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[1] We study the combined effect of spatial heterogeneity and temporal pressure
fluctuations on the dispersion of the saturation of a displacing fluid during injection into
an immiscible one. In a stochastic modeling framework, we define two different dispersion
quantities, one which measures the front uncertainty due to temporal pressure
fluctuations and another one which quantifies the actual spreading and dispersion of the
saturation front in a typical medium realization. We derive an effective large-scale flow
equation for the saturation of the displacing fluid that is characterized by a nonlocal
dispersive flux term. From the latter we derive measures for the spread of the saturation
front due to spatiotemporal fluctuations. Our analysis demonstrates that temporal
fluctuations enhance the front uncertainty but not the average spreading of the saturation
front. The analytical developments are complemented by numerical simulations of the full
two-phase flow problem. Correct assessment of the spread of the saturation front is of
importance to several applications, including the assessment of the sequestration potential
of a carbon dioxide storage site, for example. Spreading enhances the surface area between
the fluids, which in turn enhances the dissolution and entrapment efficiency. The latter
facilitates reactions and thus the sequestration of CO2 in stable forms. Our study provides
a theoretical basis for the design of injection strategies to optimize dispersion and to
minimize uncertainty of the saturation front.
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1. Introduction

[2] The injection of one fluid into another in geological
porous media is one of great interest in the fields of
petroleum engineering [Lake, 1989], gas storage and more
recently, with the ever increasing awareness of climate
change, the sequestration of anthropogenic CO2 in deep
saline aquifers [Bachu, 2000]. The study of such flows
requires a multiphase modeling approach and a manner to
study this is to manipulate the mass balance equations of the
individual phases in such a manner as to write governing
equations that look similar to advection-dispersion equa-
tions for single phase flows. According to Bear [1972], a
multiphase flow problem can be cast into an equation that
looks much like an advection-dispersion type equation for
the saturation S(x, t) of an immiscible fluid such that

@S x; tð Þ
@t

þ v x; S x; tð Þ½ � � rS x; tð Þ

þ r � D x; S x; tð Þ½ �rS x; tð Þ ¼ 0: ð1Þ

[3] Note that the latter is highly nonlinear as the drift v as
well as the dispersion coefficient D depend on the saturation

S(x, t) via the dependence of capillary pressure and relative
permeability on saturation as will be outlined below. While
(1) has the appearance of an advection-diffusion equation
caution must be taken with this analogy as the nonlinearities
can lead to behavior that is very different from the tradi-
tional linear advection diffusion equation used for solute
transport.
[4] Multiphase flow in homogeneous porous media has

been studied extensively over the years [Marle, 1981, and
references therein]. However, in most geological porous
media the properties of the medium, such as the permeabil-
ity, fluctuate over a large range of values. From a practical
perspective it is desirable to describe the flow through such
a medium on a large scale, which requires a qualitative and
quantitative understanding of the impact of small-scale
heterogeneities and temporal pressure fluctuations on the
effective flow behavior. While it is not necessarily possible
to resolve the full medium heterogeneity on all scales, it is
not generally necessary to do so as we are typically seeking
an integral understanding of the system behavior on a large
scale. Stochastic modeling [e.g., Dagan, 1989; Gelhar,
1993] provides an efficient and systematic framework to
integrate spatiotemporal fluctuations into an effective flow
description and to assess fluctuation-induced uncertainties
of the large-scale system characteristics. With this approach
the permeability field is modeled as a typical realization of
an (ergodic) correlated spatial random process and temporal
pressure fluctuations are modeled as an (ergodic) correlated
temporal random process [e.g., Dentz and Carrera, 2003].
The results presented herein are readily extendable to
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periodic fluctuation patterns too. The effective flow behav-
ior can then be determined by averaging of all possible
realizations of the respective ensembles [e.g., Tartakovsky
and Neuman, 1998b, 1998a]. It is often tacitly assumed that
the ensemble averaged flow parameters are representative of
the effective large-scale behavior within a single realization.
This, however, is not self-evident. The physical meaning of
large-scale coefficients depends intrinsically on how they
are defined as an ensemble average.
[5] Many multiphase flow processes, including the afore-

mentioned oil displacement and carbon sequestration prob-
lems, are modeled as ideal displacements, which consist of
one fluid displacing another immiscible one. In these
applications quantifying the spread of the saturation front
due to heterogeneities can be an important task. In order to
optimize oil recovery one may want to minimize such
spreading effects, while for the geological sequestration of
CO2 it may be desirable to maximize the surface area
between the CO2 and the host fluid in order to increase
dissolution and entrapment of CO2, thus enhancing seques-
tration efficiency.
[6] For the case of single phase solute transport it is well

known that the heterogeneities lead to a heterogeneous flow
path structure, resulting in greater travel distances along one
path compared to another [e.g., Kitanidis, 1988; Dentz et
al., 2000; Fiori, 2001; Cirpka and Attinger, 2003; Dentz
and Carrera, 2003]. This results in greater mixing on the
macroscale, which can be captured by a macrodispersion
term [e.g.,Gelhar and Axness, 1983;Dagan, 1989]. Because
of the formal similarity of the advection-dispersion equation
for the transport of a solute and the nonlinear advection-
dispersion type equation (1) for the saturation one might
expect a similar mixing effect by the heterogeneities in an
immiscible displacement flow. As the two fluids are immis-
cible, macrodispersion here does not reflect physical mix-
ing, but rather a spreading of the saturation distribution.
[7] Langlo and Espedal [1995] explicitly determined a

macrodispersion coefficient that models the dispersive flux
in an effective equation for the saturation of the wetting
phase in immiscible two-phase flow. They used a perturba-
tion approach in flow scenarios with and without capillary
forces. Their result for the macrodispersion coefficient is
similar to the one obtained for heterogeneity-induced solute
spreading in single phase flow.
[8] Cvetkovic and Dagan [1996] studied this macrodis-

persion effect in an immiscible flow scenario using the
Buckley-Leverett approximation, i.e., disregarding capillary
pressure and gravity. Applying a Lagrangian perturbation
approach they found a dispersive large-scale effect, which,
however, is not explicitly determined.
[9] Neuweiler et al. [2003] used a perturbation theory

approach in order to determine a large-scale mixing param-
eter for the displacing fluid for the flow problem in a two
dimensional heterogeneous porous medium. They devel-
oped an explicit definition of a large-scale mixing coeffi-
cient for the nonlinear problem.
[10] Kinzelbach and Ackerer [1986] and Rehfeldt and

Gelhar [1992] pointed out that temporal pressure fluctua-
tions can lead to enhanced solute dispersion in heteroge-
neous media. Dentz and Carrera [2003] and Cirpka and
Attinger [2003] quantify the interaction of temporal pressure
fluctuations and spatial heterogeneity using a perturbation

analysis in the fluctuations of the spatial and temporal
random fields.
[11] In section 2 we present the mathematical model that

we use to study this problem. In section 3 we quantify the
impact of medium heterogeneities on the effective large-
scale flow behavior, which, using moments, we quantify by
a ‘‘macrodispersion’’ coefficient. We also define an ensem-
ble quantity that measures the uncertainty of the saturation
front due to spatiotemporal fluctuation. In section 4 we
study the problem at hand numerically and quantitatively
compare the results.

2. Model

2.1. Two-Phase Flow

[12] The flow of two immiscible fluids in a porous
medium is described by the coupledmomentum conservation
and mass conservation equations. Momentum conservation
is expressed by Darcy’s law, which reads as [Bear, 1972]

q ið Þ x; tð Þ ¼ 	 k xð Þkri Sið Þ
mi

rpi x; tð Þ þ rige3½ �; ð2Þ

where q(i)(x, t) and pi(x, t) are specific discharge and
pressure of fluid i, mi and ri are viscosity and density of
fluid i, k(x) is the intrinsic permeability of the porous
medium, kri[Si(x, t)] is the relative permeability of phase i
(which depends on saturation); e3 denotes the unit vector in
3 direction. Mass conservation for each fluid is given by
[Bear, 1972]

@

@t
wriSi x; tð Þ þ r � riq ið Þ x; tð Þ ¼ 0: ð3Þ

[13] We assume here that the medium and the fluid are
incompressible so that porosity w and density ri of each
fluid are constant. The saturations Si of each fluid sum up to
one and the difference of the pressures in each fluid defines
the capillary pressure pc(S)

S1 þ S2 ¼ 1 ð4Þ

p1 	 p2 ¼ pc S1ð Þ; ð5Þ

where i = 1 indicates the nonwetting fluid. In the following
we focus on the saturation of fluid 1 and drop the subscript
in the following. From the incompressibility conditions and
mass conservation, it follows that the divergence of the total
specific discharge q(x, t) = q(1)(x, t) + q(2)(x, t) is zero:

r � q x; tð Þ ¼ 0: ð6Þ

Eliminating q(1)(x, t) from equation (3) in favor of q(x, t),
one obtains [Bear, 1972]

@S x; tð Þ
@t

þ @

@S
y Sð Þ q x; tð Þ þ k xð Þl2 Sð ÞgDre3ð Þ½ � � rS x; tð Þ

þ y Sð Þl2 Sð ÞgDr
@k xð Þ
@x3

	r

� y Sð Þk xð Þl2 Sð Þ dpc Sð Þ
dS

rS x; tð Þ
� �

¼ 0; ð7Þ
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where Dr = r2 	 r1. We set w = 1 for simplicity (which is
equivalent to rescaling time). The fractional flow function
y(S) is defined by

y Sð Þ ¼ l1 Sð Þ
l1 Sð Þ þ l2 Sð Þ ; ð8Þ

where the phase mobilities li are defined as the ratio of
relative permeability to fluid viscosity, li = ki(S)/mi.
Equation (7) is similar to (1) and in the absence of the
buoyancy term it is identical; the nonlinear drift v(t) is
defined by the second term and the nonlinear (capillary)
dispersion coefficient by the third term on the right of (7).
[14] Here, we want to focus on problems where viscous

forces dominate the flow and as such we neglect the
influence of buoyancy and capillary pressure. This problem
of immiscible two phase viscous dominated flow is com-
monly known as the Buckley-Leverett problem. With these
approximations, the governing equation (7) reduces to the
Buckley-Leverett equation

@S x; tð Þ
@t

þ dy Sð Þ
dS

q x; tð Þ � rS x; tð Þ ¼ 0: ð9Þ

[15] In this work we consider the commonly studied
problem of one fluid displacing another immiscible one.
As was done by Neuweiler et al. [2003], we focus on fluid
movement in a horizontal two-dimensional porous medium
which is initially filled with fluid 2. Such a scenario
eliminates buoyancy effects. We focus on neutrally stable
displacement cases. Fluid 1 is injected along a line at a fixed
rate, displacing fluid 2. We consider flow far away from the
domain boundaries and thus disregard boundary effects.
The resulting mean pressure gradient is then aligned with the
one direction of the coordinate system. The corresponding
homogeneous multiphase flow problem is d = 1 dimensional.

2.2. Homogeneous Solution

[16] Before studying the heterogeneous problem we
briefly summarize the classical homogeneous case here.
We denote the homogeneous solution as S0 as this corre-
sponds to the zeroth-order perturbation solution outlined in
Appendix A. The governing equation is given by

@S0 x; tð Þ
@t

þ q tð Þ dy S0ð Þ
dS0

@S0 x; tð Þ
@x1

¼ 0: ð10Þ

The solution of this problem is discussed extensively in
many textbooks [e.g., Marle, 1981]. Because of the
hyperbolic nature of (10) the displacing fluid develops a
shock front. Using the method of characteristics and the
shock condition, one derives for S0(x, t)

S0 x1; tð Þ ¼ Sr
x1

xf tð Þ

� �
H xf tð Þ 	 x1
� �

; ð11Þ

where H(x) is the heaviside step function [Abramowitz and
Stegun, 1970] and the front position xf(t) is obtained from
mass balance considerations as

xf tð Þ ¼
dy Sf

� �
dSf

Z t

0

dt0q t0ð Þ; ð12Þ

with Sf the front saturation. The latter is determined by the
Welge tangent method [e.g., Marle, 1981]. The rear
saturation Sr[x1/xf(t)] behind the shock front is obtained by

the method of characteristics. Note that S0(x, t) = S0(x1, t)
depends only on the one direction. A sample set of solutions
for (10) are shown in Figure 1. Note that the fractional flow
function is given by

y S0ð Þ ¼ y Srð ÞH xf tð Þ 	 x1
� �

: ð13Þ

2.3. Stochastic Model

[17] We employ a stochastic modeling approach in order
to quantify the impact of medium heterogeneity and tem-
poral pressure fluctuations on the saturation front of the
displacing fluid. The spatial variability of the intrinsic
permeability k(x) and temporal variability of the injection
rate are each modeled as stationary correlated stochastic
processes in space and time, respectively. The two processes
are not correlated. Permeability is characterized in terms of
its logarithm, the log permeability f(x) = ln k(x). The mean

value of the latter is constant f xð Þ = f , where the average
over all typical realizations of k(x) is denoted by the over-
bar. The fluctuations of f(x) about its mean value are defined
by f 0(x) = f(x) 	 f . Its correlation function is defined by

f 0 xð Þf 0 x0ð Þ � s2
ff Cff x	 x0ð Þ: ð14Þ

[18] Temporal fluctuations are introduced via temporal
variations in the boundary flux of the displacing fluid(see
the discussion in Appendix B). The temporal variability of
the boundary flux is modeled as a stationary correlated
temporal random process q(t) whose mean hq(t)i = qe1 is
aligned with the one direction of the coordinate system. The
angular brackets in the following denote the ensemble
average over all realization of the process q(t).
[19] In the following, we consider injection of the dis-

placing fluid at an injection plane perpendicular to the one
direction of the coordinate system and thus we assume the
boundary flux to be aligned with e1, q(t) = q(t) e1. The
fluctuations of q(t) about its mean value are defined by,
q0(t) = q(t) 	 q. They are characterized by the correlation
function

hq0 tð Þq0 t0ð Þi ¼ q2s2
t Ct t 	 t0ð Þ: ð15Þ

[20] The spatiotemporal randomness is mapped onto the
phase discharges and thus on the total discharge via the
Darcy equation (2), which renders the total discharge a
spatiotemporal random field. The latter can be decomposed
according to (see Appendix B)

q x; tð Þ ¼ q tð Þe1 þ q0 x; tð Þ; ð16Þ

where q0(x, t) is approximately given by (see Appendix B)

q0i x; tð Þ ¼ q tð Þ
Z

dkd

2pð Þd
exp 	ik � xð Þpi kð Þ~f 0 kð Þ; ð17Þ

with ~f 0(k) the Fourier transform of the log permeability
fluctuation f 0(x); the pi(k) are defined by pi(k) = di1	 kik1/k

2.
Note that (17) is identical to the solution for single phase
flow. This approximation is justified as long as the principal
direction of the variation of saturation can be assumed to be
aligned with the direction of q(x, t).
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[21] Thus, we obtain for the velocity correlation

q0i x; tð Þq0j x0; t0ð Þ � s2
ff Cij x	 x0ð Þq tð Þq t0ð Þ; ð18Þ

where we defined

Cij xð Þ ¼
Z

dkd

2pð Þd
exp 	ik � xð Þpi kð Þpj kð Þ~Cff kð Þ; ð19Þ

where ~Cff (k) is the Fourier transform of the log conductivity
fluctuations.
[22] Here we have found specific conditions under which

we approximate the covariance of the velocity field as the
covariance of a single phase flow field. However, one must
be cautious in doing this as this may not be correct for the
unstable or stabilizing cases. In the unstable case viscous
fingering dominates while for the stabilizing case the
velocity field is no longer stationary as the velocity variance
in the vicinity of the front is suppressed [e.g., Noetinger et
al., 2004].

3. Large-Scale Flow Behavior

[23] In the following, we derive large-scale flow equa-
tions by averaging the original local-scale flow equation.
We define measures for the front spreading due to spatio-
temporal fluctuations and for the front uncertainty due to
temporal fluctuations. On the basis of these considerations
we suggest a large-scale effective flow equation for the
average saturation.

3.1. Average Flow Equation

[24] In analogy to solute transport in heterogeneous
media [e.g., Gelhar and Axness, 1983; Koch and Brady,

1987; Neuman, 1993; Cushman et al., 1994], here the spread
of the space average saturation front S x; tð Þ due to spatial
heterogeneity is modeled by a non-Markovian effective
equation. Note that an effective equation is in general non-
Markovian [e.g., Zwanzig, 1961;Kubo et al., 1991;Koch and
Brady, 1987;Cushman et al., 1994;Neuman, 1993], which is
expressed by spatiotemporal nonlocal flux terms. Under
certain conditions, these fluxes can be localized.
[25] We follow the methodology routinely applied when

deriving average dynamics [e.g., Koch and Brady, 1987;
Neuman, 1993; Cushman et al., 1994; Tartakovsky and
Neuman, 1998a], which consists of (1) separating the
saturation into mean and fluctuating components, (2) estab-
lishing a (nonclosed) system of equations for the average
saturation and the saturation fluctuations, and (3) closing the
system by disregarding terms that are of higher order in the
fluctuations. It is known that perturbative solutions of
advective-dispersion equations can sometimes result in
bimodal behavior of averaged concentration fields [Jarman
and Russell, 2003; Morales-Casique et al., 2006; Jarman
and Tartakovsky, 2008]. However, herein we do not encoun-
ter such concerns.
[26] Substituting (16) into (19) the local-scale equation

for the saturation S(x, t) is given by

@S x; tð Þ
@t

þ q tð Þ � ry Sð Þ þ q0 x; tð Þ � ry Sð Þ ¼ 0: ð20Þ

[27] In analogy to the decomposition of total discharge
and permeability, we assume that the saturation can be
decomposed into its spatial ensemble average S x; tð Þ �
S x; tð Þ and fluctuations about it:

S x; tð Þ ¼ S x; tð Þ þ S0 x; tð Þ: ð21Þ

Figure 1. Solutions to the Buckley-Leverett problem for three different mobilities, assuming quadratic
relative permeability saturation relationships (i.e., kr1 = S2 and kr2 = (1 	 S)2). The curves show three
different viscosity ratios (mobilities), m = m1/m2, namely, m = 0.1 (solid line), m = 1 (dashed line), and
m = 10 (dash-dotted line). As the mobility increases, the flow approaches ideal displacement.
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[28] Furthermore assuming that the saturation fluctua-
tions are small, we can expand the fractional flow function
about the mean saturation according to

y Sð Þ ¼ y S
� �

þ
dy S

� �
dS

S0 x; tð Þ þ . . . : ð22Þ

We take this expansion to O(S0) only as it has been shown
that higher-order terms play an unimportant role [Efendiev
and Durolfsky, 2002; Neuweiler et al., 2003].
[29] Inserting (21) and (22) into (20), we obtain

@S x; tð Þ
@t

þ @S0 x; tð Þ
@t

þ q tð Þ � ry S
� �

þ q tð Þ � r
dy S

� �
dS

S0 x; tð Þ

þ q0 x; tð Þ � ry S
� �

¼ 	q0 x; tð Þ � r
dy S

� �
dS

S0 x; tð Þ: ð23Þ

[30] Averaging the latter over the spatial ensemble gives

@S x; tð Þ
@t

þ q tð Þ � ry S
� �

¼ 	r � q0 x; tð ÞS0 x; tð Þ
dy S

� �
dS

: ð24Þ

Subtracting (24) from (23), we obtain an equation for the
saturation fluctuations

@S0 x; tð Þ
@t

þ q tð Þ � r
dy S

� �
dS

S0 x; tð Þ ¼ 	q0 x; tð Þ � ry S
� �

	 q0 x; tð Þ � r
dy S

� �
dS

S0 x; tð Þ þ r � q0 x; tð ÞS0 x; tð Þ
dy S

� �
dS

: ð25Þ

This system of equations is not closed with respect to the
average saturation. Our closure approximation consists in
disregarding terms which are quadratic in the fluctuations in
(25). Thus (25) reduces to

@S0 x; tð Þ
@t

þ q tð Þ � r
dy S

� �
dS

S0 x; tð Þ ¼ 	q0 x; tð Þ � ry S
� �

: ð26Þ

This is then solved with the associated Green function, i.e.,

S0 x; tð Þ ¼ 	
Z t

0

Z
ddx0G x; tjx0; t0ð Þq0 x0; t0ð Þ � r0y S x0; t0ð Þ

� �
; ð27Þ

where G(x, tjx0, t0) solves

@G x; tjx0; t0ð Þ
@t

þ q tð Þ � r
dy S

� �
dS

G0 x; tjx0; t0ð Þ ¼ 0 ð28Þ

for the initial condition G(x, tjx0, t0) = d(x 	 x0). Inserting
(26) into (24), we obtain a nonlinear upscaled equation for
the (space) average saturation

@S x; tð Þ
@t

þ q tð Þ �
d S

� �
dS x; tð Þ

rS x; tð Þ

	 r �
Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k x; tjx0; t0ð Þ
dy S

� �
dS x0; t0ð Þ

" #
r0S x0; t0ð Þ ¼ 0;

ð29Þ

where we define the kernel

kij x; tjx0; t0ð Þ ¼ q0i x; tð ÞG x; tjx0; t0ð Þq0j x0; t0ð Þ: ð30Þ

[31] Equation (29) has a similar structure as (1), but is
characterized by a spatiotemporal nonlocal dispersive flux.
As outlined above, such nonlocal fluxes typically occur
when averaging. Note that the nonlinear character of the
two-phase problem is preserved during the upscaling exer-
cise. The nonlinearity of the problem is quasi-decoupled in
terms of the Green function; equation (28) for G(x, tjx0, t0) is
linear but depends on the average saturation. Appendix C
provides explicit perturbation theory expressions for the
Green function.

3.2. The Kernel

[32] Approximating the Green function G(x, tjx0, t0) by
(C4), where we assume that the average saturation is
reasonably represented by the homogeneous zeroth-order
saturation S0 according to

G x; tjx0; t0ð Þ ¼ G0 x1; tjx01; t0
� �

d y	 y0ð Þ: ð31Þ

The kernel, defined in (30), becomes

kij x; tjx0; t0ð Þ ¼ kij x1; tjx01; t0
� �

d y	 y0ð Þ; ð32Þ

where kij(x1, tjx01, t0) is defined by

kij x1; tjx01; t0
� �

¼ s2
ff Cij x1 	 x01

� �
q tð Þq t0ð Þ 1

x1 tð Þ d
x01

x1 t0ð Þ 	
x1

x1 tð Þ

� �
:

ð33Þ

Here we set Cij(x1, t, t
0) � Cij(x, t, t

0)jy=0 and x1(t) =
Rt
0

dt0q(t0). In the following section, we determine effective
measures for the spread of the front saturation depending on
the kernel kij(x1, tjx01, t0). Contributions in transverse
directions vanish, because of the particular displacement
scenario under consideration [see also Neuweiler et al.,
2003]. Thus, we focus our attention on the spread of the
saturation in one direction.

3.3. Saturation Dispersion

[33] We quantify the front spreading in single realizations
of the temporal random process in terms of spatial moments
and then perform the ensemble average over the resulting
observables. This procedure quantifies the combined effect
of spatial and temporal fluctuations on the spread of the
saturation front. Later we quantify the uncertainty of the
front position due to purely temporal fluctuations. Appendix
F illustrates the definitions of macrodispersion presented by
Neuweiler et al. [2003] and Langlo and Espedal [1995] in
terms of our developments here.
3.3.1. Spatial Moment Equations
[34] The objective here is to quantify the impact of

heterogeneity and temporal fluctuations on the spread of
the saturation front. In analogy to transport in single phase
flow and given the similarity of the large-scale flow
equation (29) with the advection-dispersion equation it is
tempting to quantify the spread of the saturation distribution
in terms of its spatial moments. However, the displacement
of one fluid by another corresponds to a continuous injec-
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tion in the analog case of solute transport in single phase
flow. In the latter case, the spreading of the solute front
cannot be quantified satisfactorily by the moments of the
concentration distribution, but rather by the moments of its
derivative in flow direction. Thus, here, instead of consid-
ering moments of saturation, we consider the moments of
the derivative of the saturation in the i direction:

si x; tð Þ ¼ 	A	1 @S x; tð Þ
@xi

; ð34Þ

where A is the area of the injection plane located at x1 = 0.
This is motivated by the fact that the homogeneous solution
develops a shock front, which is captured sharply by a
derivative. We now normalize s1(x, t) to 1:Z

x1>0

ddxs1 x; tð Þ ¼ 1: ð35Þ

[35] The first and second moments of s1(x, t) in the one
direction are given by

m
1ð Þ
1 ¼

Z
ddxxis1 x; tð Þ and m

2ð Þ
11 ¼

Z
ddxx2i s1 x; tð Þ: ð36Þ

With these we can calculate the second centered moment,
k11 = m11

(2) 	 m1
(1)m1

(1), which we can use to define an
effective longitudinal dispersion coefficient. The equation
governing the evolution of k11 is derived in Appendix D
and is given by

@k11 tð Þ
@t

¼ q tð Þ 2A	1

Z
ddxy S x; tð Þ

� �
	
Z t

0

dt0q t0ð Þ

2
4

3
5

	 2A	1

Z
ddx

Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k1j x; tjx0; t0ð Þ

� @

@x0j
y S x0; t0ð Þ
� �

: ð37Þ

We identify the second term as the one that measures the
actual spread of the saturation front due to spatial
heterogeneity. In the absence of heterogeneity, the width
of the saturation distribution behind the shock front is
quantified by the first term on the right side. In that case, it
quantifies a purely advective widening due to different flow
velocities at the front and behind the front (see Appendix
G). It grows in leading order with the square of time.
Nevertheless, the saturation dispersion at the front acts
(nonlinearly) on the width of the saturation distribution
behind the disperse front.
3.3.2. Front Dispersion
[36] We now define the longitudinal macrodispersion

coefficient dii
s (t) in terms of the second term on the right

side of (37) by

ds11 tð Þ ¼ 	 A	1

Z
ddx

Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k1j x; tjx0; t0ð Þ

@

@x0j
y S x0; t0ð Þ
� �

: ð38Þ

In order to evaluate (38), we approximate the average
saturation by S = S0(x1, t), and substitute the kernel (32) to
obtain

ds11 tð Þ ¼ 	 s2
ff

Z
dx1

Z t

0

dt0
Z1
0

dx01
x1

x1 tð ÞC11 x1 	 x01
� �

q tð Þq t0ð Þ

� 1

x1 tð Þ d
x01

x1 t0ð Þ 	
x1

x1 tð Þ

� �
@

@x01
y S0

x01
xf t0ð Þ

� �� �
; ð39Þ

where we used expression (C1) for dy(S0)/dS0.
[37] As outlined in Appendix E this can be simplified to

ds11 tð Þ ¼ s2
ff q tð Þ

Zqt
0

dx1C11 x1ð Þ þ s2
ff

Z t

0

dt0q0 t0ð Þq tð ÞC11 qtð Þ: ð40Þ

On average this gives

ds11 tð Þ
� �

¼ s2
ff q

Zqt
0

dx1C11 x1ð Þ þ s2
ff s

2
t q

2C11 qtð Þ
Z t

0

dt0Ct t
0ð Þ:

ð41Þ

The contribution due to temporal fluctuations decays to zero
with increasing time as C11(qt) tends to zero for times larger
than tu = l/q. Thus, there is no significant contribution to
front spreading due to temporal fluctuations. This is
different from solute transport in single phase flow. In this
case, there is a persistent macroscopic dispersion effect due
to the interaction of spatial heterogeneity, temporal fluctua-
tions [Dentz and Carrera, 2003] and local dispersion. The
latter is the crucial (irreversible) mechanism, which
activates heterogeneity and temporal fluctuations as a
macroscopic spreading effect. Here, such irreversibility is
lacking. The multiphase flow problem is fully reversible.
Thus, temporal fluctuations play only a minor role for front
spreading. In the presence of capillary dispersion as
expressed by the nonlinear dispersive flux in (7), this may
be different. However, this must be investigated in more
detail as the influence of such a nonlinear dispersive flux is
not obvious.
[38] The uncertainty associated with the front location

due to temporal pressure fluctuations can be quantified in
terms of the moments defined above as

s2
m tð Þ ¼ m1 tð Þ 	 m

1ð Þ
1 tð Þ

D Eh i2� �
: ð42Þ

Inserting (D3) into (42), we obtain

s2
m tð Þ ¼ q2s2

t

Z t

0

dt0
Z t

0

dt00Ct t
0 	 t00ð Þ: ð43Þ

Thus, the front uncertainty grows linearly with time for
short-range temporal correlation of the pressure fluctua-
tions. Note that the temporal center of mass fluctuations
give rise to an artificial (ensemble) dispersion effect, which
occurs for the saturation distribution averaged over the
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temporal ensemble. A measure for this ensemble dispersion
effect is the temporal derivative of (43), i.e., 1

2

ds2
m tð Þ
dt

. A
sample plot of this quantity for a Gaussian correlated
temporal field with variance 1 and correlation time 1 is
shown in Figure 2. At early times we see a growth, which at
late times asymptotes to a constant value, corresponding to
the late time linear growth in the variance.
[39] It is important to note that this ensemble dispersion is

an artificial effect due to sample to sample fluctuations of
the plume position from realization to realization. In a
homogeneous medium the temporal fluctuations for various
realizations results in a Buckley-Leverett front at different
locations within each realization. The process of averaging
over these realizations appears to smear out the sharp front
and look like a dispersive effect. In reality however the
sharp front exists for each of these cases and the averaging
artificially masks it. For more details see the analysis in
Appendix G. This effect is illustrated in Figure 3. In essence
this term gives a measure of the uncertainty of the location
of the front.
[40] Fluids with lower mobility ratios intrude faster as

discussed in section 2.3.1. Therefore, the overall uncertainty
associated with the front location can be particularly large

for small mobility ratios, which are often relevant in the
field of CO2 sequestration.

4. Numerical Simulations

[41] In order to test the models presented herein we also
conducted a numerical study of the Buckley-Leverett prob-
lem in a heterogeneous medium. To do this we used an in-
house finite volume code, which uses an implicit in pressure
and explicit in saturation scheme [e.g., Hasle et al., 2007].
The numerical dispersion using this method was found to
be negligible compared with the effective dispersion we
calculate.
[42] In all cases the domain size is 25 m � 8 m with a

correlation length of 0.5 m. The mean permeability is 4.2 �
10	12 m s	1 with an average injection flow rate of 5 �
10	6 m s	1. This values are identical to those fromNeuweiler
et al. [2003]. The numerical grid size is uniform with length
0.025 m, which means that we have 20 lengths within one
correlation length. This grid is 4 times finer thanNeuweiler et
al. [2003] and was chosen after an extensive grid sensitivity
study, which showed that the numerical solution was no
longer sensitive to grid size. In total we consider eleven
problems outlined in Table 1. Cases a–h are neutrally stable,
while i–l are unstable.
[43] For each of these eleven cases numerical solutions

with a minimum of 100 realizations of permeability fields

Figure 2. Evolution of the front uncertainty due to
temporal fluctuations (1

2

ds2
mðtÞ
dt

), where sm
2(t) is defined in

(43)) for a Gaussian correlated field of correlation time 1
and variance 1.

Figure 3. Illustration of the front uncertainty due to
temporal fluctuations. This can be interpreted as an
(artificial) ensemble dispersion effect.

Table 1. Inputs for Numerical Simulations

Case st
2 sk

2 Viscosity Ratio M Medium Temporal

a 0 0.5 0.5 Gaussian none
b 0 1 0.5 Gaussian none
c 0 0.5 0.5 Delta none
d 0 1 0.5 Delta none
e 0.5 0.5 0.5 Gaussian sinusoidal
f 1 1 0.5 Gaussian sinusoidal
g 0.25 0.5 0.5 Gaussian Gaussian
h 0.5 1 0.5 Gaussian Gaussian
i 0 0.5 0.2 Gaussian none
k 0 0.5 0.2 Gaussian sinusoidal
l 0.5 1 0.2 Gaussian Gaussian

Figure 4. A sample image from the numerical simulations
for case a for (top) a homogeneous field and (bottom) a
heterogeneous field.
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were conducted. The effective dispersion coefficient was
then calculated using (D3), (D4) and (38).
[44] A sample contour of the saturation field for a

homogeneous medium, which is equivalent to the homoge-
neous analytical solution in (11) is shown in Figure 4. Also,
a contour corresponding to a heterogeneous medium case b
is shown. We include Figure 4 to illustrate the spreading of
the front that is induced by the heterogeneities.
[45] Figure 5 illustrates the time evolution of the disper-

sion coefficients calculated from cases a–d (normalized by
the asymptotic value predicted by (41)). In all four cases the
asymptotic value is well predicted with a slight overpredic-
tion for cases b and d. This is likely because sff

2 = 1 is

becoming large and the perturbative approach is no longer
valid.
[46] In Figure 6 we plot the dispersion coefficient com-

puted for case e. As case e is essentially case a with a
temporally fluctuating flow rate we also include the disper-
sion coefficient corresponding to case a. As expected, the
dispersion coefficient varies sinusoidally in time in response
to the fluctuating flow. Overall though, there is no enhanced
dispersion due to the temporal fluctuations as when time
averaged the dispersion coefficient for case e is the same as
that of case a.
[47] At late times, the perturbation theory expression

predicts front spreading well up to variances of sff
2 = 1. At

early times, the perturbation expression predicts a much
faster increase of the dispersion coefficient. We attribute this
to boundary effects. This is because the perturbation solu-
tion to the two-phase flow problem is only valid at large
distances from the boundaries. At early times, however, the
front is still close to the injection boundary and thus, the
perturbation solution (17) presents limited validity.
[48] The dispersion coefficient responds linearly to the

flow speed never exceeding the dispersion coefficient
associated with the maximum flow rate and never falling
below that associated with the lower flow speed as indicated
by the dotted lines. We do not include a figure illustrating
case f, which is similar to case e, but with greater amplitude
of fluctuation. This is because the behavior is identical, but
with larger amplitude of fluctuation, and offers no new
insight. Cases g and h display a similar behavior. However
as the injection flow rate is random the dispersion coeffi-
cient varies in a more random manner reflecting this. The
temporally averaged dispersion coefficient is still the same
as that predicted in case a.
[49] The last three cases we consider, namely, i, k and l,

are for a viscosity ratio M = 0.2, which is known to be
affected by the Saffman Taylor instability [Marle, 1981;
Blunt et al., 1994]. It is also known that heterogeneity can

Figure 5. Numerically calculated dispersion coefficient
normalized with the values predicted by (41) for cases a
(solid line), b (dashed line), c (dash-dotted line), and d
(dotted line). The thin solid line represents the time-
dependent dispersion coefficient predicted by (41).

Figure 6. Numerically calculated dispersion coefficient normalized with the values predicted by (41)
for cases a (solid line) and e (dashed line). The dotted lines represent the effective dispersion coefficient
for case a at the maximum and minimum values of the flow rate associated with the sinusoid. The thin
solid line represents the time-varying solution predicted with (41).
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have a stabilizing or destabilizing effect depending on
boundary conditions and the mobility ratio [Tartakovsky et
al., 2003]. While the focus of this work is not to look at
unstable cases, one of the motivations of this study is to
understand how medium heterogeneities and temporal fluc-
tuations might influence injection of CO2 during sequestra-
tion. Values of M for CO2 and water vary between 1

5
and 1

50
(J. Garcia and K. Preuss, Flow instabilities during injection
of CO2 into saline aquifers, paper presented at TOUGH
Symposium 2003, Lawrence Berkeley National Laboratory,
Berkeley, California, 2003), which are all susceptible to this
instability. Figure 7 illustrates the ‘‘dispersion’’ coefficient
as calculated with our expression (41). Clearly our model
fails to capture this behavior as we do not account for the
possibility of this instability. Instead the dispersion coeffi-
cient grows linearly/ballistically suggesting advection
drives the instability; a similar observation was made by

Garcia and Preuss (presented paper, 2003) where the growth
of the fingers associated with the instability grew almost
linearly in time. As the focus of this work was to study the
influence of temporal fluctuations in the flow it is worth
noting that the same conclusions appear to hold for the
unstable case as for the stable case. While the fluctuations
do enhance and decrease the effective dispersion over time,
on average there is no effect. Case l reveals a similar
behavior.

5. Summary and Conclusions

[50] We investigated the idealized displacement of one
fluid by another immiscible fluid in a heterogenous porous
medium subjected to temporal fluctuations. We employed
the Buckley-Leverett model to study the impact of spatio-
temporal fluctuations on the effective two-phase flow behav-
ior. By averaging the transport equation for saturation over
the spatial ensemble, we derived a nonlinear effective equa-
tion for the average saturation, which is characterized by a
spatiotemporally nonlocal dispersive flux term. This term
quantifies the impact of spatial heterogeneity on the spread-
ing of the saturation front. Using spatial moments of the
gradient of saturation we derived an effective large-scale
dispersion coefficient that quantifies the spreading of the
saturation front.
[51] In contrast to the conservative solute case, we find

that temporal fluctuations have a very minor impact on the
dispersion of the saturation front. However, they can sig-
nificantly increase the uncertainty of the front position,
particularly when the viscosity of the fluid being injected
is much smaller than that being displaced as is typically the
case for geological carbon sequestration where the viscosity
of CO2 can be 5 to 80 times less than that of water (Garcia
and Preuss, presented paper, 2003). For single phase flow,
temporal fluctuations enhance spreading due to the irrevers-
ibility of local diffusion. Such a mechanism is lacking in the
Buckley-Leverett model. Additionally, the current model
neglects other effects such as microscale trapping [Pop and
Schweizer, 2007], which can lead to irreversible behavior.
Therefore, we conjecture that accounting for capillarity and
other mechanisms, which appear to act in a ‘‘diffusive’’
manner, may potentially lead to an enhancement of spread-
ing due to temporal flow fluctuations. On the basis of our
analysis, we have proposed an effective flow description,
which is based on (1) the effective nonlocal flow equation
and (2) the measure of front uncertainty in terms of the
fluctuations of the first moment of the saturation front.
[52] To complement our analytical model, we performed

numerical simulations of the (Buckley-Leverett) two-phase
flow problem in heterogeneous permeability fields. For log
conductivities with variances of up to 1 the model seems to
provide very satisfactory results, particularly at late times.
At early times there is a discrepancy, which is when
boundary effects can still play an important role.
[53] The analytical results presented here are only valid

for neutrally stable displacement. However, in many cases
of practical interest, particularly CO2 sequestration, the
mobility ratios are small leading to Saffman-Taylor insta-
bilities [Saffman and Taylor, 1958; Blunt et al., 1994],
which can enhance spreading even further. Using the
measures for spreading developed herein, we studied the
dispersion of a saturation front in such unstable scenarios.

Figure 7. Numerically calculated dispersion coefficient
normalized with the values predicted by (41) for (top) cases
j (solid line) and k (dashed line) and (bottom) one temporal
realization of case a (dashed line). The dotted lines represent
the effective dispersion coefficient for case k at the
maximum and minimum values of the flow rate associated
with the temporal flow fields.

W05408 BOLSTER ET AL.: EFFECTIVE TWO-PHASE FLOW IN HETEROGENEOUS MEDIA

9 of 14

W05408



We find that the instabilities cause a ballistic growth of the
width of the saturation front, which can be explained by the
advective nature of this phenomenon. However, in similar
fashion to the stable flow scenarios, the numerical simu-
lations indicate that temporal fluctuations do not on average
affect spreading in unstable flows either. Consequently,
from a practical perspective, this suggests that there is little
potential benefit to be gained by deliberate temporal hydrau-
lic manipulation of the flow. For cases where capillarity
plays an important role this may not be the case and further
investigation is warranted. Additionally, further work that
incorporates buoyancy should be conducted, as this can
clearly play an important role in such flows.

Appendix A: Perturbation Theory

[54] Here we briefly summarize and generalize the per-
turbation theory for the saturation solution of the Buckley-
Leverett problem as given by Neuweiler et al. [2003].
[55] We write the decomposition (16) of the total flow

velocity as

q x; tð Þ ¼ q tð Þe1 þ �q0 x; tð Þ; ðA1Þ

where � is a book keeping parameter that will be set to 1 later.
We now assume that the saturation S(x, t) can be expanded
into a series in powers of �

S x; tð Þ ¼
X1
i¼0

�iSi x; tð Þ: ðA2Þ

Substituting these expansions into the governing equation
(10) and collecting orders of � yields a hierarchy of linear
equations for the Si(x, t).
[56] At zeroth order, S0 is identical to the homogeneous

solution described in section 2.2. At first and second order
in � we obtain for S1(x, t)

@S1 x; tð Þ
@t

þ Qr dy S0ð Þ
dS0

S1 x; tð Þ
� �

¼ 	q0 x; tð Þry0 S0ð Þ; ðA3Þ

and for S2(x, t)

@S2 x; tð Þ
@t

þ Qr dy S0ð Þ
dS0

S2 x; tð Þ þ 1

2

d2yS0
dS20

jS1 x; tð Þ2
� �

¼ 	q0 x; tð Þr dy0

dS0
S1 x; tð Þ

� �
: ðA4Þ

At each approximation order, the equations are linear and
can be solved by using the associated Green function, which
gives for S1(x, t)

S1 x; tð Þ ¼ 	
Z t

0

dt0
Z

dx01G0 x1; tjx01; t0
� �

q01 x01; y; t
0� �

� @
@x01

y S0 x01; t
0� �� �
; ðA5Þ

where y = (x2, . . ., xd)
T. The Green function G0(x1, tjx01, t0)

solves

@G0 x1; tjx01; t0
� �
@t

þ q tð Þ dy S0ð Þ
dS0

@G0 x1; tjx01; t0
� �
@x1

¼ 0 ðA6Þ

for the initial condition G0(x1, t0jx01, t0) = d(x1 	 x01).
Appendix C gives a solution for G0(x1, tjx01, t0) for
arbitrary q(t).

Appendix B: Correlations

[57] The Buckley-Leverett formulation assumes that cap-
illary pressure pc = p1 	 p2 is constant, pc = constant, and
disregards buoyancy effects. Then, the Darcy system (2)
reduces to

q ið Þ x; tð Þ ¼ 	 k xð Þkri Sið Þ
mi

rp1 x; tð Þ: ðB1Þ

[58] We obtain for the total flow velocity q(x, t) =
q(1)(x, t) + q(2)(x, t)

q x; tð Þ ¼ 	k xð ÞL Sð Þrp1 x; tð Þ; ðB2Þ

where we defined L = l1(S) + l2(S).
[59] We consider here a flux boundary condition and

specify the flux at the inflow boundary as

q x; tð Þjx1¼0 ¼ e1q tð Þ; ðB3Þ

with the temporally varying boundary flux q(t). The total
flux then can be conveniently expressed by the vector
potential A(x, t)

q x; tð Þ ¼ r � A x; tð Þ: ðB4Þ

We have the freedom to choose an arbitrary value for the
divergence of A(x, t) because it is invariant under the gauge
transformation Â(x, t) = A(x, t) + rf(x, t), with a scalar
function f(x, t). Here we choose the Coulomb gauge
r�A(x, t) = 0.
[60] Using these definitions in (B2) and taking the

rotation of the resulting equation, we obtain

DA x; tð Þ þ rf xð Þ � q x; tð Þ þ rf L Sð Þ � q x; tð Þ ¼ 0; ðB5Þ

where we defined

f xð Þ ¼ ln k xð Þ; f L Sð Þ ¼ lnL sð Þ: ðB6Þ

The log-hydraulic conductivity is divided into mean and
fluctuations about it as outlined in section 2.3.
[61] The principal direction of the variation of saturation

in the respective fluid will be aligned with the direction of
q(x, t) so that the cross product of the saturation gradient
and total flow velocity is approximately zero

rf L Sð Þ � q x; tð Þ ¼ df L Sð Þ
dS

rS � q x; tð Þ½ � � 0; ðB7Þ

and we can approximate (B5) by

DA x; tð Þ þ rf xð Þ � r � A x; tð Þ½ � � 0: ðB8Þ

[62] Because of mass conservation and statistical statio-
narity of the random permeability k(x), the average flux
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must be equal to the boundary flux and thus the rotation of
A(x, t) can be decomposed into

r� A x; tð Þ ¼ e1q tð Þ þ r � A0 x; tð Þ: ðB9Þ

Inserting the latter into (B8), we obtain for A0(x, t)

DA0 x; tð Þ ¼ 	rf 0 xð Þ � e1q tð Þ 	 rf 0 xð Þ � r � A0 x; tð Þ½ �:
ðB10Þ

[63] Disregarding terms that are quadratic in the fluctua-
tions and assuming flow far away from the injection
boundary, the latter gives the well known first-order ap-
proximation for q0(x, t) [e.g., Gelhar and Axness, 1983;
Rehfeldt and Gelhar, 1992; Dentz and Carrera, 2005]

q0i x; tð Þ ¼ q tð Þ
Z

ddk

2pð Þd
exp 	ik � xð Þ di1 	

k1ki

k2

� �
~f
0
kð Þ; ðB11Þ

where ~f 0(k) is the Fourier-transform of the log-hydraulic
conductivity fluctuations.

Appendix C: Green Function

[64] Using the method of characteristics for the homoge-
nous Buckley-Leverett problem, it can be shown that the
derivative of the fractional flow function at S0(x1, t) is given by

dy0

dS0
¼ x1

x1 tð Þ ; ðC1Þ

where we defined

x1 tð Þ ¼
Z t

0

dtq tð Þ: ðC2Þ

This yields for (A6)

@G0 x1; tjx01; t0
� �
@t

þ d

dt
ln x1 tð Þ½ � @

@x1
x1G

0
0 x1; tjx01; t0
� �

¼ 0: ðC3Þ

[65] Equation (C3) can be solved using the method of
characteristics, which gives

G0 x1; tjx01; t0
� �

¼ 1

x1 tð Þ d
x1

x1 tð Þ 	
x01

x1 t0ð Þ

� �
: ðC4Þ

For constant spatial mean velocity, q(t) = q, the Green
function is given by [e.g., Neuweiler et al., 2003]

g0 x1; tjx01; t0
� �

¼ 1

t
d

x1

t
	 x01

t0

� �
: ðC5Þ

Appendix D: Moment Equations

[66] Taking the derivative of (29) with respect to xi results
in an equation for si(x, t)

@si x; tð Þ
@t

þ q tð Þ � @
@xi

dy S
� �

dS x; tð Þ
s x; tð Þ

	 @

@xi
r �

Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k x; tjx0; t0ð Þ
dy S

� �
dS x0; t0ð Þ

" #
s x0; t0ð Þ ¼ 0:

ðD1Þ

[67] Multiplying (D1) with xi and integrating over space
gives an equation for the center of mass in the i direction,

@m
1ð Þ
i tð Þ
@t

¼ 	q tð Þ � A	1

Z
ddxry S x; tð Þ

� �
: ðD2Þ

Here the mean flow and pressure fluctuations are aligned
with the 1 direction so that we obtain

@m
1ð Þ
i tð Þ
@t

¼ 	di1q tð Þ � A	1

Z
ddx

@

@x1
y S x; tð Þ
� �

¼ di1q tð ÞA	1

Z
dd	1yy S x ¼ 0; y; tð Þ

� �
¼ di1q tð Þ; ðD3Þ

where we have used the boundary condition S(x, t)jx1=0 = 1
and the definition of the fractional flow function (8).
Relation (D3) expresses mass conservation of the injected
fluid.
[68] Analogously, multiplying (D1) with x1

2 and integrat-
ing over space gives an equation for the longitudinal second
moment,

@m
2ð Þ
11 tð Þ
@t

¼ 2q tð Þ � A	1

Z
ddxy S x; tð Þ

� �

	 2A	1

Z
ddx

Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k1j x; tjx0; t0ð Þ

� @
@x0j

y S x0; t0ð Þ
� �

: ðD4Þ

Thus, the growth of the width of the saturation distribution
is given by

@k11 tð Þ
@t

¼ q tð Þ 2A	1

Z
ddxy S x; tð Þ

� �
	
Z t

0

dt0q t0ð Þ

2
4

3
5

	 2A	1

Z
ddx

Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k1j x; tjx0; t0ð Þ

� @
@x0j

y S x0; t0ð Þ
� �

: ðD5Þ

Appendix E: Dispersion Coefficient

[69] Starting from (39) we execute the x1-integration,
yielding

ds11 tð Þ ¼ 	 s2
ff

Z t

0

dt0
Z1
0

dx01
x01

x1 t0ð ÞC11

x01
x1 t0ð Þ x1 tð Þ 	 x1 t0ð Þ½ �

� �

� q tð Þq t0ð Þ @

@x01
y S0

x01
xf t0ð Þ

� �� �
: ðE1Þ

After rescaling x01 with x1(t
0) we obtain

ds11 tð Þ ¼ 	 s2
ff

Z t

0

dt0
Z1
0

dx01x
0
1C11 x01 x1 tð Þ 	 x1 t0ð Þ½ �

� �

� q tð Þq t0ð Þ @

@x01
y S0 x01=C

� �� �
; ðE2Þ

W05408 BOLSTER ET AL.: EFFECTIVE TWO-PHASE FLOW IN HETEROGENEOUS MEDIA

11 of 14

W05408



where C = dy(Sf)/dSf. Changing variables from t0 to x1(t
0)

(dt0 = q(t0)	1 dx1(t
0)) gives

ds11 tð Þ ¼ 	 s2
ff

Zx1 tð Þ

0

dx1

Z1
0

dx01x
0
1C11 x01 x1 tð Þ 	 x1½ �

� �

� q tð Þ @

@x01
y S0 x01=C

� �� �
: ðE3Þ

Shifting x1 by x1(t) and subsequent rescaling with x01 gives

ds11 tð Þ ¼ 	s2
ff

Zx1 tð Þ

0

dx1

Z1
0

dx01C11 x1ð Þq tð Þ @

@x01
y S0 x01=C

� �� �
:

ðE4Þ

And finally after executing the x01 integration we obtain

ds11 tð Þ ¼ s2
ff q tð Þ

Zx1 tð Þ

0

dx1C11 x1ð Þ: ðE5Þ

We now expand the integral for x1(t) = qt +
Rt
0

dt0q0(t0), which
gives in lowest order

ds11 tð Þ ¼ s2
ff q tð Þ

Zqt
0

dx1C11 x1ð Þ þ
Z t

0

dt0q0 t0ð ÞC11 qtð Þ

2
4

3
5: ðE6Þ

Appendix F: Alternative Measures for Front
Spreading

[70] Neuweiler et al. [2003] defined a macrodispersion
coefficient by looking at Fickian analogues to the (nonlocal)
dispersive flux resulting from the upscaling exercise in
section 3.1:

j x; tð Þ ¼
Z t

0

dt0
Z

ddx0
dy S

� �
dS x; tð Þ

k x; tjx0; t0ð Þr0y S x0; t0ð Þ
� �

: ðF1Þ

[71] Amacrodispersion coefficient according toNeuweiler
et al. [2003] is then defined by setting

ji x; tð Þ � d
y
ij tð Þ

@

@xj
y S x; tð Þ
� �

: ðF2Þ

[72] The macrodispersion coefficients are obtained by
multiplying (F2) by xj and integration of the resulting
expression over space. This gives

d
y
ij tð Þ ¼

Z
ddxy S x; tð Þ

� �� �	1

�
Z

ddx

Z t

0

dt0
Z

ddx0xj
dy S

� �
dS x; tð Þ

kil x; tjx0; t0ð Þ

� @
@x0l

y S x0; t0ð Þ
� �

: ðF3Þ

[73] This definition is identical to the one used by
Neuweiler et al. [2003]. In lowest-order erturbation theory,
we obtain for the denominator

A

Z
dx1y S0

x1

Cx1 tð Þ

� �� �
¼ ABx1 tð Þ; ðF4Þ

where we define

B � C

Z
ddxy S0 x1ð Þ½ �: ðF5Þ

[74] Thus, we get for the macrodispersion coefficient in
lowest-order perturbation theory

d
 
11 tð Þ ¼ 	

�2ff
Bx1 tð Þ

Z
dx1

Z t

0

dt0
Z1
0

dx01
x21

x1 tð ÞC11 x1 	 x01
� �

q tð Þq t0ð Þ

� 1

x1 tð Þ 	
x01

x1 t0ð Þ 	
x1

x1 tð Þ

� �
@

@x01
 S0

x01
xf t0ð Þ

� �� �
; ðF6Þ

where we used expression (C1) for dy(S0)/dS0. Executing
the x1 integration yields

d
y
11 tð Þ ¼ 	

s2
ff

B

Z t

0

dt0
Z1
0

dx01
x01

2

x1 t0ð Þ2
C11

x01
x1 t0ð Þ x1 tð Þ 	 x1 t0ð Þ½ �

� �

� q tð Þq t0ð Þ @

@x01
y S0

x01
xf t0ð Þ

� �� �
: ðF7Þ

[75] After rescaling x01 with x1(t
0) we obtain

d
y
11 tð Þ ¼ 	

s2
ff

B

Z t

0

dt0
Z1
0

dx01x
0
1
2
C11 x01 x1 tð Þ 	 x1 t0ð Þ½ �

� �

� q tð Þq t0ð Þ @

@x01
y S0 x01=C

� �� �
; ðF8Þ

where C = dy(Sf)/dSf. Changing variables from t0 to x1(t
0)

(dt0 = q(t0)	1 dx1(t
0)) gives

d
y
11 tð Þ ¼ 	

s2
ff

B

Zx1 tð Þ

0

dx1

Z1
0

dx01x
0
1
2
q tð ÞC11 x01 x1 tð Þ 	 x1½ �

� �

� @

@x01
y S0 x01=C

� �� �
: ðF9Þ

Shifting x1 by x1(t) and subsequent rescaling with x01 gives

d
y
11 tð Þ ¼ 	

s2
ff

B

Zx1 tð Þ

0

dx1

Z1
0

dx01x
0
1q tð ÞC11 x1ð Þ @

@x01
y S0 x01=C

� �� �
:

ðF10Þ

[76] And finally we obtain after integration by parts

d
y
11 tð Þ ¼ s2

ff q tð Þ
Zx1 tð Þ

0

dx1C11 x1ð Þ; ðF11Þ
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which is identical to the expression obtained from the
moment equations. Following Neuweiler et al. [2003], we
insert C11(x1) = ld(x1) and obtain

d
y
11 tð Þ ¼ s2

ff lq tð Þ: ðF12Þ

[77] Thus, on average, there is no contribution to the
macrodispersion coefficient due to temporal fluctuations.
[78] Langlo and Espedal [1995] used a more process-

oriented definition for the macrodispersion coefficient in
terms of the dispersive flux term in (29). Assuming that
k(x, tjx0, t0) is sharply peaked about x and t, the flux term in
(29) can be localized in space and time, which yields

@S x; tð Þ
@t

þ q tð Þ � ry S
� �

	r �
dy S

� �
dS

d x; tð Þ
dy S

� �
dS

rS x; tð Þ ¼ 0;

ðF13Þ

where we defined

d x; tð Þ ¼
Z t

0

dt0
Z

ddx0k x; tjx0; t0ð Þ: ðF14Þ

The latter is similar to the macrodispersion coefficient as
identified by Langlo and Espedal [1995].

Appendix G: Spatially Homogeneous Medium

[79] Here we consider flow in spatially homogeneous
medium under temporal pressure fluctuations. We demon-
strate an artificial dispersion effect due to temporal pressure
fluctuations when considering the moments of the time
averaged saturation and analyze the purely advective wid-
ening of the saturation distribution behind the front.
[80] As given in section 3.3, we determine the width of

the saturation distribution in a homogeneous medium in
terms of the moments of

s
0ð Þ
1 x1; tð Þ ¼ 	A	1 @

@x1
S0 x1; tð Þ: ðG1Þ

We immediately obtain for the first moment of s(0)(x1, t)

m
1ð Þ
1 tð Þ ¼

Z t

0

dt0q t0ð Þ ðG2Þ

as a consequence of mass conservation. The second moment
is given by

dm
2ð Þ
11 tð Þ
dt

¼ 2q tð Þ
Z

ddx1y S0 x1; tð Þ½ �: ðG3Þ

[81] The saturation S0(x1, t) in a homogeneous medium
has a sharp front. It is given by (11). Thus, (G3) assumes the
form

m
2ð Þ
11 tð Þ ¼

dy Sf
� �
dSf

Z t

0

dt0q t0ð Þ

2
4

3
5
2 Z1

0

dx1y Sr x1ð Þ½ �: ðG4Þ

G1. Average Width of Saturation

[82] We obtain for the width k11(t) in a single realization
of the pressure fluctuations

k11 tð Þ ¼
Z t

0

dt0q t0ð Þ

2
4

3
5
2

dy Sf
� �
dSf

Z1

0

dx1y Sr x1ð Þ½ � 	 1

2
4

3
5: ðG5Þ

The latter, however, is not related to actual spreading of the
saturation front. The spread of the saturation front is
quantified by the second term on the right side of (D4).
[83] The (temporal) ensemble average of the latter is

given by

hk11 tð Þi ¼ qtð Þ2þ
Z t

0

dt0
Z t

0

dt00hq0 t0ð Þq0 t00ð Þi

2
4

3
5

�
dy Sf

� �
dSf

Z1

0

dx1y Sr x1ð Þ½ � 	 1

2
4

3
5: ðG6Þ

The fluctuation-induced contribution measures the uncer-
tainty of the front position in the homogeneous medium
from realization to the realization of the pressure fluctua-
tions, see Figure 3. It does not contribute to the spreading of
the saturation front.

G2. Width of the Average Saturation

[84] The width of the average saturation front is given by
the ensemble second centered moment

kens
11 tð Þ ¼ m

2ð Þ
11 tð Þ

D E
	 m

1ð Þ
1 tð Þ

D E2

: ðG7Þ

We obtain for k11
ens by using (G4) and (G2)

kens
11 tð Þ ¼ hk11 tð Þi þ

Z t

0

dt0
Z t

0

dt00hq0 t0ð Þq0 t00ð Þi: ðG8Þ

Thus, the second centered moment of the average saturation
quantifies a purely advective spreading effect due to
temporal fluctuations of the front position that are
suppressed in (G6), which measures the advective widening
of the saturation distribution behind the front.
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