we conclude with a
discussion in § 6.

2. Model
2.1. Local-scale transport description

On a local scale, the transport of a solute with instantaneous adsorption in a
chemically heterogeneous medium for t > 0 can be described by (Attinger et al. 1999)

∂

∂t
[R(x)g(x, t)] + u

∂

∂x1
g(x, t)−∇ · [D ·∇g(x, t)] = 0, (2.1)

where g(x, t) is the concentration of mobile solute, and u and D are the constant
local flow (filtration) velocity and the constant dispersion tensor, respectively. Without
loss of generality, the flow velocity is aligned with the 1-direction of the coordinate
system. The dispersion tensor is assumed to be diagonal, Dij = δijDii. The spatially
varying retardation factor R(x) accounts for variation in the local chemical adsorption
properties. While this model is motivated by porous media, it can in principle
represent transport in any other system with spatially variable retardation. In this
study the retardation coefficient is given by

R(x)= 1+ kd(x), (2.2)

where the coefficient kd(x) relates the mobile concentration g(x, t) to the concentration
gads(x, t) of adsorbed solute:

gads(x, t)= kd(x)g(x, t). (2.3)

As boundary conditions for the mobile concentration, we assume vanishing g(x, t) at
infinity. The initial condition for the mobile concentration g(x, t) is a point source
given by g(x, t = 0)= R−1(0)δ(x). Thus, the total concentration

c(x, t)= R(x)g(x, t) (2.4)

also has a point-source initial condition c(x, t = 0)= δ(x).
2.2. Stochastic model and ensemble average

The influence of spatial fluctuations of the retardation factor R(x) is addressed in a
stochastic modelling framework. The spatially fluctuating retardation factor R(x) is
assumed to be a translationally invariant random field. Thus, R(x) in a given medium



Anomalous dispersion in chemically heterogeneous media 369

represents a typical realization of an ensemble of the corresponding random fields. The
translational invariance of R(x) implies that R(x) = R is constant, where the overbar
in the following denotes the ensemble average, which is the average over all possible
realizations of the random space function kd(x). Here, the spatially varying distribution
coefficient kd(x) is modelled as a lognormally distributed random field (e.g. Bellin
et al. 1993),

kd(x)= Kd exp[µ(x)], (2.5)

where Kd denotes the geometric mean of kd(x), and µ(x) is a Gaussian-distributed
random field with zero mean and correlation function

µ(x)µ(x′)= σ 2
µµCµµ(x− x′), (2.6)

with Cµµ(0) = 1 and σ 2
µµ the variance of µ(x). The ensemble mean retardation factor

is then given by

R(x)= 1+ Kd exp

(
σ 2
µµ

2

)
. (2.7)

We split R(x) into its constant mean value and fluctuations about it,

R(x)= R[1+ r(x)], (2.8)

where r(x) is given by

r(x)= Kd

1+ Kd exp(σ 2
µµ/2)

{exp[µ(x)] − exp(σ 2
µµ/2)}. (2.9)

The mean r(x)= 0 by definition. The autocorrelation function of r(x) is given by

r(x)r(x′)= Crr(x− x′)= q{exp[σ 2
µµCµµ(x− x′)] − 1}, (2.10)

where q is defined by (e.g. Attinger et al. 1999)

q= K2
d exp(σ 2

µµ)

[1+ Kd exp(σ 2
µµ/2)]2

= R2 − R
2

R
2 . (2.11)

In the following, we approximate Crr(x) to first order in σ 2
µµ as

Crr(x)= σ 2Cµµ(x), σ 2 = σ 2
µµK2

d

(1+ Kd)
2 . (2.12)

2.3. Dimensionless form of the governing equations
We now introduce the following dimensionless variables

xi = `x̂i, t = τu t̂, (2.13)

where ` is a characteristic heterogeneity length scale and the advection time
scale is τu = R`/u. The concentrations are rescaled as g(x, t) = R

−1
`−dĝ(x, t) and

c(x, t) = `−dĉ(x, t), in which d denotes the dimensionality of space. Using these
definitions, (2.1) can be written in dimensionless form as

∂ ĝ(x̂, t̂)

∂ t̂
+ ∂ ĝ(x̂, t̂)

∂ x̂1
− ∇̂ · [D̂ ·∇ĝ(x̂, t̂)] = −r(x̂)

∂ ĝ(x̂, t̂)

∂ t̂
, (2.14)
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where D̂ = D/(u`) is the dispersion tensor in dimensionless form. The initial condition
for ĝ(x̂, t) is ĝ(x̂, t = 0) = [1+ r(0)]−1 δ(x̂). Relation (2.4) between total and mobile
concentration gives

ĉ(x̂, t̂)= [1+ r(x̂)]ĝ(x̂, t̂). (2.15)

For simplicity of notation, from here on, we drop the hats, and unless otherwise
indicated, all quantities are dimensionless.

2.4. Integral equation and perturbation series
For technical convenience, we perform a Fourier transform of the governing equations.
The Fourier transform of a function ϕ(x) and its back-transform here are defined by

ϕ̃(k)=
∫

dx exp(ik · x)ϕ(x), (2.16)

ϕ(x)=
∫

k
exp(−ik · x)ϕ̃(k), (2.17)

in which the tilde denotes Fourier-transformed quantities, and the wavevector is
denoted by k. Here and in the following we use the short-hand notation∫

k
· · · ≡

∫
dk

(2π)d
, (2.18)

in which the superscript d denotes the dimensionality of space. Thus, the Fourier
transform of (2.14) yields

∂

∂t
g̃(k, t)− [ik1 − k · (D · k)]g̃(k, t)=−

∫
k′

r̃(k′)
∂

∂t
g̃(k− k′, t). (2.19)

Let us define g̃0(k, t) as the solution to (2.19) with r̃(k′) = 0 and initial condition
g̃(k, t = 0)= 1, that is,

g̃0(k, t)= exp(−k ·D · kt + ik1t). (2.20)

Convolving (2.19) with g̃0(k, t) and performing a partial integration, we obtain

g̃(k, t)= g̃0(k, t)

1+ r(0)
−
∫ t

0
dt′ g̃0(k, t − t′)

∫
k′

r̃(k′)
∂

∂t′
g̃(k− k′, t′). (2.21)

Using relation (2.15) between the total and mobile concentrations in (2.21) and
integrating by parts, the total concentration is

c̃(k, t)= g̃0(k, t)+
∫ t

0
dt′

∂

∂t′
g̃0(k, t − t′)

∫
k′

r̃(k′)g̃(k− k′, t′). (2.22)

By iteration of integral equation (2.21) we obtain

g̃(k, t)= g̃0(k, t)−
∫

k′
r̃(k′)g̃0(k, t)

−
∫ t

0
dt′ g̃0(k, t − t′)

∫
k′

r̃(k′)
∂

∂t′
g̃0(k− k′, t′)+ · · · , (2.23)

up to first order in r̃(k). The dots denote sub-leading contributions. A perturbation
expression for c̃(k, t) up to second order in r̃(k) is obtained by inserting (2.23) into the
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right-hand side of (2.22),

c̃(k, t)= g̃0(k, t)+ c̃1(k, t)+ c̃2(k, t)+ · · · , (2.24)

where

c̃1(k, t)=
∫ t

0
dt′

∂

∂t′
g̃0(k, t − t′)

∫
k′

r̃(k′)g̃0(k− k′, t′) (2.25)

c̃2(k, t) = −
∫ t

0
dt′

∂

∂t′
g̃0(k, t − t′)

∫
k′

∫
k′′

r̃(k′)̃r(k′′)g̃0(k− k′, t′)

−
∫ t

0
dt′

∂

∂t′
g̃0(k, t − t′)

∫ t′

0
dt′′
∫

k′

∫
k′′

r̃(k′)g̃0(k− k′, t′ − t′′)

× r̃(k′′)
∂

∂t′′
g̃0(k− k′ − k′′, t′′)+ · · · . (2.26)

The dots denote sub-leading contributions.

3. Dispersion coefficients
In this section we derive perturbation expressions for the effective and ensemble

dispersion coefficients of the total concentration distribution c(x, t). The effective
dispersion coefficients are defined as

Deff
ij (t)=−

1
2
∂

∂t

∂2

∂kikj
ln[ c̃(k, t)]|k=0, (3.1)

i.e. they are derived from the ensemble-averaged second centred moment. Similarly,
we can define the ensemble dispersion coefficients with the second centred moment of
the ensemble-averaged total concentration distribution, i.e.

Dens
ij (t)=−

1
2
∂

∂t

∂2

∂kikj
ln[ c̃(k, t)]|k=0. (3.2)

Physically the difference between these two dispersion coefficients can be interpreted
as follows (e.g. Batchelor 1949; Kitanidis 1988; Dagan 1990, 1991; Attinger et al.
1999; Dentz et al. 2000; Fiori 2001; Lawrence & Rubin 2007; de Barros &
Rubin 2011). The effective dispersion coefficient Deff

ij represents the average value
of the dispersion coefficients measured over several realizations, while the ensemble
dispersion coefficient Dens

ij represents the dispersion coefficients calculated from the
concentration averaged over all realizations.

The generating function ln[ c̃(k, t)] for the effective dispersion coefficients
is determined within second-order perturbation theory by inserting perturbation
expansion (2.24) into ln[ c̃(k, t)],

ln[ c̃(k, t)] = ln[ g̃0(k, t)] + ln[1+ g̃0 (k, t)−1 c̃1(k, t)+ g̃0 (k, t)−1 c̃2(k, t)+ · · ·]. (3.3)

Expanding the second term on the right-hand side by using ln(1 + x)= x − x2/2 + · · ·
gives

ln[ c̃(k, t)] = ln[ g̃0(k, t)] + g̃0 (k, t)−1 c̃1(k, t)+ g̃0 (k, t)−1 c̃2(k, t)

− 1
2 g̃0 (k, t)−2 c̃2

1(k, t)+ · · · . (3.4)
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Inserting expressions (2.25) and (2.26) and performing the ensemble average results
in

ln[ c̃(k, t)] = ln[ g̃0(k, t)] − g̃−1
0 (k, t)

∫ t

0
dt′
∫

k′

∂

∂t′
g̃0(k, t − t′)C̃rr(k′)g̃0(k− k′, t′)

− g̃−1
0 (k, t)

∫ t

0
dt′
∫ t′

0
dt′′
∫

k′

∂

∂t′
g̃0(k, t − t′)C̃rr(k′)

× g̃0(k− k′, t′ − t′′)
∂

∂t′′
g̃0(k, t′′)

− 1
2

g̃−2
0 (k, t)

∫ t

0
dt′
∫ t′

0
dt′′
∫

k′

∂

∂t′
g̃0(k, t − t′)C̃rr(k′)g̃0(k− k′, t′)

× ∂

∂t′′
g̃0(k, t − t′′)g̃0(k+ k′, t′′)+ · · · . (3.5)

In order to derive the generating function ln[ c̃(k, t)], we insert the average of (2.24),
which gives

ln[ c̃(k, t)] = ln[ g̃0(k, t)] + ln[1+ g̃0 (k, t)−1 c̃2(k, t)+ · · ·]. (3.6)

Expanding the second term on the right-hand side using ln[1+ x] = x− · · · yields

ln[ c̃(k, t)] = ln[ g̃0(k, t)] + g̃0 (k, t)−1 c̃2(k, t)+ · · · . (3.7)

Inserting (2.26) for c̃2(k, t) gives

ln[ c̃(k, t)] = ln[ g̃0(k, t)] − g̃−1
0 (k, t)

∫ t

0
dt′
∫

k′

∂

∂t′
g̃0(k, t − t′)C̃rr(k′)g̃0(k− k′, t′)

− g̃−1
0 (k, t)

∫ t

0
dt′
∫ t′

0
dt′′
∫

k′

∂

∂t′
g̃0(k, t − t′)C̃rr(k′)

× g̃0(k− k′, t′ − t′′)
∂

∂t′′
g̃0(k, t′′)+ · · · . (3.8)

Now, inserting (3.8) and (3.5) into (3.2) and (3.1), respectively, the dispersion
coefficients are given by

Dens
ij (t) = Dij + δi1δj1

∫ t

0
dt′
∫

k′
g̃0(k′, t′)C̃rr(k′)

+
∫

k′
C̃rr(k′)(Dij − iδj1Dimk′mt′ − iδi1Djmk′mt′)g̃0(−k′, t), (3.9)

Deff
ij (t)= Dens

ij (t)− δi1δj1

∫ t

0
dt′
∫

k′
g̃0(k′, t)C̃rr(k′)g̃0(−k′, t′). (3.10)

For the following investigation we focus on advection-dominated scenarios, which
are characterized by Dij � 1. Thus, we will disregard the third contribution on the
right-hand side of (3.9). In this scenario, the dispersion coefficients perpendicular
to the mean flow direction are sub-leading. Thus, we focus only on the dispersion
coefficients in the longitudinal direction.

In the limiting case of D ≡ 0, the effective dispersion coefficients are by definition
identically equal to zero (e.g. Attinger et al. 1999) and the ensemble dispersion
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coefficients are given by

Dens
ij (t)= δi1δj1

∫ t

0
dt′ Crr(t

′), (3.11)

where Crr(t)= Crr(x)|x1=t, x2,...,xd=0.

3.1. Correlation function
In the following we employ the first-order approximation (2.12) for the correlation
function of the normalized retardation fluctuations in terms of Cµµ(x). We assume that
Cµµ(x) can be factorized such that

Cµµ(x)= C1(x1) · · ·Cd(xd), (3.12)

i.e. correlations in each principal direction are independent of the correlations in the
other principal directions. The Fourier transform of (3.12) is given by

C̃µµ(k)= C̃1(k1) · · · C̃d(kd). (3.13)

We assume that all correlation functions are even. Specifically, for correlations
perpendicular to the direction of flow, Ci(xi) (i 6= 1), we assume short-range
correlations that we model using Gaussian-shaped functions

Ci(xi)= exp
(
−x2

i

2

)
. (3.14)

For simplicity, we assume that the correlation lengths in all different directions are the
same and thus equal to 1. The Fourier transform of (3.14) is given by

C̃i(ki)=
√

2π exp
(
−k2

i

2

)
. (3.15)

Inserting expressions (3.13) and (3.15) for the Fourier transform of the correlation
function and (2.20) for g̃0(k, t) into expressions (3.9) and (3.10) for the longitudinal
ensemble and effective dispersion coefficients, respectively, we obtain

Dens
11 (t) = D11 + σ 2

∫ t

0
dt′

d∏
i=2

(1+ 2Diit
′)−1/2

,

×
∫ ∞
−∞

dk1

2π
exp(−k2

1D11t′ − ik1t′)C̃1(k1) (3.16)

Deff
11 (t) = Dens

11 (t)− σ 2

∫ t

0
dt′

d∏
i=2

(1− 2Diit
′ + 4Diit)

−1/2

×
∫ ∞
−∞

dk1

2π
exp(−D11k2

1(2t − t′)− ik1t′)C̃1(k1). (3.17)

In the following analysis, we focus on cases for which Dii � 1, which implies
that the advection time scale τu is much smaller than the dispersion time scale
τDi = 1/Dii for i = 1, . . . , d. Note that, in porous media, the dispersion coefficient
in the flow direction can be an order of magnitude larger than the transverse dispersion
coefficients. However, the physical mechanism that enables the solute to sample the
medium heterogeneity is transverse dispersion; longitudinal dispersion plays only a
subordinate role. Thus, we can disregard D11 in approximations (3.16) and (3.17),
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Gaussian (blue dash-dot),
power law with β = 3/2 (red solid line) and truncated power law with β = 3/2 and cutoff
length lc = 105 (black dashed line).

which gives the approximations

Dens
11 (t) = σ 2

∫ t

0
dt′

d∏
i=2

(1+ 2Diit
′)−1/2

∫ ∞
−∞

dk1

2π
exp(−ik1t′)C̃1(k1)+ · · ·

= σ 2

∫ t

0
dt′C1(t

′)
d∏

i=2

(1+ 2Diit
′)−1/2+ · · · , (3.18)

Deff
11 (t) = Dens

11 (t)− σ 2

∫ t

0
dt′

d∏
i=2

(1− 2Diit
′ + 4Diit)

−1/2

×
∫ ∞
−∞

dk1

2π
exp(−ik1t′)C̃1(k1) · · ·

= Dens
11 (t)− σ 2

∫ t

0
dt′C1(t

′)
d∏

i=2

(1− 2Diit
′ + 4Diit)

−1/2+ · · · , (3.19)

where the dots denote sub-leading contributions. Using these expressions, in the
following we study the dispersion coefficients for three different longitudinal
correlation functions. In particular, we focus on the impact of correlations over short
(Gaussian, blue), long (power law, red) and intermediate (truncated power law, black)
distances. Examples of the three types of correlation function used in this paper are
shown in figure 1.

3.1.1. Short-range correlation
To begin, we consider a short-range autocorrelation function in the direction of flow.

To do so, we will use a Gaussian correlation function (like the transverse correlation
functions) defined in (3.14) and (3.15), i.e.

C1(x1)= exp
(
−x2

1

2

)
, C̃1(k1)=

√
2π exp

(
−k2

1

2

)
. (3.20)

http://journals.cambridge.org/flm
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Note that Attinger et al. (1999) studied this case in detail for the effective and
ensemble dispersion coefficients derived from the mobile concentration g(x, t). Here
we consider the moments of the total concentration c(x, t), whose behaviour is
basically the same as the one found in Attinger et al. (1999). We discuss this
short-range scenario for completeness and comparison to the long-range correlation
scenarios here.

Using (3.20) in (3.18) and (3.19), the longitudinal ensemble and effective dispersion
coefficients are given by

Dens
11 (t)= σ 2

∫ t

0
dt′ exp

(
− t′2

2

)
d∏

i=2

(1+ 2Diit
′)−1/2+ · · · , (3.21)

Deff
11 (t)= Dens

11 (t)− σ 2

∫ t

0
dt′ exp

(
− t′2

2

)
d∏

i=2

(1− 2Diit
′ + 4Diit)

−1/2+ · · · , (3.22)

where the dots denote sub-leading contributions. For times small compared to the
advection time scale τu = 1, t� τu, the effective dispersion coefficient (3.17) is of the
order of D11. The ensemble dispersion coefficient (3.16) shows ballistic behaviour,

Dens
11 (t)= σ 2t + · · · , (3.23)

where the dots denote sub-leading contributions of O(t2). In the intermediate time
regime, which lies between the advection time scale τu and the smallest of the
dispersion time scales τDi = 1/Dii (for i = 2, . . . , d), the ensemble and effective
dispersion coefficients can be approximated by

Dens
11 (t)= σ 2

√
π

2
+ · · · , (3.24)

Deff
11 (t)= σ 2

√
π

2

[
1−

d∏
i=2

(1+ 4Diit)
−1/2

]
+ · · · . (3.25)

In the asymptotic time regime, which is defined by the largest of the dispersion
time scales, the ensemble and effective dispersion coefficients converge to the same
asymptotic value. This is to be expected from generalized Taylor theory, which
predicts a single asymptotic dispersion coefficient (e.g. Brenner 1980; Edwards &
Brenner 1993; Latini & Bernoff 2001; Lunati, Attinger & Kinzelbach 2002; Bolster,
Dentz & LeBorgne 2009; de Barros & Rubin 2011). Note that the effective dispersion
coefficient Deff

11 (t) evolves on the diffusion time scale, while Dens
11 (t) evolves on the

advection scale. An example illustrating this predicted behaviour for ensemble and
effective dispersion coefficients is shown in figure 2.

3.1.2. Power-law correlation
As highlighted in the Introduction, one of the goals of this work is to illustrate

the influence of long-range correlation on dispersion. Therefore, next we consider a
correlation function with power-law behaviour. Such a correlation function reflects
correlation over very long ranges. To this end we use

C1(x1)= (β − 1)
∫ 1

0
dk1 cos(k1x1)k

β−2
1 , (3.26)

for 1 < β < 2. For distances of the order of or smaller than 1, the medium appears
homogeneous in the 1-direction and the correlation function has an approximately
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FIGURE 2. (Colour online) Longitudinal dispersion coefficients in two dimensions for
Gaussian longitudinal correlation function (in all cases Dii = D). Ensemble for D = 0 (black,
dashed), ensemble for D = 10−3 (blue, full) and effective for D = 10−3 (red, dotted-dashed).
In all cases σ 2 = 0.1.

constant value of 1:

C1(x1)= (β − 1)
∫ 1

0
dk1 kβ−2

1 + · · · = 1+ · · · , (3.27)

where the dots denote sub-leading contributions of O(x1). For x1 � 1, (3.26) can be
approximated by

C1(x1)= x1−β
1 (β − 1)

∫ x1

0
dk1 cos(k1)k

β−2
1 = B(β)x1−β

1 + · · · . (3.28)

This displays a pure power-law behaviour C1(x1)∼ x1−β
1 at large distances. Here, B(β)

is a constant that depends on β, defined as

B(β)≡ (β − 1)
∫ ∞

0
dk1 cos(k1)k

β−2
1 = Γ (β) sin

(
βπ

2

)
. (3.29)

An illustration of this power-law correlation function (3.27) is depicted in figure 1.
The Fourier transform of correlation function (3.26) is given by

C̃1(k1)= (β − 1)π |k1|β−2Θ(1− |k1|), (3.30)

where Θ(x) is the Heaviside step function.
Inserting (3.26) into expressions (3.18) and (3.19) for the longitudinal ensemble and

effective dispersion coefficients, we obtain the integral expressions

Dens
11 (t)= σ 2(β − 1)

∫ t

0
dt′

d∏
i=2

(1+ 2Diit
′)−1/2

∫ 1

0
dk1 cos(k1t′) |k1|β−2, (3.31)
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Deff
11 (t) = Dens

11 (t)− σ 2(β − 1)
∫ t

0
dt′

d∏
i=2

(1− 2Diit
′ + 4Diit)

−1/2

×
∫ 1

0
dk1 cos(k1t′) |k1|β−2 . (3.32)

We distinguish different time regimes that are separated by the (dimensionless)
advection time scale τu = 1 and the dispersion times scales τDi = 1/Dii for i= 1, . . . , d.
In order to simplify the following analysis, we assume that Dii = D. Thus, we
distinguish three different time regimes that are separated by τu = 1 and τD = 1/D;
recall that τD� τu.

In the short-time regime t� τu, the effective dispersion coefficient (3.32) is of the
order of D11. The ensemble dispersion coefficient (3.31) shows the ballistic behaviour
given by (3.23). For times large compared to the advection time, t� τu, (3.31) and
(3.32) can be approximated by

Dens
11 (t)= σ 2B(β)

∫ t

0
dt′ t′1−β (1+ 2Dt′)−(d−1)/2+ · · · , (3.33)

Deff
11 (t)= Dens

11 (t)− σ 2B(β)
∫ t

0
dt′ t′1−β (1− 2Dt′ + 4Dt)−(d−1)/2+ · · · , (3.34)

where the dots denote sub-leading contributions and B(β) is defined by (3.29).
In the intermediate-time regime τu � t� τD, expressions (3.33) and (3.34) for the

ensemble and effective dispersion coefficients can be further approximated as

Dens
11 (t)= σ 2 B(β)

2− β t2−β + · · · , (3.35)

Deff
11 (t)= σ 2 B(β)2D(d − 1)

2− β t3−β + · · · . (3.36)

In the long-time limit t� τD, the ensemble and effective dispersion coefficients are
equal to leading order,

Deff
11 (t)= Dens

11 (t)+ · · · . (3.37)

In order to extract the leading behaviour in the limit t� τD, we rescale (3.33) such
that

Dens
11 (t)= σ 2B(β)Dβ−2

∫ t/τD

0
dt′ t′1−β (1+ 2t′)−(d−1)/2+ · · · . (3.38)

As can be seen from the behaviour of the integrand for large t′, the integral exists in
the limit t/τD →∞ for β > (5 − d)/2. In this case, both ensemble and effective
dispersion coefficients converge in the long-time regime t � τD to the constant
asymptotic value

Dens
11 (t)= σ 2B(β)Dβ−2

∫ ∞
0

dt′ t′1−β (1+ 2t′)−(d−1)/2+ · · ·

= σ 2B(β)
(2D)β−2 Γ [(d − 1)/2+ β − 2]Γ (2− β)

Γ [(d − 1)/2] + · · · . (3.39)
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FIGURE 3. (Colour online) Longitudinal dispersion coefficients in two dimensions for the
power-law longitudinal correlation function with β = 5/4 (in all cases Dii = D). Ensemble for
D= 5× 10−4 (red, dashed) and effective for D= 5× 10−4 (black, full). In all cases σ 2 = 0.1.
Note the three distinct power-law regimes that scale as t, t3/4 and t1/4 for the ensemble
dispersion coefficient, and the t7/4 regime in the effective dispersion coefficient.

In the case of β < (5 − d)/2, the integral diverges in the limit t � τD. By
rescaling (3.38) again, we obtain

Dens
11 (t)= σ 2Dβ−2B(β)

(
t

τD

)(5−d)/2−β ∫ 1

0
dt′ t′1−β (τD/t + 2t′)−(d−1)/2+ · · · . (3.40)

The integral can be evaluated in the limit t/τD →∞, which gives the following
leading-order behaviour for Dens

11 (t):

Dens
11 (t)= σ 2B(β)

Dβ−22−(d−1)/2

(5− d)/2− β
(

t

τD

)(5−d)/2−β
+ · · · . (3.41)

The dispersion coefficients converge to a constant asymptotic value for β > (5 − d)/2
and scale as a power law for β < (5 − d)/2. For example, for d = 3, the dispersion
coefficient converges to a constant value for all β > 1, in d = 2 for β > 3/2.
This highlights how important the dimensionality of the problem at hand is when
calculating effective dispersion coefficients (e.g. Attinger, Dentz & Kinzelbach 2004).

The behaviour predicted here is illustrated in figures 3 and 4, for two different
power laws, namely β = 7/4 and 5/4 for a system where d = 2. These two different
values, one greater than and one less than β = 3/2, were chosen to illustrate the
late-time difference as predicted by (3.39) and (3.41).

3.1.3. Truncated power-law correlation
The final correlation function that we consider is that of a truncated power law.

While the power-law correlation function in the previous section provides a lot of
insight, the fractal behaviour of such a correlation function is highly unlikely to truly
occur at all scales in nature. As such, we consider a similar correlation function that
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FIGURE 4. (Colour online) Longitudinal dispersion coefficients in two dimensions for
the power-law correlation function with β = 7/4 (in all cases Dii = D). Ensemble for
D= 5× 10−4 (red, dashed) and effective for D= 5× 10−4 (black, full). In all cases σ 2 = 0.1.
Note the two distinct power-law regimes that scale as t and t1/4 as well as the late-time
asymptote to a constant value for the ensemble dispersion coefficient, and the t5/4 scaling for
the effective one.

displays the power-law behaviour over large distances, but is cut off at a distance
larger than some critical value. A correlation function that displays such behaviour is
given by

C1(x1)= exp(−|x1|/`c)

(1+ |x1|)β−1 . (3.42)

The autocorrelation function (3.42) is illustrated in figure 1 for β = 3/2 and `c = 105.
As for the power-law correlation function (3.26), the smallest typical heterogeneity
scale is of order 1. The dimensionless length scale `c defines the cutoff scale. For
distances large compared to `c, the correlation decreases exponentially, that is, on
an observation scale large compared to `c the medium again appears homogeneous.
For an observation scale L between 1 and `c, 1 � L � `c, the medium appears
heterogeneous.

For the transport dynamics in the truncated power-law correlated random field, we
distinguish between two dimensionless advection time scales, namely the advection
scale τu = 1 and the cutoff time scale τc = `c.

We obtain the longitudinal ensemble and effective dispersion coefficients by
inserting (3.42) into (3.18) and (3.19). This yields

Dens
11 (t)= σ 2

∫ t

0
dt′

exp(−t′/τc)

(1+ t′)β−1

d∏
i=2

(1+ 2Diit
′)−1/2+ · · · , (3.43)

Deff
11 (t)= Dens

11 (t)− σ 2

∫ t

0
dt′

exp(−t′/τc)

(1+ t′)β−1

d∏
i=2

(1− 2Diit
′ + 4Diit)

−1/2+ · · · , (3.44)



380 D. Bolster and M. Dentz

where the dots denote sub-leading contributions. The cutoff time scale τc induces a
further time regime. Again, in order to facilitate the analysis, we assume that Dii = D,
such that we can distinguish four time regimes separated by τu, τD and τc. In the
early-time regime t� τu, the behaviour of the ensemble coefficient is ballistic, given
by (3.23), and the effective coefficient is of the order of D11. For the intermediate-
and late-time regimes, we consider two different orders of scales: case 1 is defined by
τu� τD� τc and case 2 by τu� τc� τD.
Case 1 (τu� τD� τc). In the intermediate regimes τ � t� τD and τD� t� τc, the

behaviour of the effective and ensemble dispersion coefficients is the same as in the
case of a pure power-law correlation, as discussed in the previous section, because in
these regimes the cutoff has no effect. In the long-time regime t� τC, both ensemble
and effective dispersion coefficients converge to the same constant value, which is
given by

Dens
11 (t)= σ 2τ 2−β

c exp(1/τc)Γ (2− β, 1/τc)+ · · · , (3.45)

where the dots denote sub-leading contributions. Note that this asymptotic value
depends on the cutoff scale τc and on the exponent β. Unlike the pure power-law
case, the anomalous scaling of dispersion coefficient in time does not occur at long
times due to the presence of the cutoff length in the correlation function.
Case 2 (τu � τc � τD). In the intermediate regime τu � t � τc, the effective

dispersion coefficient is still of the order of D11 because the solute has not yet
sampled a sufficient part of the medium heterogeneity by transverse dispersion. The
ensemble dispersion coefficient in this regime behaves in leading order as

Dens
11 (t)=

σ 2

(2− β) t
2−β + · · · , (3.46)

where the dots denote sub-leading contributions. In the time regime defined by
τc� t� τD, the ensemble dispersion coefficient converges towards the constant value
given by (3.45). The effective dispersion coefficient can be approximated by

Deff
11 (t)= σ 2τ 2−β

c exp(1/τc)Γ (2− β, 1/τc)

[
1−

(
1+ 4t

τD

)−(d−1)/2
]
+ · · · . (3.47)

In the asymptotic time regime t� τD, the effective and ensemble coefficients converge
to the same constant value (3.45).

The behaviour of the effective and ensemble dispersion coefficients as given
by (3.43) and (3.44) are illustrated in figure 5 for d = 2, β = 5/4 and `c = 105.

4. Random walk particle tracking simulations
In order to test the theoretical expressions derived in this work, we perform a

series of numerical simulations. Many approaches for the description of the transport
of a solute use the equivalent transport formulation in the Lagrangian framework
(Kinzelbach 1987; Andricevic & Cvetkovic 1998; Dentz et al. 2003). To do so, we
transform the transport problem from the Fokker–Planck framework to the equivalent
Lagrangian framework. In order to make this transformation, we have to consider the
transport equation for the total concentration distribution, which in non-dimensional
terms is

c(x, t)= [1+ r(x)]g(x, t). (4.1)
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FIGURE 5. (Colour online) Longitudinal dispersion coefficients in two dimensions for the
truncated power-law correlation function with β = 5/4 and τc = 2× 105 (in all cases Dii = D).
Ensemble (red, dashed) and effective (black, full) dispersion coefficients for D= 5× 10−4. In
all cases σ 2 = 0.1. Note the early- and intermediate-time power-law-type regime that is cut
off at times larger than τc leading to a constant asymptotic value.
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FIGURE 6. (Colour online) Longitudinal dispersion coefficients in two dimensions for the
truncated power-law correlation function with β = 5/4 and τc = 4× 102 (in all cases Dii = D).
Ensemble (red, dashed) and effective (black, full) dispersion coefficients for D= 5× 10−4. In
all cases σ 2 = 0.1. Note the early-time power-law-type regime that is cut off at times close to
τc leading to a constant asymptotic value.
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The Fokker–Planck equation for c(x, t) is obtained by using (4.1) in (2.14),

∂c(x, t)

∂t
+ ∂

∂x1

1
1+ r(x)

c(x, t)−∇ ⊗∇ D

1+ r(x)
c(x, t)= 0, (4.2)

where ⊗ denotes the tensor product. This Fokker–Planck equation is equivalent to the
Langevin equation (see e.g. Risken 1992)

dxi(t)

dt
= δi1

1+ r[x(t)] +
√

2Dii

1+ r[x(t)]ξi(t), (4.3)

where the Ito interpretation is used (e.g. Risken 1992). Here, ξ(t) is a white Gaussian
noise with zero mean and correlation given by

〈ξi(t)ξj(t
′)〉 = δijδ(t − t′), (4.4)

where the angular brackets denote the average over white noise realizations. The
concentration c(x, t), in terms of the particle trajectories x(t), is given by

c(x, t)= 〈δ[x− x(t)]〉. (4.5)

The initial condition c(x, t)= δ(x) implies that x(t = 0)= 0.

4.1. Numerical implementation
The numerical solution of the transport problem is implemented using random walk
simulations that are based on Langevin equation (4.3). In discrete time, the equation
governing the position of a solute particle n, x(n)(t), is given by

x(n)i (t +1t)= x(n)i (t)+
δi11t

1+ r[x(n)(t)] +
√

2Dii1t

1+ r[x(n)(t)]η
(n)
i (t), (4.6)

where the ηi are independent Gaussian random variables with zero mean and unit
variance. In the numerical simulations, for simplicity, we set Dii = D. Within a given
realization, the longitudinal moments of the plume can be calculated from the particle
positions, with the ith moment in realization j defined as

µ
(i)
j (t)= lim

N→∞
1
N

N∑
n=1

[x(n,j)1 (t)]i, j= 1, . . . ,M, (4.7)

where M is the number of realizations of r(x), and x(n,j)1 (t) is the trajectory of particle
n in realization j. The ensemble and effective dispersion coefficients are defined as

Dens
11 (t)=

1
2

d
dt

lim
M→∞

1
M

[
M∑

j=1

µ
(2)
j (t)−

M∑
j=1

µ
(1)
j (t)

M∑
j=1

µ
(1)
j (t)

]
, (4.8)

Deff
11 (t)=

1
2

d
dt

lim
M→∞

1
M

[
M∑

j=1

µ
(2)
j (t)−

M∑
j=1

µ
(1)
j (t)× µ(1)j (t)

]
. (4.9)

4.2. Results
Comparison between the results of numerical simulations and our theoretical
predictions is shown for six cases in figure 7. Simulations were conducted for
one system with a Gaussian correlation and for two systems with power-law
correlations (β = 5/4 and β = 7/4). For each system, the case of vanishing local
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FIGURE 7. (Colour online) Comparison of numerical simulations and analytical predictions.
In all cases σ 2 = 0.1. Ensemble and effective dispersion coefficients are shown. Solid lines
correspond to the theoretical predictions, while the symbols correspond to estimates from the
numerical simulations. (a,b) Gaussian longitudinal correlation function; (c,d) pure power-law
correlation with β = 5/4 and (e,f ) pure power-law correlation with β = 7/4. In all cases the
agreement is good. (a,c,e) D= 0 and (b,d,f ) D= 5× 10−4.

dispersion (D = 0) and finite, but small, dispersion (D = 10−3) were considered. The
variances associated with the heterogeneous field are set to σ 2 = 0.1. Between 103

and 106 realizations were run for each case. In all cases the predicted behaviour was
clearly visible after 103 realizations, but more were run to smooth noise.

In all six cases the agreement between theory and simulations is very good,
demonstrating all the quantitative and qualitative aspects associated with each of the
cases discussed earlier in the text (e.g. the three power-law regimes associated with
the power-law correlation and β < 3/2). In particular, it is clear that the power-law
correlation can result in long-time anomalous transport even for weakly heterogeneous
random fields.

5. Effective transport equation
When dealing with a heterogeneous system, it is ultimately desirable to obtain an

upscaled effective equation that describes the mean transport without requiring the
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details of the heterogeneity structure. In this section, we derive an effective equation
for the ensemble-averaged mobile concentration.

5.1. Laplace space formulations of transport
For technical convenience, we perform a Laplace transform (e.g. Abramowitz
& Stegun 1965) of integral equation (2.21) for the Fourier-transformed mobile
concentration g̃(k, t). The asterisk denotes Laplace-transformed quantities (i.e.
L {f (t)} = f ∗(s)). In Fourier–Laplace space the ensemble-averaged g̃∗(k, s) is

g̃∗(k, s)= g̃∗0(k, s)− g̃∗0(k, s)
∫

k′
s̃r(k′)g̃∗(k− k′, s). (5.1)

From this expression, we can implicitly define the self-energy Σ(k, s) as

g̃∗(k, s)= {s[1−Σ(k, s)] − ik1 + k ·D · k}−1 . (5.2)

For moderate heterogeneity, by perturbation theory,

Σ(k, s)≡ sσ 2

∫
k′

C̃µµ(k′)g̃∗0(k− k′, s). (5.3)

From (5.2) we obtain an effective equation for the ensemble-averaged mobile
concentration:

s[1−Σ(k, s)]g̃∗(k, s)= 1+ (ik1 − k ·D · k)g̃∗(k, s). (5.4)

From this equation, we identify the total average concentration as

c̃∗(k, s)= [1−Σ(k, s)]g̃∗(k, s). (5.5)

The corresponding effective transport equation for the total average concentration then
reads:

sc̃∗(k, s)− ik1

[1−Σ(k, s)] c̃
∗(k, s)+ k ·D · k

[1−Σ(k, s)] c̃
∗(k, s)= 1. (5.6)

5.2. Generalized master equation and continuous-time random walks
The CTRW method (e.g. Berkowitz et al. 2006) provides an approach for the
modelling of anomalous transport in porous media. Here we seek a formulation of
the transport problem in terms of a CTRW. To this end we rewrite (5.4) for the
average non-adsorbed concentration g̃∗(k, s) tautologically as

s{1−Σ(0, s)}g̃∗(k, s)

= 1− sΣ(0, s)g̃∗(k, s)+ (ik1 − k ·D · k+ sΣ(k, s))g̃∗(k, s). (5.7)

Let us define the concentration c̃∗0(k, s) such that

c̃∗0(k, s)= [1−Σ(0, s)]g̃∗(k, s), (5.8)

which is related to the average total concentration by

c̃∗0(k, s)= 1−Σ(0, s)

1−Σ(k, s)
c̃∗(k, s). (5.9)

Using (5.8) in (5.7), we obtain the following equation for c̃∗0(k, s):

sc̃∗0(k, s)= 1+ φ̃∗(k, s)c̃∗0(k, s)− φ̃∗(0, s)c̃∗0(k, s), (5.10)
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where

φ̃∗(k, s)≡ 1+ ik1 − k ·D · k
1−Σ(0, s)

+ sΣ(k, s)

1−Σ(0, s)
. (5.11)

Equation (5.10) is the Fourier–Laplace transform of a generalized master equation (e.g.
Kenkre, Montroll & Schlesinger 1973), which in real time and space can be written as

∂

∂t
c0(x, t)=

∫ t

0
dt′
∫

ddx′ φ(x− x′, t − t′){c0(x′, t′)− c0(x, t′)}. (5.12)

In the framework of CTRW, an effective transport equation is given by (e.g. Dentz &
Berkowitz 2003; Berkowitz et al. 2005):

sc̃∗0(k, s)= 1+ sψ̃∗(k, s)

1− ψ∗(s) c̃
∗
0(k, s)− sψ∗(s)

1− ψ∗(s) c̃
∗
0(k, s), (5.13)

where ψ̃∗(k, s) denotes the joint transition length and time distribution, and ψ∗(s) ≡
ψ̃∗(0, s). Comparing (5.10) with definition (5.11) and (5.13), we obtain the following
relation between the joint transition length and time distribution ψ̃∗(k, s) and Σ(k, s):

ψ̃∗(k, s)= 1+ ik1 − k ·D · k
1+ s

+ sΣ(k, s)

1+ s
. (5.14)

The first term on the right-hand side gives the local transport behaviour in a
homogeneous medium. The second term represents the disorder-induced contribution.
Note that, in this heterogeneity-induced contribution, the space and time dependences
are intrinsically coupled, i.e. ψ̃∗(k, s) cannot in general be decoupled into a part that
depends on time and one that depends on space only.

In order to illustrate the structure of the distribution, we will focus on ψ(t), whose
Laplace transform is

ψ∗(s)= 1
1+ s

+ sΣ(0, s)

1+ s
. (5.15)

The function ψ(t) is illustrated in figure 8 for three cases. The first corresponds to
transport in a homogeneous medium (i.e. only the first term on the right-hand side of
(5.15)); the second corresponds to a chemically heterogeneous medium with Gaussian
correlation; and the third corresponds to a chemically heterogeneous medium with
power-law correlation. For the homogeneous case, ψ(t) is an exponential distribution
with a very rapid cutoff at high values of t. The case with Gaussian correlation looks
quite similar, with an exponential cutoff at large values of t. This is a reflection of the
fact that this system in the long run returns to behaving in a Fickian manner. The main
difference between the homogeneous and Gaussian correlated cases is that the system
with the Gaussian correlation has a greater weight at larger values of t, reflecting
the influence of heterogeneity and enhanced dispersion. Finally, ψ(t) associated with
the power-law correlation structure also displays a power-law tail at high values of t,
reflecting the enhanced and sustained anomalous dispersion at long times.

6. Conclusion
In this work we study the influence that correlation structure plays on transport

in fields with heterogeneous retardation coefficient. In order to isolate the influence
of correlation, we restricted our study to fields with relatively weak degrees of
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FIGURE 8. (Colour online) The function ψ̃(0, t) for the homogeneous case (black,dotted-
dashed), the heterogeneous system with Gaussian correlation (red, full) and the heterogeneous
system with a power-law correlation with β = 5/4 (blue, dashed). For all cases D= 0.

heterogeneity, which in turn allowed us to reliably use a perturbation method approach.
The objective of the paper was to study how correlation in the retardation field impacts
large-scale transport.

The large-scale transport behaviour was investigated in terms of the ensemble
and effective dispersion coefficients, which are measures for the extent of the
concentration distribution. To highlight and isolate the influence that correlation plays,
we focused on correlation functions that display short-range (Gaussian), intermediate-
range (truncated power law) and long-range (power law) correlation.

For the short-range correlation structures, we recover expressions similar to
previously derived ones. After an initial transient, the late-time dispersion coefficients
converge to a constant value. On the other hand, the long-range power-law correlation
structures display anomalous scalings in the effective and ensemble dispersion
coefficients, whose persistence depends on the dimensionality of space as well as
the exponent associated with the power-law correlation function. We identify several
time regimes of anomalous dispersion characterized by different scaling exponents.
Interestingly, the evolution of the ensemble dispersion coefficient, which for short-
range correlation is determined solely by the advection time scale, is for strong
disorder correlation and at large times governed by the dispersion time scale.
For intermediate range correlation, a rich behaviour can be observed that displays
several regimes of preasymptotic anomalous dispersion. The analytical results were
complemented by a series of numerical random walk particle tracking simulations,
which are in good agreement with the derived behaviour.

To conclude this paper, we developed an effective large-scale equation for transport
under random retardation and in particular demonstrate that it falls into the broad
category of CTRW models. The coupled transition length and time distribution
ψ(x, t), which lies at the heart of the CTRW transport model, consists of a part
characterizing transport in a homogeneous medium and a disorder-induced part that
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was determined using perturbation theory. While the homogeneous part is decoupled,
the heterogeneous part is in general characterized by a coupling of the transition length
and time. The derived behaviour of the ensemble and effective dispersion coefficients
shed some new light on the local-scale transport and disorder mechanisms that can
lead to large-scale anomalous dispersion behaviour and its quantification in terms of an
effective transport equation.

While the model presented here is highly idealized, it highlights that anomalous
transport can occur in weakly heterogeneous media due to correlation structure.
Thus one should be cautious in inferring the cause of anomalous transport from
dispersion data alone. However, should local knowledge of typical ranges of chemical
heterogeneity values be known, observations of anomalous transport could be used to
infer correlation structure of the heterogeneity within the medium. Additionally, the
derivation of the effective CTRW model demonstrates how CTRW model parameters
may be linked to the underlying heterogeneity structure.
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