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ABSTRACT: Mixing is increasingly recognized as a critical process for
understanding and modeling reactive transport. Yet, mixing is hard to
characterize because it depends nonlinearly on concentrations. Visual-
ization of optical tracers in the laboratory at high spatial and temporal
resolution can help advance the study of mixing processes. The solute
distribution is obtained by analyzing the relationship between pixel
intensity and tracer concentration. The problem with such techniques is
that grain borders, light fluctuations, and nonuniform brightness
contribute to produce noisy images of concentrations that cannot be
directly used to estimate mixing at the local scale. We present a
nonparametric regression methodology to visualize local values of mixing
from noisy images of optical tracers that minimizes smoothing in the
direction of concentration gradients. This is achieved by weighting pixel
data along concentration isolines. The methodology is used to provide a full visualization of mixing dynamics in a tracer
experiment performed in a reconstructed aquifer consisting of two materials with contrasting hydraulic properties. The
experiment reveals that mixing is largest at the contact area of regions with different permeability. Also, the temporal evolutions
of mixing and dilution rates are significantly different. The mixing rate is more persistent than the dilution rate during tracer
invasion, and the opposite is true during flushing, which helps in understanding the complementary nature of these two
measures.

■ INTRODUCTION
Proper characterization of the mixing processes occurring in the
subsurface is crucial for a comprehensive description of a large
variety of biogeochemical problems, including cave formation,
calcite precipitation and dolomization,1−6 and chemical
speciation and microbial reactions,7−12 among others. What
emerges from these works is that the rate of reactions, their
location, and the conditions under which they occur all depend
not only on chemistry but also on the rate of mixing.13 Several
measures of mixing can be found in the literature.10,11,14,15

When transport can be fully defined in terms of conservative
components (i.e., when all reactions are locally instantaneous
and in equilibrium) and mixing of all solute species is locally
controlled by diffusion (or dispersion), De Simoni et al.16

showed that the reaction rate per unit volume of fluid, r,
associated with a binary chemical system {c1,c2} can be
expressed as

= = ∇ ∇ =
∂
∂

r t F F F u u F
c

u
x D( , ) , ,chem mix mix

T
chem

2
2

2

(1)

where u is the concentration of the conservative component,
and D is the diffusion (hydrodynamic dispersion) tensor. This

expression states that reaction rates are actually determined by
the product of two terms: one term (Fchem) that only depends
on the speciation of the reactive species and another term
(Fmix) that measures mixing, caused by the joint effect of the
local concentration gradients and diffusion (dispersion). This
measure of mixing appears repeatedly in the literature and will
be the subject of this paper. Kapoor and Gelhar17 demonstrated
that the variance of concentrations follows an Advection−
Dispersion Equation (ADE) with an Fmix related sink term that
is responsible for smearing the concentrations in aquifers.
Similarly, Sanchez-Vila et al.18 found that the probability
density function of the concentrations of reactive and
conservative species satisfies a nonlocal ADE with a source
term related to Fmix. The probability of occurrence of ″mixed″
concentrations was found to increase with Fmix. This measure of
mixing is also included in the dilution index ratio proposed by
Kitanidis,19 which is closely related to entropy. It is a measure
that quantifies the degree of dilution in a system reflecting the
apparent volume occupied by the solute, aiding one to
distinguish between macrodisperive spreading (effective
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plume size) and dilution. Kitanidis19 defines the degree of
dilution as being quantified by
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Instead, Fmix describes mixing at the local scale, which is directly
related to the reaction rates occurring at a given location and
time. Global mixing (i.e., the integral of over the entire domain)
is proportional to the dissipation rate time derivative of the
global concentration variance, regardless of the type of flow
field.20

In real field settings, the gradients of concentrations involved
in the definition of Fmix are highly influenced by the natural
variability of aquifer properties. In general, the erratic velocity
fields typically obtained in natural aquifers produce highly
distorted solute plumes that enhance mixing, (e.g., refs 21 and
22). Although the relationship between physical heterogeneity
and mixing remains undefined, it is well-known that the
advection−dispersion equation provides a poor representation
of mixing at all scales. This has been shown in homogeneous
column experiments15 and in numerical simulations and
stochastic analysis of solute transport performed in heteroge-
neous media.21,22

The lack of an appropriate quantification of mixing
compromises the reliability of reactive transport simulations.
Thus, more fundamental studies of mixing through laboratory
experiments are needed. A promising laboratory method for
understanding mixing is tracer visualization at high spatial and
temporal resolutions. This method consists of visualizing the
migration of an optical tracer injected into a porous medium. A
full picture of the solute distribution is obtained by analyzing
the relationship between pixel intensity and tracer concen-
tration in time and space. The problem with these techniques is
that the roughness and geometric properties of the porous
media, light fluctuations, and variations in brightness due to
nonuniform light sources, among a variety of other problems,
produce noisy estimates of concentrations. Several attempts

have been made in the past to reduce this noise. McNeil et al.23

proposed to segment the image optically, Rahman et al.24 used
both a geometric correction and color calibration, Schincariol et
al.25 suggested a general median smoothing to 3 × 3 pixels to
reduce the noise associated with glass bead sizes, and Konz et
al.26 filtered the image using a window averaging technique
consisting of 10 × 10 pixels. All these approaches were
designed to improve the estimates of concentrations but none
of them are well suited to directly estimate mixing. A complete
representation of mixing requires detailed knowledge of
concentration gradients, which cannot be directly estimated
from noisy images.
The objective of this paper is to present a methodology

aimed at fully visualizing mixing from light intensity images of
optical tracers. This methodology is then applied to visualize
the mixing dynamics occurring in a tracer experiment
performed in a heterogeneous sand-box aquifer.

■ EXPERIMENTAL PROCEDURE

Sand Box. The tracer experiment was conducted in an
unconfined heterogeneous aquifer reconstructed in the
laboratory. The sand distribution in the tank consisted of a
rectangular inclusion of fine sand (low permeability) embedded
in an otherwise highly permeable coarse sand. The objective of
this particular distribution was to visualize and quantify the
mixing dynamics occurring at the interface between two distinct
materials with contrasting hydraulic properties.
The sand box containing the aquifer is a quasi two-

dimensional vertical tank of length 36.5 cm, height 27 cm,
and width 2.5 cm, fully made of transparent plexiglass. The
sand box was divided into three distinct chambers. Figure 1
shows a sketch diagram of the experimental setup. The central
chamber is 32.5 cm long and contained the reconstructed
aquifer. Two stainless steel meshes US#16 separated the
influent and effluent chambers from the central flow chamber.
The influent and effluent chambers served to prescribe the head
boundary conditions needed to run the tracer experiment.
A sieve analysis determined that the sand was poorly graded

with a coefficient of uniformity of 1.2 and 1.25 for the coarse

Figure 1. Schematic experimental setup of the sand box: (a) front view; (b) top view. Measurements are in centimeters.
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and fine sands, respectively. Grain diameters range from 1.0 to
1.2 mm for the coarse sand, and from 0.4 to 0.6 mm for the fine
sand. A constant head permeameter cell was used to determine
the hydraulic conductivity of the sands, obtaining 1060 m/day
and 67.5 m/day for the coarse and fine sand, respectively. The
tank was packed under fully saturated conditions layer by layer
to avoid trapping of air and minimize segregation. The porosity
was estimated gravimetrically as 0.4.
Tracer Experiment. Red Rhodamine B (Panreac) was

injected into the sand-box aquifer. This compound can
effectively be considered as a conservative tracer because it
neither adsorbs nor degrades in clean quartz sand. The tracer
experiment proceeded as follows. First, water was pumped into
the aquifer at a constant rate of 49 mL/min through a
perforated vertical pipe into chamber 1. This produced a
constant head of 24.15 cm at the inflow reservoir and 23 cm at
the outflow reservoir. Once steady-state conditions were
achieved, Rhodamine B was continuously injected into the
aquifer at a concentration of 200 mg/L for 42 min at the same
flow rate. After this, the tank was flushed with freshwater. The
start and stop of tracer injection were carefully executed to
minimize head perturbations. For this, two connected sets of
syringes were employed to rapidly extract and replace the fluid
in chamber 1 with the desired solution (with a transient of
roughly 5 s).
Image Acquisition. The plexiglass structure of the sand

box permits visualization of the migration of the optical tracer
without a disturbance of the mixing dynamics inside the aquifer.
Many authors have utilized optical tracers to visualize and
quantify solute concentrations in synthetic aquifers.23−27 Light
transmission or reflected light are the two techniques used to
obtain map concentrations. Here, we choose reflected light for
image analysis so that we may analyze a generic nontransparent
sand material with different mineralogy and texture. We tested
four different types of light sources (incandescent, halogen,
fluorescent, and LEDs). Best results in terms of sensitivity,
temperature, and fluctuations were obtained with LEDs. Some
LEDs properties are uniform spectral power distribution (from
380 to 780 nm), constant light color, good heat dissipation,
higher luminous flux, and a better luminous efficacy. Two LED
light sources were placed at a distance of 20 cm from the tank.
A CCD camera (AVT Guppy F-080B/C) was used to

continuously record the red (R), green (G), and blue (B) color
images of the tracer experiment. A computer program (AVT
SmartView v1.7.2) controlled the image acquisition and transfer
of information to a computer. We set all parameters manually
(relative aperture F5.6, shutter speed 1/30). These parameters
were the same for both calibration and image processing of the
experiment. Images were acquired every 6 s during the whole
experiment. The camera and the tank were fixed to a metal
structure placed inside a black room to fully control the light
intensity emitted to and reflected from the tank. The black
room was located inside a temperature controlled lab and
ventilated with fans to ensure a constant temperature. The
spatial resolution of the camera was 1024 × 728 pixels. Each
pixel represents an area of 0.32 × 0.32 mm2 and has a color
resolution of 8 bits. Thus, the RGB color channels range
linearly between 0 and 255 in terms of values of intensity.
Image Processing. The concentration interpretation of

optical tracers is based on the relationship between light
intensity and tracer concentration.15,23−26 The application of
such a relationship in porous media can be cumbersome
because light intensity is affected by factors other than

absorption and reflection of a light ray passing through a
fluid with tracer concentrations. In particular, the light rays are
also influenced by the roughness and geometric properties of
the sand grains, fluctuations in the source light, and brightness
variations due to nonuniform lightning that introduce noise.

Methodology. The procedure we used for image
processing follows five principle steps: [1] capture the image
in raw data and convert it to 8-bit BMP images; [2] select the
channels most sensitive to the tracer; [3] determine the
relationship between light intensity and concentrations for each
image pixel; [4] use the light intensity relationships to map
concentrations; and [5] reconstruct concentrations and mixing
from the noisy images of concentrations. Because our objective
is to examine the occurrence of mixing at the interface between
materials, we restricted our image processing analysis to the
study area depicted in Figure 1.

Selection of a Color Channel. Preliminary tracer tests
revealed that substantial differences exist between the signals in
each of the three color channels. Figure 2 shows the channel

signal observed for the red, green, and blue channel as a

function of time during the tracer experiment. The green

channel was seen to be the most sensitive, likely because the

maximum absorption wavelength of Rhodamine B (565 nm) is

close to the wavelength of the excitation light (545 nm). Figure

2 also shows that the green channel provides a less noisy

response than the blue and red spectrum. Based on this, we

chose to work with the green channel signal.

Relationship between Light Intensity and Concen-
trations. To account for the spatial variations of light intensity

and the influence of an underlying nontransparent porous

medium, we analyzed the relationship between light intensity

and concentrations pixel by pixel.26 This was found crucial for

analyzing this type of experiments. These relationships were

calibrated before running the experiment by injecting 11 known

solutions of Rhodamine B into the sand-box aquifer (0, 10.13,

19.79, 30.47, 38.7, 8.83, 87.86, 120, 147.8, 179.19, 199.87 mg/

L). These solutions were independently injected into the tank

from low to high concentrations. For each solution, a

continuous injection was performed until a steady-state image

of reflected light intensity was obtained. The resulting images

I1(x),...,I11(x) constituted the reference light intensity for the

given solution of Rhodamine B. The final relationship was

Figure 2. Sensitivity of light intensity during Rhodamine injection for
one representative pixel associated with coarse sand.
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obtained by using a piece-wise linear model of the data points
as
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where C(I;x) is the concentration of Rhodamine B at location x
for a light intensity I, and I* is a normalized light intensity,
defined as I*i = Ii/Ii

0. The light intensity I0 is the light
intensity of a blank image obtained under steady-state flow
conditions before the injection (taken as the average over 60
min). This normalization aims to remove any small temporal
variations in the energy supply that can substantially affect light
intensity.26 Figure 3 shows the calibration curves obtained for

several pixels in the study area. The large width of the ensemble
illustrates the importance of calibrating this relationship pixel
by pixel for this type of experiment.
Reconstruction of Mixing from Noisy Images. Con-

centration fields, u(x,t), can be estimated from noisy images
C(I;x) using a suite of parametric and nonparametric
methods.28 All of them involve either local regressions, filtering
of noise, or both. A shared drawback is that they may produce
some degree of oversmoothing or bias of the concentration
field and the mixing rate Fmix. To minimize this effect, we
propose here a methodology that attempts to obtain the best of
two existing methods:

• The Steering Kernel Regression method (SKR) of Takeda
et al.,29 which is based on weighting concentration
measurements in the direction of concentration isolines,
ensures that no smoothing is produced in the
concentration gradient direction. Although this method
provides high quality images, it does not provide a clear
way to optimally define smoothing parameters.

• The weighted kernel density estimation method (wKDE)
which is capable of automatically selecting the optimal
level of smoothing, but fails to optimally orient the kernel
function. As a result gradients may be smoothed out in
areas where concentration gradients are not aligned with
the mean flow direction.

The proposed approach consists of two stages. During the
first stage, the wKDE method is applied to small areas of the
image, where concentration isolines are aligned with the x and/
or y axis, and where the wKDE method works well.30 The size
of these areas is (100 × 100 pixels) and their centroids are
shown in Figure 1 as black circles. The mixing rate, Fmix

wKDE, is

evaluated at these areas. At the second stage, the more
sophisticated data-adaptive SKR method is used, selecting its
smoothing parameters so as to match Fmix

SKR with Fmix
wKDE as closely

as possible. Details of both methods are outlined below.
Optimality of the wKDE method is presented in the Supporting
Information.

Weighted Kernel Density Estimation. Let p = ϕu/M be
the normalized concentration field of an image recorded at time
t, where M is the mass of tracer at time t, known from the
experimental mass balance of the optical tracer, and ϕ is the
porosity. Then, the problem of reconstructing mixing is
reduced to the estimation of p and its gradient ∇p = [px,py]

T

given a sample of pixel values. The focus here will be on

ϕ= ∇ = ∇F u M p /mix
wKDE 2 2 2

(4)

which is related to local reactions by eq 1. Estimation of p and
∇p can be optimized easily for 1D problems. Fernaǹdez-Garcia
and Sanchez-Vila30 generalized the 1D optimal methods by
viewing concentrations as a cumulative probability distribution
function and using the definition of the conditional density
function p(x,y) = p(y|x)p(x) = p(x|y)p(y), where p(x|y) and
p(y|x) are the conditional density functions, and p(x) and p(y)
are the marginal density functions, which leads to

ϕ= | |u x y t M p y x p x p x y p y( , , ) / ( ) ( ) ( ) ( ) (5)

ϕ

= | |

+ | |

F x y t M p y x p x p x y

p y p x y p y p y x p x

( , , ) ( ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ))/

mix
wKDE

x x

y y

2

2

(6)

where px and py denote the derivatives of the corresponding
univariate probability density functions. Let us consider for
instance the marginal density functions p(x) and px(x). The
wKDE estimators of these marginal probabilities are obtained
from the normalized pixel data pi = p(xi) i = 1,...,n as
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where K is a weight function, chosen as a zero mean and unit
variance Gaussian distribution, K′ is its derivative, and h0 and h1
are, respectively, the levels of smoothing for p and px. Using the
mean integrated squared error criterion to evaluate the
expected error of these estimators, the optimal supports are31
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where R(g) and μn(g) are the L2-norm and the nth-absolute
moment of g. These optimal estimates involve the unknown
function p, which needs to be further estimated. To this end, we
used the plug-in algorithm described in ref 31. The use of eqs
5−8 to estimate mixing has been already thoroughly tested
against analytical solutions and shown to outperform traditional

Figure 3. Calibration curves on concentration against normalized pixel
intensity for representative pixels located in both the high and low
permeability zones.
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methods30 for concentration fields described in terms of
particles. The fields here are not made up of particles, however,
this limitation can be overcome by expanding the sample data pi
in terms of constant mass particles.32 That is, prior to the
reconstruction of Fmix

wKDE, a new image was generated by
uniformly distributing ni pixel values of equal weight, pi = 1/N,
in each pixel cell according to ni = p(x,t)N, where N is the total
number of data points used (N = 50 000) in the specific area.
Steering Kernel Regression. In nonparametric regression,

the measured normalized concentrations are expressed as a
local Taylor expansion around the estimation location x plus a
noise term. Assuming a quadratic form of the regression model

= β + β ′ + β ′ + β ′ + β ′ ′ + β ′
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where ei is an independent and identically distributed zero
mean noise value, x′i = xi − x is the distance from the estimation
location, β0 is the estimated pixel value at x, [β1,β2]

T its
corresponding gradient and so on. In matrix form, this is
simplified to
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where b = [β0,β1,β2,β3,β4,β5]
T, p = [p1,...,pn,]

T, and e =
[e1,...,en,]

T. The regression parameter vector b is typically
obtained by minimizing the weighted sum of squared residuals,
i.e., SSE = eTWe, where W is a given weight matrix. The
solution of this optimization problem is

= −b X WX X Wp( )T T1
(11)

Because b and the regression function are expressed as a local
weighted average of the data, the coefficients multiplying p in
eq 11 can be denoted as equivalent weights. Nonparametric
regression evaluates b at the estimation location x from only
nearby data. A natural way to do this is to give nearby samples
higher weight than samples further away so that
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where K is a weight function typically assumed as a Gaussian
kernel,
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and H is the smoothing matrix. Whenever H is constant and
does not depend on data values, the quality of the
reconstruction in areas with complex geometries is low. To
solve this problem, Takeda et al.29 proposed to locally rotate
and scale H to ensure that weight is concentrated along
concentration isolines

μ
= ∇ ∇−
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where the overbar stands for averaging over the pixels adjacent
to xi, and μ is a global smoothing parameter. This filter is
nonlinear because Hi depends now on the solution through ∇u.
Therefore, its application is iterative. Figure 4 shows the maps

of equivalent weights obtained for three different pixels located
in the mixing zone at time 12 min 6 s. Remarkably, these
weights are able to adapt themselves to the presence of fine
sand, even at the corner boundary, which ensures that little
weight is given to concentration values inside the fine sand,
thus preventing the smoothing of gradients. The mixing
property can be finally estimated as

ϕ= ∇ = β + βF u M x y x y( ( , ) ( , ))/mix
SKR 2 2
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2
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The global smoothing parameter μ is chosen so as to obtain
Fmix
SKR ≈ Fmix

wKDE at the selected areas during the first stage. We
found that a value of μ equal to 3.6 pixels with 4 iterations
provided optimal results.

■ RESULTS
We applied the kernel regression image processing techniques
described in Experimental Procedure to the experimental setup
in Reconstruction of Mixing from Noisy Images to map
concentrations as well as mixing. Whereas the acquired images
capture the full experimental setup, we focus our analysis and
discussion only on the study area highlighted in Figure 1, which
incorporates the boundaries between materials of contrasting
permeability. Images were acquired every 6 s during both the
initial 42 min of Rhodamine injection and the following 42 min
of flushing with freshwater. Initially the tank is filled with
freshwater that has zero Rhodamine content. Figure 5 shows
the results obtained at 16 min and 54 s after injection. Here, the
results of our proposed methodology are compared with those
obtained directly from the calibrated images (nonfiltered data)
and those obtained using a moving window average technique
(MWA), which is the standard technique used in previous
visualization experiments.25,26 It consists simply of averaging
the pixel values over a moving window. The gradients needed
to estimate mixing in these cases were approximated by finite
differences. We consider two possible windows consisting of 11
× 11 pixels and 51 × 51 pixels. The first window resembles
previous studies to estimate concentrations.26 The other
provides a sufficiently smooth image with negligible noise.
Although at first sight the 11 × 11 MWA provides reasonable
images of concentrations, their local fluctuations are still too
high to estimate mixing properly. On the contrary, the 51 × 51
MWA shows zero noise but at the expense of substantially
oversmoothing mixing. Our proposed methodology is able to
eliminate most of the fluctuations while still providing an

Figure 4. Map of equivalent weights used to calculate concentrations
and concentrations gradients in eqs 7, 8, and 9 associated with three
different pixels located within the mixing zone.
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adequate description of mixing. The ability to visualize
concentrations and mixing so clearly using our iterative optimal
kernel algorithm highlights the strength of the algorithm for
these types of experiment.
The typical evolution of the concentration field by the

injection and flushing is shown in Figure 6 over the entire

course of the experiment. The tracer takes 7.2 min to arrive to
the low-permeability sand inclusion and another 26.63 min to
actually occupy the fine sand. The tank is completely full after
40 min. At early times the effect of macrodispersive spreading is
evident as contaminant travels through the high permeability
zones quickly, taking much longer to enter the low permeability
zone, highlighting visually the fundamental difference between
mixing and spreading. This causes strong gradients (particularly
in the transverse direction) at the interface between the two
materials. While the tracer takes relatively little time to cross
the tank through the high permeability areas, it takes much
longer for the tank to completely fill with Rhodamine due to
the slower processes associated with the low permeability zone.
This is strongly reminiscent of the mobile/immobile concepts
often used in multirate mass transfer type models which have
been relatively successfully extended to mixing driven
reactions.33 It is also important to highlight that the region
directly downstream of the low permeability inclusion looks
somewhat like a wake in that it takes a long time to fill and that
strong transverse gradients persist here also. In this region, the
solute traveling across the high permeability area in the tank is
able to mix with an almost stagnant freshwater that still resides
behind the inclusion.
The flushing process that begins after 42 min is qualitatively

similar to the initial injection period, although a close look at
the images in Figure 5 indicates some small differences. For
instance, remaining fluctuations, manifested by hot round spots
in the mixing image, are distributed in a different manner
during the injection and flushing period. This can likely be
attributed to the shape of the calibration curve, where high
concentrations are more sensitive to light intensity. Thus, more
noise is always observed in areas filled with Rhodamine. We
note that the optimality of μ is based on a global criterion and
therefore some local artificial fluctuations may still be produced.
These strong transverse gradients have significant implica-

tions with regard to reactive transport. As highlighted in the
Introduction and mathematically illustrated in eq 1 the rate of
reaction is directly proportional to the gradient squared.

Figure 5. Image map of concentrations (left-hand side) and mixing (right-hand side) obtained at time 16 min and 54 s for different methods: (1)
nonfiltered data; (2) 11 × 11 moving window average; (3) 51 × 51 moving window average; (4) proposed methodology.

Figure 6. Temporal evolution of concentrations (left-hand side) and
mixing (right-hand side) during the initial 42 min of Rhodamine
injection and the following 42 min of flushing with freshwater.
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Therefore, from Figure 6 we can infer that the regions of
greatest reaction are not just at the mixing front advancing in
the direction of flow as would be the case for a homogeneous
medium, but specifically along interfaces between zones of
differing permeability. This result is consistent with geological
observations such as the formation of Mississippi Valley Type
deposits34 or permeability enhancement at the base of
weathering fronts in plutonic rocks.35 From the mixing images
it is immediately obvious that these transverse gradients are
dominant and that peak reaction rates are most likely to occur
at interfaces with high permeability contrast. This in turn agrees
with previous comments that transverse mixing is a
fundamental driver of hydrogeochemical reactions, (e.g., refs
12 and 35).
Along with the local rate of mixing we can also estimate a

global measure of mixing, which may be of more interest at the
large scale. To this end, we use a global measure of mixing that
is the integral of the concentration gradient squared over the
study area

∫=R t F t dx x( ) ( , )mix mix (16)

Figure 7 compares our result of Rmix with those obtain using
the nonfiltered data and MWA technique. Results highlight that

the artificial gradients introduced by the inherent noise of a
nonfiltered image render meaningless results. This is not
completely solved by using MWA techniques, which fail to
reproduce the mixing valley induced by flushing the system
with freshwater after the injection (time = 42 min).
As mentioned in the introduction, the dilution index E can

also be used to quantify the degree of mixing. To understand
what controls the rate of dilution of a solute in time, Kitanidis19

proposed to evaluate the rate of change of the logarithm of the
dilution index

=R t
d E

dt
( )

ln( )
E (17)

Figure 8 shows RE and Rmix for our tracer test. For early
times, the distortion of the concentration field associated with
the advection field causes the dilution rate to decrease with
time with respect to the initial homogeneous well-mixed
behavior. The minimum dilution rate (time = 7.3 min) occurs
when the propagating front comes in contact with the low
transmissivity zone. After that, from time = 7.3 min onward,
strong vertical concentration gradients begin to form and there

is a rapid increase in both the dilution ratio RE and the global
mixing rate Rmix. Both measures of mixing start increasing over
the same time, but with substantially differing late-time
behavior after the hump. That is, global mixing Rmix shows a
more persistent effect with time since strong transverse
gradients can continuously occur over the entire interface
between materials. While the rate of volume occupied by solute
undergoes a sudden hump when the tracer rapidly passes
through the high-permeability zone, the concentration
gradients persist until the tracer is able to finally occupy the
low-permeability zone, later on, due to slow advection.
Remarkably, the peak of Rmix occurs at time = 23 min, right
when the solute has partially filled the low permeability area
through slow advection and is able to further mix with the
almost stagnant freshwater residing behind the inclusion.
Interestingly, the behavior of RE and Rmix is different. While

the dilution rate effectively measures the rate of change of the
plume volume, which is very high during injection until the
solute tracer reaches the low permeability region, this low
permeability region generates strong gradients that enhance
mixing over larger periods of time. The opposite occurs during
flushing. The tracer lagging behind slows down the dilution rate
until it is fully washed out. As a result RE lags behind Rmix
during flushing. This observation highlights that the two
quantities are different but complementary.

■ CONCLUSIONS

The understanding of mixing processes is one of the current
major challenges in subsurface hydrology. Tracer visualization is
a convenient technique that is typically used to analyze
processes in the laboratory. However, these techniques typically
provide noisy images that only reliably quantify concentrations.
They cannot be used to directly quantify mixing as this depends
strongly on concentration gradients, which are very sensitive to
noise. This article presents a novel methodology to overcome
these problems. They can be used to investigate reactive
transport processes under a variety of hydraulic and chemical
conditions. The method is applied to visualize the local mixing
processes that occur during the injection and flushing of tracer
in a heterogeneous porous medium. Several important
conclusions should be highlighted from this work. First, we
have shown that while traditional image processing techniques
do not provide proper mixing estimates, our optimal method-
ology can actually depict local mixing processes. Moreover, the

Figure 7. Comparison of the global mixing measure Rmix with MWA
using a window of 11 × 11 and 51 × 51 pixels.

Figure 8. Temporal evolution of global mixing rate Rmix and dilution
index rate RE.
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experiment demonstrates that transverse gradients can be
dominant at interfaces with high permeability contrasts within
aquifers as well as in areas of relatively low velocity. As a result,
regions of greatest reactions should not be expected only at the
mixing front advancing in the direction of flow, as would be the
case for a homogeneous medium, but also along interfaces
between zones of differing permeability. The experiment was
also used to analyze the temporal evolution of two well-known
mixing indices, i.e., the dilution index ratio and the global
mixing rate. The peak of dilution was seen to occur relatively
quickly after injection when the plume was most distorted by
the spatially varying velocity field. In contrast, the peak of the
global mixing rate occurred later when slow advection and
mixing with stagnant water were the most active transport
mechanisms.
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Carrera, J. J. Hydrol. 2005, 311, 282−298.
(14) Weeks, C. W.; Sposito, G. Water Resour. Res. 1998, 34, 3315−
3322.

(15) Gramling, C. M.; Harvey, C. F.; Meigs, L. C. Environ. Sci.
Technol. 2002, 36 (11), 2508−2514.
(16) De Simoni, M.; Carrera, J.; Sanchez-Vila, X.; Guadagnini, A.
Water Resour. Res. 2005, 41, W11410 DOI: 10.1029/2005WR004056.
(17) Kapoor, V.; Gelhar, L. Water Resour. Res. 1994, 30 (6), 1775−
1788.
(18) Sanchez-Vila, X.; Guadagnini, D.; Fernaǹdez-Garcia, A. Math.
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(21) Fernaǹdez-Garcia, D.; Sanchez-Vila, X.; Guadagnini, A. Adv.
Water Res. 2008, 31, 1364−1376.
(22) Luo, J.; Dentz, M.; Carrera, J.; Kitanidis, P. Water Resour. Res.
2008, 44 (2), W02416 DOI: 10.1029/2006WR005658.
(23) McNeil, J.; Oldenborger, G.; Schincariol, R. J. Contam. Hydrol.
2006, 84, 39−54.
(24) Rahman, A.; S., J.; W., N.; Cirpka, O. J. Contam. Hydrol. 2005,
80, 130−148.
(25) Schincariol, R.; Herderick, E.; Schwartz, F. J. Contam. Hydrol.
1993, 12, 197−215.
(26) Konz, M.; Ackerer, P.; Meier, E.; Huggenberger, P.; Zechner, E.;
Gechter, D. Hydrol. Earth Syst. Sci. 2008, 12, 727−738.
(27) Swartz, C. H.; Schwartz, F. W. J. Contam. Hydrol. 1998, 34,
169−189.
(28) Smoothing Techniques, with Implementation in S; York, H. N., Ed.;
Springer Verlag, 1991.
(29) Takeda, H.; Farsiu, S.; Milanfar, P. IEEE Trans. Acoust., Speech,
Signal Process. 2007, 16, 349−366.
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