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Abstract

Spatially non-local transport describes the evolution of solute concentration due to mass transfer

over long ranges. Such long-range mass transfer, present in many flow situations, changes the

character of mixing and consequent chemical reactions. We study mixing in terms of the scalar

dissipation and reaction rates for mixing limited equilibrium reactions, using the space-fractional

advection-dispersion equation (fADE) to model long range mass transfer. The scalar dissipation

and global reaction rates decay as power-laws in time. As opposed to the Fickian (local) transport

model, local reaction rates are not zero where the concentration has zero gradient. As α, the

fractional derivative exponent, decreases from two in the fADE, the reaction rate grows larger at

the position of zero gradient, due to long-range transfer of reactants from distances larger than

Fick’s law allows. The reaction rates are also greater far from the reactant source for non-Fickian

transport; however, the globally integrated reaction rate decreases with smaller α. This behavior

may provide a method to investigate spatial nonlocality as a proper model of upscaling: the reaction

products would be found in places precluded by Fickian dispersion, and overall reaction rates are

suppressed.

PACS numbers:
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I. INTRODUCTION

Fick’s law has been commonly used to model tracer dispersion in flows. In this transport

framework, the evolution of the tracer concentration c(x, t) is governed by the advection

dispersion equation (ADE)

∂c(x, t)

∂t
+ v

∂c(x, t)

∂x
= D

∂2c(x, t)

∂x2
, (1)

where v is the flow velocity, and D the dispersion coefficient.

The ADE describes mass accumulation or depletion due to the difference in advective

and dispersive fluxes immediately upstream and downstream of any point. It also describes

the probability density function of the location of particles undergoing Brownian motion

with a deterministic drift [e.g., 1] and a random increment that is Gaussian with zero mean

and variance 2Dτ , where τ is a constant mass transfer time scale. The typical spatial mass

transfer scales are given by advection, la = vτ and dispersion ld =
√
Dτ . While the former

measures a constant displacement in the flow, the latter quantifies the mixing length, that

is the typical length over which concentration contrasts are dissipated. For a unit-mass,

point-like, tracer injection in an infinite medium, both the centroid travel distance and the

centered second moment (i.e., variance) of c(x, t) grow linearly with time. This is known as

Fickian behavior.

A wide array of physical systems display non-Fickian behaviour for transport [e.g., 2–5].

The non-Fickian behavior is characterized by super- or sub-linear growth of the centroid

and variance of the tracer distribution, heavy tails of the spatial distribution, and early or

late arrival times. Various models exist that capture such behavior. These are typically

characterized by spatially and temporally non-local transport equations that can account

for long-range mass transfer from distant locations, and variability of mass transfer times.

Among these models are projector formalisms [6], continuous time random walks [7] and

spatially fractional advection-dispersion equations (fADE) [8–11].

We focus on the fADE, which models long–range mass transfer. While this is one of

a large variety of spatially non-local equations, we use it for several reasons: it is the

governing equation of the density of Lévy motion, which is commonly observed in many

physical settings [12]; it has been used to explain anomalous behaviour of well-studied field-

scale aquifer tracer tests [13]; and the model yields tractable solutions that give insight into
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the general effect of spatially non-local transport on mixing and chemical reaction. For

simplicity we consider 1-dimensional and symmetric dispersion characterized by [e.g., 8, 9]:

∂c(x, t)

∂t
+ v

∂c(x, t)

∂x
= Dα

∂αc(x, t)

∂|x|α , (2)

where 1 ≤ α ≤ 2. The generalized dispersion coefficient Dα has units [Lα T−1]. The Riesz

fractional derivative may be defined through its Fourier transform by

∂αc(x, t)

∂|x|α ≡ −
∞∫

−∞

exp(ikx)|k|αc̃(k, t)dk
2π

, (3)

although slightly different definitions do exist (see, e.g., [14]). We specify natural boundary

conditions (concentration and its derivatives are zero) at x = ±∞. The structure of the

equation changes slightly within the context of the fADE, if one has a finite domain with

boundary effects (see for example [15] for details). Note that equation (2) describes the

evolution of the distribution density of a Lévy motion with a constant mean drift and

random increments ξ characterized by a density function that decays with the asymptotic

power law |ξ|−1−α. Therefore, unlike Brownian motion governed by the ADE, the fADE

lacks a typical dissipation scale.

While the accurate prediction of conservative solute motion is very important in its own

right, an emerging need is to be able to properly calculate mixing, because it is a primary

driver in many chemical reactions [e.g., [16–18]], and also leads to solute dilution, as opposed

to mere spreading. For transport described by the ADE, mixing has been quantified by the

scalar dissipation rate [e.g., 19–21]. This quantity is global, that is, a spatially integrated

measure for mixing. Its local counterpart is quantified in terms of concentration gradients.

This reflects that mass transfer is the dominant mixing process. For Fickian transport this

happens on the mixing scale ld =
√
Dτ . For transport described by the fADE there is no

typical mass transfer scale. Thus, the local measures defined for the ADE do not apply here,

and mixing has to be described in terms of global measures, which integrate mass fluxes over

all spatial scales.

Lacking a characteristic scale of mass transfer or dissipation, the fADE is expected to

describe different solute mixing than the Fickian formulation. Indeed it can be expected

that anomalous transport will affect mixing processes and reactions in a nontrivial way.

The influence of sub- and super-diffusive transport on reaction/diffusion front propagation
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has received much attention [e.g. [22], [23], [24], [25], [26],[27]]. The effect of large motion

deviations on the propagation speed and shape of reaction/diffusion fronts is often counter-

intuitive. Lévy motion, while engendering fast growth of the front when there is no reaction,

causes a slowing of the front when simple Fisher-type reactions are present, due to the

“stranding” of small amounts of reactants far from the bulk of the plume [e.g. [22] and

[23]]. These small, distant “packets” are rapidly removed via reaction [23], an effect that

is missing from the Fickian model. This suggests that the global degree of mixing induced

by Lévy motion will also have the largest control on global reaction rates. Because of the

non-locality of the mixing, the behavior of the reaction front should propagate throughout a

moving cloud of reactants. Here, we consider a different type of reaction to those previously

considered, namely an equilibrium bimolecular reaction. Unlike previous studies [e.g. [22],

[23], [24] and [25]] we do not focus on front propagation, but rather investigate the global

mixing and subsequent impact on mixing-driven reactions in a Lévy motion regime.

The choice of this type of reaction is motivated by the the work of [18], who shows that,

within the context of the ADE for mixing-limited equilibrium reactions, the local reaction

rate r can be calculated as the product of a speciation term (that depends on the reaction)

and the mixing factor D∇c ·∇c. This concept was extended to a temporally non-local model

in the multirate mass transfer formulation by [28, 29]. Here, we examine the reaction rates

and mixing that would occur within the fADE formulation, particularly as they relate to

mass transfer over relatively large distances [e.g., 30].

II. SPATIAL FRACTIONAL ADVECTION DISPERSION REACTION SYSTEM

We consider a mixing-limited chemical reaction of two solutes of concentrations c1 and

c2 that react and precipitate to form c3 with local chemical equilibrium conditions [18]. c1

and c2 are transported by space-fractional dispersion,

∂ci(x, t)

∂t
+ v

∂ci(x, t)

∂x
−Dα

∂αci(x, t)

∂|x|α = r(x, t) i = 1, 2 (4)

while c3 is immobile

∂c3(x, t)

∂t
= −r(x, t) (5)

The two species c1 and c2 are in local equilibrium such that
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c1(x, t)c2(x, t) = K (6)

with K the equilibrium constant. We can now define a conservative component u(x, t) =

c1(x, t) − c2(x, t) that satisfies Eq. (2). Using the equilibrium condition in (6) and the

definition of u the species concentration can be written as c1,2(x, t) ≡ c1,2[u(x, t)]. Doing so

results in

c1,2(x, t) = ±u(x, t)

2
+

√
u(x, t)2

4
+K (7)

III. CALCULATION OF LOCAL REACTION RATE

Following [18], the reaction rate can be calculated by inserting ci[u(x, t)] from (7) into (4),

resulting in

r(x, t) =
dc

du

∂u

∂t
+

dc

du
q
∂u

∂x
−Dα

∂α−1

∂|x|α−1

[
dc

du

∂u

∂x

]
(8)

Using the generalized Leibnitz product rule for fractional calculus [e.g., 31]

∂α−1

∂|x|α−1

[
dc

du

∂u

∂x

]
=

dc

du

∂αu

∂|x|α +
∞∑
k=1

(
α− 1

k

)
∂α−ku

∂|x|α−k

∂k

∂xk

[
dc

du

]
(9)

Combining equations (2), (8) and (9) allows us to calculate the reaction rate as

r(x, t) = Dα

∞∑
k=1

(
α− 1

k

)
∂α−ku

∂|x|α−k

∂k

∂xk

dc

du
. (10)

For α = 2, all terms for k > 1 in the binomial series
(
α−1
k

)
are zero, and this expression

reduces to the one derived by [18]. This infinite sum and dependence of r on multiple

fractional derivatives of u reflects, and retains, the nonlocal nature of the fADE. In short,

particles do not have to begin directly next to one another to interact during some short

time period. This expression suggests that estimating reactions in the fADE formulation

is not as simple as the case of the classical ADE, where it is just the product of a local

mixing and speciation term. Here the relationship is more complex and depends on multiple

derivatives of u as well as more complicated speciation terms.

6



−10 −5 0 5 10
10-6

10-5

10-4

10-3

10-2

10-1

100

Lo
ca

l C
on

ce
nt

ra
tio

n 
D

iff
er

en
ce

 u

α=2
α=1.99
α=1.5
α=1.3
α=1.1

x − vt

FIG. 1: (Color Online) The conservative component u(x, t) with a delta initial condition for various

values of α for K = 0.1 and at t = 1/Dα.

We illustrate the spatial behavior of the conservative component u(x, t) and the reaction

rate r(x, t) in an example characterized by the equilibrium constant K = 0.1. The initial

condition we consider is u(x, t = 0) = δ(x). Decreasing the index α shifts more of the mass

of u into the tails (Fig. 1). The local reaction rate r(x, t) given in (10) for α = 2 (Fig. 2)

displays a double hump with zero reaction rate at x = 0, which is because the gradient of

u(x, t) is zero here. All non-Fickian α < 2 curves display a very interesting feature: the

reaction rate at the centroid at x = 0 is not zero. This point actually has the greatest reaction

rate for the lowest value (α = 1.1) investigated here. This is noteworthy, because while the

value of α codes the tails of conservative solute transport, it dictates the extreme distances

that one reactive solute can infringe upon another through long range mass transfer. Hence

the regions of greatest reaction rates are very different from classical small-range Fickian

dispersion. The non-local expression (10) for the reaction rate r illustrates why the reaction

rate is not zero at the peak concentration point. When α < 2, r depends on all higher-order

(non-local) derivatives of u and not just the gradient (as is the case for α = 2). In the limit

of α = 1, the advection and dispersion terms can be combined as a single advection term

and pure advection causes no mixing whatsoever. The enlarged range over which reactions

may occur suggests that the global reaction rates (and other measures of plume mixing)

may also be larger for smaller values of α.
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FIG. 2: (Color Online) Local reaction rate r with a delta initial condition for u for various values

of α at t = 1/Dα and K = 0.1.

IV. GLOBAL MEASURES OF MIXING AND REACTION

Let us consider the global reaction rate R(t) =
∫∞
−∞ r(x, t)dx. Applying this integral to

equation (10) and successively applying integration by parts we obtain

R = Dα

∫
Ω

∂α−1u

∂|x|α−1

∂u

∂x

d2c

du2
dx. (11)

It is interesting that this global measure can be simplified like this (i.e., the infinite sum

in (10) disappears), and leads us to speculate that other global measures may also display

this type of simplification.

As a global mixing measure we consider the scalar dissipation rate which is defined by [19]

M(t) = − ∂
∂t

∫
Ω
u2(x, t)dx. Multiplying (2) by u(x, t) and integrating over space gives

M = Dα

∞∫
−∞

∂α−1u

∂|x|α−1

∂u

∂x
dx. (12)

Note that for Fickian transport (α = 2), the local scalar dissipation and reaction rates are

defined in terms of the concentration gradient because it is (local) mass transfer from short

distances that determines mixing. For transport as described by the fADE (2), mixing is

a nonlocal phenomenon. This is expressed by (10) for the local reaction rate. Due to the

long range mass transfer mechanisms that are inherent in the fADE, it seems to be intuitive
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that mixing needs to be described by a global measure that integrates mass transfer over all

scales.

Now we derive an explicit expression for M(t) for the scenario described above, that is,

a point-like initial condition in a coordinate system moving with velocity v. The solution to

the fADE with a Dirac-delta initial condition can be written as

u(x, t) =

∫ ∞

−∞
e−Dαt|k|α+ikxdk

2π
(13)

Integrating u2(x, t) over the spatial domain and taking a time derivative gives the scalar

dissipation rate

M =
Γ(1/α)

2π2α2(2Dα)1/α
t−

α+1
α . (14)

This is a power law in time that scales as t−(α+1)/α. Note that Fickian mixing is characterized

by a t−3/2 scaling. In analogy to anomalous transport we term mixing that deviates from

this behaviour as “anomalous mixing,” which occurs for all α �= 2. The behaviour for various

values of α is shown in Fig. 3. At early times mixing is larger for smaller values of α. This is

because smaller values of α enable larger degrees of long range mass transfer thus making it

more effective at smoothing out concentration contrasts and inducing more efficient mixing.

At late times the systems with lower α have lower rates of mixing reflecting the fact that

the enhanced early time mixing has led to a better mixed state. It is worth noting that all

curves cross at the same point marking the time where anomalous mixing transitions from

being greater to smaller than Fickian mixing.

This behaviour suggests that the greater early-time mixing associated with small α may

generate significant increases in the global reaction rates R. The integrand in (11) for R is

equal to the one in (12) for M multiplied by the stoichiometric term d2c/du2. Some authors

([32]) show that under certain circumstances it is reasonable to assume that the speciation

term is approximately constant, meaning that R is then directly proportional to the scalar

dissipation rate M . However, a close look (Fig. 4) shows that this is not true during an

initial transient region, where the reaction rates do not follow this power law behavior at

early times (with greater decreases for lower values of α). This is a reflection of the non

constant stochiometric term d2c/du2. For very large values of u, d2c/du2 tends to become

very small ([29]). The net effect is that the global reaction rate remains smaller at all times

as the value of α decreases. These decreased rates, along with the simple observation that

9



reactions are predicted to occur in regions precluded by Fickian formulations (Fig. 2), should

allow independent tests of the veracity of the fADE as a proper model of upscaled transport.

From a practical perspective, if traditional ADE models are used to predict reactions in

systems where a nonlocal model is more appropriate, the location and amount of reaction

occurring could be drastically incorrect. This would, for example, have severe implications

for the design and implementation of remediation strategies that rely on delivery of reactive

components (e.g. [33]).

V. CONCLUSION

In conclusion, we have studied mixing and subsequent chemical reactions that occur in a

system with long range mass transfer. We chose the fADE to model this. We find that long

range mass transfer leads to anomalous non-Fickian mixing, which is characterized by the

scaling behavior M ∝ t−(α+1)/α. In particular, the smaller α, the greater the mixing rate

at early times reflecting the fact that long range mass transfer smoothes out concentration

contrasts more rapidly. As has been previously commented upon, the impact of Lévy motion

on reactive system can be counterintuitive [e.g. [23]]. In particular, within this study we

note that the anomalous mixing induced by Lévy flights leads to the occurrence of reactions

in regions where no such reaction could occur within a Fickian system. In some cases the

regions of zero reaction within a Fickian system can even become the regions of maximum

reaction within a Lévy motion system.

This work was supported by the EU project MUSTANG, CIUDEN, NSF grant EAR–

0749035 and USDOE Basic Energy Sciences grant DE–FG02–07ER15841. Any opinions,

findings, conclusions, or recommendations do not necessarily reflect the views of the funding

agencies.
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