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[1] Multicomponent reactive transport in aquifers is a highly complex process, owing to
a combination of variability in the processes involved and the inherent heterogeneity of
nature. To date, the most common approach is to model reactive transport by
incorporating reaction terms into advection-dispersion equations (ADEs). Over the last
several years, a large body of literature has emerged criticizing the validity of the ADE
for transport in real media, and alternative models have been presented. One such
approach is that of multirate mass transfer (MRMT). In this work, we propose a model
that introduces reactive terms into the MRMT governing equations for conservative
species. This model conceptualizes the medium as a multiple continuum of one mobile
region and multiple immobile regions, which are related by kinetic mass transfer
processes. Reactants in both the mobile and immobile regions are assumed to always be
in chemical equilibrium. However, the combination of local dispersion in the mobile
region and the various mass transfer rates induce a global chemical nonequilibrium.
Assuming this model properly accounts for transport of reactive species, we derive
explicit expressions for the reaction rates in the mobile and immobile regions, and we
study the impact of mass transfer on reactive transport. Within this framework, we
observe that the resulting reaction rates can be very different from those that arise in a
system governed by an ADE-type equation.
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1. Introduction

[2] Reactive transport through natural permeable media is
complex at various levels. Besides the complexities associ-
ated with flow and solute transport, accounting for reactions
can require the incorporation of a potentially large number
of aqueous and solid species as well as a variety of reaction
types. At the local scale, multicomponent reactive transport
has been traditionally modeled by starting from the
corresponding governing equation for a conservative solute
and adding additional terms that account for the influence of
reactions [e.g., Cederberg et al., 1985; Rubin, 1990; Wang
and VanCappellen, 1996]. These additional terms aim to
capture a range of different types of homogeneous and
heterogeneous reactions (in terms of the number of phases
involved). In some cases the reactions can lead to changes
in the hydraulic properties of the medium (e.g., porosity or
hydraulic conductivity).
[3] While some analytical solutions for multicomponent

reactive transport problems exist [e.g., Sun et al., 1999,
2004; Clement, 2001; Serrano, 2003; Quezada et al.,
2004; De Simoni et al., 2005, 2007; Werth et al., 2006;

Sanchez-Vila et al., 2007; Cirpka and Valocchi, 2007],
most are restricted to hydraulically and chemically homo-
geneous media. Furthermore, they are all based on the
assumption that conservative transport is governed by the
advection-dispersion equation (ADE). With the notable
exception of adsorption and linear decay processes, few
published articles address the use of analytical methods for
solving reactive transport problems in heterogeneous me-
dia [Miralles-Wilhelm et al., 1997; Reichle et al., 1998;
Attinger et al., 1999; Luo et al., 2008]. The ones that do
exist rely primarily on perturbative methods.
[4] Over the last two decades there has been a consider-

able amount of work addressing the appropriateness of the
advection-dispersion equation in real media (see, e.g., the
review by Berkowitz et al. [2006]). Processes such as
intergranular or matrix diffusion add a complexity that must
be accounted for in the governing transport equation
[Neretnieks, 1980; Wood et al., 1990]. Also, a number of
authors have suggested using different models for the
variability of the geochemical parameters [Connaughton et
al., 1993; Chen and Wagenet, 1995]. Among the models that
have been used to represent these two very different pro-
cesses, one that has proven quite successful is the multirate
mass transfer (MRMT) model [e.g., Haggerty and Gorelick,
1995; Carrera et al., 1998; Haggerty et al., 2000]. In
parallel, a number of other methods have been developed
for modeling transport in heterogeneous media by means of
effective dynamics formulations. These are based on semi-
phenomenological approaches and include continuous time
random walks (CTRW) [e.g., Berkowitz and Scher, 1998;
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Berkowitz et al., 2006] and fractional derivative models
[e.g., Benson et al., 2000]. All these methodologies share
the common concept that if the medium is homogenized,
there is a need to incorporate a term in the governing
equation that accounts for the memory of the microscale
heterogeneities that conservative solutes have sampled along
their path. These memory effects, characterized by a memory
function [see Carrera et al., 1998, Willmann et al., 2008],
distinctly influence transport at the large scale, and are key
for proper evaluation of remediation measures or in risk
assessment [e.g., Bolster et al., 2009]. All these nonlocal
modeling approaches can be shown to be equivalent under
some restrictive conditions [Dentz and Berkowitz, 2003].
[5] Equations based on such effective dynamics have

been able to reproduce a number of field observations that
cannot be modeled by any upscaled version of the ADE that
is characterized by constant effective transport coefficients.
Furthermore, ADE-type equations have been proven inad-
equate for simulating reactive transport [e.g., Cirpka, 2002].
As a result, thorough analyses of the effects of heteroge-
neity on reactive transport have been restricted to expli-
citly simulated variability of hydraulic conductivity and
the use of local dispersion. Such is the case for Molz and
Widdowson [1988] or Fernàndez-Garcia et al. [2008], who
considered a stratified medium, or MacQuarrie and Sudicky
[1990] and Luo et al. [2008], who looked at a random field.
While such approaches yield valuable insight into the impact
of heterogeneity on reactions, they are difficult to generalize
and cumbersome in practice.
[6] One reason for the poor reproduction of reaction rates

with an ADE equation is the improper characterization of
mixing. On the other hand, effective dynamics models make
an explicit attempt at representing the complexity of trans-
port at the pore scale [Lichtner, 1985]. The fact that
effective dynamics approximations incorporate pore-scale
complexity and discriminate between mixing and spreading
is hopeful, but not sufficient, for proper representation of
reactive transport in real media. To be accurate, these
approximations must correctly represent mixing, which to
date has not yet been proven. Post calibration, what these
approximations yield is a proper reproduction of the pdf of
travel times [Cirpka et al., 2008; Sanchez-Vila et al., 2009].
Again, this is necessary for reproducing mixing, but not
sufficient. One can envision cases where a given pdf is the
result of mixing as well as the superposition of almost
independent flow tubes. It is clear that further research is
needed to ascertain the circumstances where mixing is
properly reproduced. One way to do so would be to
compare breakthrough curves of reacting and conservative
tracers, a line of research that has recently been explored
[Edery et al., 2009; M. Willmann et al., Coupling of
mass transfer and reactive transport for non-linear reactions
in heterogeneous media, submitted to Water Resources
Research, 2009].
[7] While the topic of properly representing mixing in

effective equations for transport in heterogeneous porous
media is by no means closed, the MRMT approach correctly
reflects mixing caused by mass transfer processes between
mobile and immobile regions (chromatographic mixing). In
this work, we propose a reactive transport model that
combines the MRMT approach to describe transport under
linear mass transfer between mobile and immobile medium

regions and multispecies chemical reaction. We present
solutions for the reaction rates and probe the impact of
mass transfer processes on the effective reactive transport
dynamics.

2. Mathematical Model

[8] A multicomponent reactive transport problem is de-
fined by (1) the chemical system, including the aqueous and
mineral species involved and the reactions taking place
amongst them, and (2) the transport model defined in terms
of mass balance equations. In this work all reactions are
assumed to be in chemical equilibrium; that is, the charac-
teristic reaction time is much smaller than the characteristic
diffusive time.
[9] We first write the full multicomponent reactive trans-

port problem in terms of chemical components. Then we
extend it to multicontinuum media. The resulting system
yields a suite of uncoupled conservative transport problems.
Reaction rates can then be written explicitly in terms of the
components and the prespecified memory function.

2.1. Chemical System

[10] The main assumption in this work is that all reactions
are in chemical equilibrium. Thus, they can be represented
by means of mass action laws. In matrix form [e.g., Saaltink
et al., 1998],

S log c ¼ logK; ð1Þ

S being the stoichiometric matrix, c being the vector of
species concentrations (mass of species per unit volume of
fluid), and K containing the equilibrium constants for all
reactions involved. Mass action laws hold for both
homogeneous (i.e., all reactants in the same phase) and
heterogeneous (some reactants in aqueous and some in solid
phases) reactions.
[11] Components are defined as linear combinations of

species that remain unaffected by equilibrium reactions
[Saaltink et al., 1998]. This linear relation can be written as

u ¼ Uc; ð2Þ

where u is the vector of components and U is termed the
components matrix, satisfying

UST ¼ 0: ð3Þ

Most methodologies to solve geochemical reactive transport
problems are based on posing and solving the problem in
the component space. Concentrations can then be obtained
from speciation calculations. These consist of solving
equations (1) and (2) for c given u.

2.2. Reactive Transport in Single-Continuum Media

[12] The governing mass balance equations can be writ-
ten in compact form as

f
@

@t
c x; tð Þ ¼MLt c x; tð Þ½ � � f 0 x; tð Þ; ð4Þ

where f is porosity;M is a diagonal matrix with terms equal
to either unity for aqueous species, or zero for minerals; and
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f 0 is a sink/source term (mass of species per unit volume of
aquifer and unit time). This last term accounts for the mass
of a given species that is produced or lost owing to chemical
reactions (e.g., precipitation will be a net loss of mass of
each of the reacting species, and a gain in the mineral
species). The linear operator Lt(c) accounts for advection
and diffusion/dispersion,

Lt c x; tð Þ½ � ¼ � qrc x; tð Þ þ r � fDrc x; tð Þ½ �; ð5Þ

where q is Darcy’s flux and D is the diffusion/dispersion
tensor. The sink/source term f 0 in equation (4) is a linear
combination of reaction rates, since a single species can be
involved in more than one reaction with different stoichio-
metric coefficients. Defining r as the vector of reaction
rates, it is possible to write [Saaltink et al., 1998]

f 0 ¼ STr: ð6Þ

Notice that this formulation implicitly assumes that all
species are subject to identical transport processes, which is
true for advection and mechanical dispersion, but not
necessarily for molecular diffusion and porosity.

2.3. Reactive Transport in Multicontinuum Media

[13] The transport of solutes through heterogeneous
media is complicated since the exact spatial distribution of
the solute flux is unknown. This implies that any solution of
equation (4) will lead to uncertain c values. Several
approaches, either analytical or numerical, are available in
the literature to tackle this problem. Analytical approaches
to conservative transport problems can be classified broadly
into two groups: perturbation approaches and effective
dynamics. In the former, the main idea is not to reproduce
concentration values at the local scale, but rather to find
their low-order statistical moments (typically, expected
value and variance-covariance of concentrations). The pro-
cess usually involves ensemble averaging, which smoothes
out spatial fluctuations. As a result, transport parameters
derived from conservative transport using these methods
cannot be used for simulating mixing driven reactive
transport. The goal of the effective dynamics approach is
to find an effective equation to replace the ADE approach.
Several nonlocal formulations can be used to model effec-
tive dynamics (FADE [Benson et al., 2000; Cushman and
Ginn, 2000]; CTRW [Berkowitz and Scher, 1998; Berkowitz
et al., 2006]; and MRMT [Haggerty and Gorelick, 1995;
Carrera et al., 1998; Haggerty et al., 2001; Lawrence et al.,
2002; Wang et al., 2005]). In the latter, concentrations can
be localized, by viewing the medium as a multicontinuum.
In essence, this implies viewing the medium as the super-
position of a mobile and an ensemble of immobile continua.
These regions interact so that solute mass is transferred
between the mobile and each of the immobile regions. This
model originated in the physical-chemistry literature where
it was used to model photon trapping [e.g., Schmidlin, 1977]
or noninstantaneous adsorption in batch reactors [e.g.,
Connaughton et al., 1993] using a finite number of immo-
bile phases. The MRMT model was later coupled to trans-
port [Haggerty and Gorelick, 1995] and further extended to
a continuous suite of immobile phases [Haggerty and
Gorelick, 1998]. Effective dynamics models have success-

fully reproduced breakthrough curves analogous to those
measured in the field (i.e., in physically heterogeneous
media). Dentz and Berkowitz [2003] showed that MRMT
is a subset of the more general CTRW model.
[14] Multicontinuum models for conservative species are

fully defined by the distribution of a, first-order exchange
rates between the mobile and the immobile continua. This
distribution, f(a), can be seen as the fraction of immobile
sites that transfer mass at a given rate a [T�1]. This
distribution is directly related to the memory function, g
[Carrera et al., 1998; Haggerty et al., 2000], by

g tð Þ ¼
Z 1

0

a f að Þ exp �atð Þ da: ð7Þ

In the rest of the paper we will assume that the memory
function corresponding to a conservative species has been
well characterized (e.g., from breakthrough curves corre-
sponding to a tracer experiment).
[15] Solute mass is distributed between mobile and im-

mobile regions which concentrations cm (x,t) and cim (x,a,t),
respectively (all concentrations expressed as mass per unit
volume of fluid; notice that both are local concentrations).
Notice that the latter is an a-dependent distribution of
concentrations because concentration in the immobile re-
gion depends on mass transfer from the mobile region.
Thus, the total concentration at a given point in space ct (x,t)
can be written as

f ct x; tð Þ ¼ fmcm x; tð Þ þ fim

Z 1

0

f að Þcim x;a; tð Þda; ð8Þ

where fm, fim, and f(= fm + fim) are mobile, immobile,
and total porosities, respectively.
[16] Mass balance of aqueous species needs to be defined

both for the mobile (flowing) and immobile (no flowing)
regions. The mobile region mass balance is analogous to
equation (4) and reads

fm

@

@t
cm x; tð Þ þ fim

Z1
0

a cm x; tð Þ � cim x;a; tð Þ½ � f að Þda

¼ Lt cm x; tð Þ½ � � fmfm x; tð Þ: ð9Þ

The second term on the left hand side describes first-order
mass transfer between the mobile and the immobile regions,
fm is a sink/source vector and corresponds to the mass
removed by reactions from the mobile zone per unit volume
of fluid in the mobile zone and unit time. Mass balance in
the immobile regions is given by

@cim x;a; tð Þ
@t

¼ a cm x; tð Þ � cim x;a; tð Þ½ � � f im x;a; tð Þ; ð10Þ

where the first term on the right-hand side expresses the
mass exchanged with the mobile zone and fim corresponds
to the mass removed by reactions from that particular
immobile zone (of volume fim f(a)) per unit volume of fluid
(in the immobile zone) and unit time. This equation implies
that water samples all the sites and species are always in
chemical equilibrium in each site. The impact of the right-
hand-side terms will be related to the availability of species
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to transfer from the more mobile to the less mobile zones,
and this will be directly related to the relationship between
advective and dispersive characteristic times.
[17] Integrating equation (10) with the weight f(a), mul-

tiplying by fim, and adding the resulting equation and
equation (9), yields the integrated mass balance equation

fm

@

@t
cm x; tð Þ þ fimG x; tð Þ ¼ Lt cm x; tð Þ½ � � f x; tð Þ; ð11Þ

where G represents the time derivative of the total
concentration in the immobile regions,

G x; tð Þ ¼
Z 1

0

f að Þ @cim
@t

x;a; tð Þda; ð12Þ

and f integrates reactions in the mobile and immobile
regions (i.e., the total mass removed from the system by
reactions per unit volume of aquifer and unit time). It is
equal to

f x; tð Þ ¼ fmfm x; tð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
fm;total

þfim

Z 1
0

f að Þ f im x;a; tð Þda|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f im;total

: ð13Þ

In equation (13), fm,total and fim,total are the contributions to
the total reaction rate taking place in the mobile and
immobile domains, respectively.
[18] Up to this point, the system consists of Ns equations

(11) and (10) (one for each a value if we use a discretized
version of equation (11)) for mass balance, plus a number of
equilibrium equations. This problem is nonlinear and must
be solved for every (x,a,t). Simplifications must be sought.
To this end, we formulate the problem in terms of compo-
nents in section 2.4.

2.4. Defining the System in Terms of Components

[19] Working with chemical components simplifies the
mass balance equations system given by equations (10) and
(11). Premultiplying equations (10) and (11) by U, and
using equations (3) and (6), we obtain

fm

@

@t
um x; tð Þ þ fim

Z 1

0

f að Þ @uim
@t

x;a; tð Þda ¼ Lt um x; tð Þ½ �;

ð14Þ

@uim x;a; tð Þ
@t

¼ a um x; tð Þ � uim x;a; tð Þ½ �; ð15Þ

where um and uim are the vectors of mobile and immobile
component concentrations respectively, given by

um ¼ Ucm; and uim ¼ Ucim: ð16Þ

Solving equation (15) for uim, we obtain

uim x;a; tð Þ ¼ u0ime
�at þ

Z t

0

ae�a t�t0ð Þum x; t0ð Þdt0

� u0ime
�at þ ae�atð Þ * um; ð17Þ

where uim
0 (x,a) is the initial condition. Substituting

equation (17) into equation (14), we obtain the governing
equation for um:

fm

@

@t
um x; tð Þ þ fim g0um � gu0im þ

@g

@t * um

� �
¼ Lt um x; tð Þ½ �:

ð18Þ

Concentrations of all species in either facies can be obtained
via the flowing sequential approach: (1) Solve equation (18)
to obtain um. This is a linear partial differential equation and
can be solved by means of any of the existing codes that can
solve transport of conservative species with a multicontinuum
approach. (2) Obtain uim from equation (17). (3) Obtain cm
and cim by speciation (inversion of equation (16)). Several
numerical codes are available in the literature.

2.5. Evaluation of Reaction Rates

[20] Total reaction rates may be obtained by means of
mass balance considerations from equations (9) and (10).
Alternatively, it is possible to derive an explicit expression
for the direct evaluation of the total reaction taking place in
the system. The resulting expression (see Appendix A) is

f ¼ fmHrTumDrum þ fimJm g0um þ
@g

@t * um

� �
� fim

Z 1

0

f að ÞJim
@uim
@t

da; ð19Þ

where H is the Hessian matrix of the species concentration
with respect to the components in the mobile phase (the
components of the kth reaction Hessian matrix are given by
Hij
k = @2cm

k /@um,i@um,j, i, j = 1,. . ., Ns � Nr where cm
k is the

secondary species associated to the kth reaction (see De
Simoni et al. [2005] for details). In a similar way, Jim and Jm
represent the Jacobian matrix of the species concentration
with respect to the components either in the immobile
phase (Jim,ij = @cim,i/@uim,j) or in the mobile phase (Jm,ij =
@cm,i/@um,j). The total reaction rate is the sum of three
terms on the right-hand side of equation (19): (1) the first
term quantifies the impact of dispersion induced mixing in
the mobile region, and (2) the second and third terms
together account for the enhanced mixing of the reacting
species due to mass transfer between the mobile and
immobile zones, incorporating memory effects through g(t)
and the impact of the reactions taking place in the immobile
regions. Actually, the first term is identical to the one derived
by De Simoni et al. [2005] for reactive transport in
homogeneous media.

3. Particularization for a Binary System

3.1. Problem Statement

[21] We consider a system consisting of an instantaneous
bimolecular precipitation/dissolution reaction of two solutes
(B1 and B2) in equilibrium with a solid mineral (speciesM3):

aB1 þ bB2 
!
M3 sð Þ: ð20Þ
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For simplicity, but without any loss of generality, we con-
sider a = b = 1, so that we have the following stoichiometric
matrix:

ST ¼ 1

1

� �
: ð21Þ

The law of mass action is expressed for both the mobile and
the immobile concentrations. Assuming a diluted system,

log cm1
þ log cm2

¼ logK and

log cim 1
að Þ þ log cim 2

að Þ ¼ logK 8a: ð22Þ

The mass balance equations for the two aqueous species
are

fm

@cmi
x; tð Þ

@t
þ fimGi x; tð Þ ¼ � qrcmi

x; tð Þ þ r � fmDrcmi
x; tð Þ½ �

� r; i ¼ 1; 2; ð23Þ

with

Gi x; tð Þ ¼
Z 1
0

f að Þ @cimi
x;a; tð Þ
@t

da: ð24Þ

3.2. Solution

[22] Following the general methodology of section 2, it is
necessary to define the mobile conservative components of
the system to satisfy equation (3). Among various possibil-
ities, the simplest one is to select

U ¼ 1 �1ð Þ: ð25Þ

This implies that the system can be fully defined in terms of
a single conservative component for the mobile domain, and
another one for each mass transfer rate in the immobile one:

um ¼ cm1
� cm2

and uim að Þ ¼ cim 1
að Þ � cim 2

að Þ: ð26Þ

The governing equation for um (now the individual term in
vector um) is equation (18). If an analytical or numerical
solution for um to a given transport problem is obtained,
then uim can be obtained explicitly from equation (17).
[23] If the equilibrium constant does not depend on the

concentrations of the species, the mass action law equations
(equation (22)) in either phase can be combined with
equation (26) to explicitly obtain the species concentrations
in terms of the components concentrations:

cm; j ¼
�1ð Þ j�1um þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m þ 4K

p
2

and

cim; j ¼
�1ð Þ j�1uim þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2im þ 4K

p
2

j ¼ 1; 2: ð27Þ

Finally, the total reaction rates in the system can be obtained
from

rim x; tð Þ ¼ fim

Z 1

0

f að Þrim x;a; tð Þda

¼ fim

Z 1

0

f að Þ a cm2
x; tð Þ � cim x;a; tð Þ½ � � @cim x;a; tð Þ

@t x;a; tð Þ

� 	
da;

ð28Þ

rm x; tð Þ ¼ fm

@2cm 2
x; tð Þ

@u2m x; tð Þ r
Tum x; tð ÞDrum x; tð Þ

þ fim

@cm x; tð Þ
@um x; tð Þ g0um þ

@g

@t * um

� �
� fim

Z 1

0

f að Þ @cim x;a; tð Þ
@uim x;a; tð Þ

@uim
@t

da� rim x; tð Þ: ð29Þ

In this particular chemical configuration the derivatives of
species concentrations with respect to components used in
equations (28) and (29) are explicitly given by

@cm;j
@um

¼ 1

2
�1ð Þ j�1þ umffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2m þ 4K
p !

and
@2cm;j
@u2m

¼ 2K

u2m þ 4K

 �3=2

j ¼ 1; 2; ð30Þ

@cim;j
@uim

¼ 1

2
�1ð Þ j�1þ uimffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2im þ 4K
p !

and
@2cim;j
@u2im

¼ 2K

u2im þ 4Kð Þ3=2

j ¼ 1; 2: ð31Þ

4. Application Example: 1-D Fixed-Step Function

[24] A significant feature of the methodology proposed is
that, whenever the transport of conservative species is
solvable analytically, so too is the multicomponent reactive
transport problem. This is illustrated by means of an
example of a 1-D column with constant input concentration.

4.1. Problem Statement

[25] The column is completely saturated with water in
chemical equilibrium with the crushed mineral acting as
porous media. We assume initial concentrations of compo-
nents um

0 = uim
0 = 0 (i.e., c1,m

0 = c1,im
0 = c2,m

0 = c2,im
0 =

ffiffiffiffi
K
p

). At
the inlet, a solution with a different chemical signature
(though still in equilibrium with the mineral) is injected.
Despite this setup leads to mineral precipitation along the
column (preferentially at the inlet), we consider that the
total mineral precipitated is not sufficient to change porosity
or permeability in the medium. Accounting for variations in
hydraulic parameters is not a limitation if the solutions of
the species concentrations are sought numerically, but
significantly complicates analytical solutions. The flow
applied, qx, is steady state and uniform. The system is best
presented in dimensionless terms:

@u0m
@t0
þ b g0u

0
m þ

@g

@t0
� u0m

� �
¼ 1

Pe

@2u0m
@x02

� @u
0
m

@x0
; ð32Þ

tadv ¼ fm

L

qx
; Pe ¼ qxL

fmD
; b ¼ fim

fm

; t0 ¼ t

tadv
; x0 ¼ x

L
;

u0m ¼
umffiffiffiffi
K
p ; ð33Þ
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where L is the characteristic length of the column.
Additional dimensionless variables are

w ¼ tadva; c0m ¼
cmffiffiffiffi
K
p ; c0im ¼

cimffiffiffiffi
K
p ; u0im ¼

uimffiffiffiffi
K
p ; ð34Þ

[26] The initial and boundary conditions are

u0m x0; t0 ¼ 0ð Þ ¼ 0 x0 � 0;

u0m x0 ¼ 0; t0ð Þ ¼ u0; u0m x0 ¼ 1; t0ð Þ ¼ 0 t0 > 0:
ð35Þ

The solution to this system is obtained in Laplace space (see
Appendix A):

cu0m x0; sð Þ ¼ u0

s
exp

Pe

2
x0

� �
exp �Pe

2
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Pe
s 1þ bbg sð Þ½ �

r( )
;

ð36Þ

where Pe is the Peclet number, the dimensionless memory

function in Laplace space is given by bg(s) = R 1
0

wf wð Þ
sþ w

dw,

and w corresponds to the dimensionless mass transfer rate.
Equation (36) cannot be back-transformed analytically, but
can be presented in terms of the corresponding solution for
homogeneous media:

cu0m x0; sð Þ ¼ cu0m1 x0; sð Þcu0m2 x0; sð Þ

cu0m1 x0; sð Þ ¼ u0

s
exp

Pe

2
x0

� �
exp �Pe

2
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s

Pe

r( )
cu0m2 x0; sð Þ ¼ exp �Pe

2
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s

Pe

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4bsbg

Peþ 4s

r
� 1

 !( )
:

ð37Þ

[27] From the properties of Laplace transforms, the final
solution is given by

u0m x0; t0ð Þ ¼ L�1 cu0m1 x0; sð Þ
n o

* L�1 cu0m2 x0; sð Þ
n o

: ð38Þ

It should also be noted that L�1 {cu0m1 (x
0, s)} corresponds to

the well-known solution provided by Ogata and Banks
[1961], for a pulse injection in a homogeneous media, given
by

u0m1 x0; t0ð Þ ¼ u0

2
exp Pe x0ð Þerfc Pe

2

x0 þ t0ffiffiffiffiffiffiffiffiffi
Pe t0
p

� ��
þ erfc

Pe

2

x0 � t0ffiffiffiffiffiffiffiffiffi
Pe t0
p

� ��
:

ð39Þ

In short, equation (38) is the convolution of the Ogata-Banks
solution with a function incorporating the effects of
heterogeneity by the inclusion of the memory function.
From equation (37), when b tends to zero (homogeneous
problem), then u0m (x0,t0) reduces to the Ogata-Banks solution.

4.2. Reaction Rate

[28] Heterogeneity within the 1-D column is modeled by
a multiple sites mass transfer probability density function

(pdf) described by f(w) =
PN
j¼1

pjd(w � wj), where w is defined

by a discretized version of a gamma function. We selected
two functions in order to analyze w values ranging from very
small to intermediate (denoted as models w

_
0 and w

_
1,

respectively). The actual (wj, pj) values used are displayed
in Table 1. In the first of these cases (model w

_
0) the w values

are all less than one with the largest value of p corresponding
to w = 0.1. In the second case the largest p value corresponds
to w = 1.0.
[29] The total reaction rate in the immobile zone is

obtained from a discretized version of equation (28) written
in dimensionless form

tadv

fim

ffiffiffiffi
K
p rim � r0im ¼

XN
j¼1

pj wj c0m;2 � c0im;2;j

� 
�
@c0im;2;j
@t0

� �
: ð40Þ

The corresponding total reaction rate in the mobile zone
(extension of equation (29)) is

tadv

fm

ffiffiffiffi
K
p rm � r0m

¼ 1

Pe

@2c0m;2
@u02m

@u0m
@x0

� �2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mixing

þ b g0u
0
m þ

@g0

@t
� u0m

� �XN
j¼1

pj
@c0m;2
@u0m

� b
XN
j¼1

pj
@c0im;2;j
@t
� r0im|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mass transfer

;

ð41Þ

where the memory function is g(t0) =
PN
j¼1

pjwje
�wjt

0
.

[30] In equation (32) we have separated the contributions
from the mixing part (i.e., the corresponding reaction if b is
equal to zero) from that of the presence of the immobile
zones in the MRMT model.
[31] The specific chemical problem considered is precip-

itation of siderite (FeCO3 = Fe2+ + CO3
2�) with an equilib-

rium constant log K(25�C) = �10.7 [Coudrainribstein and
Morel, 1987]. The porosity ratio was fixed at a constant
value of 5/7, following the indications of Sanchez-Vila and
Carrera [2004]. The reaction rate is computed by the
inverse Laplace transform of equation (37) using the de
Hoog algorithm (K. J. Hollenbeck, INVLAP.M: A

Table 1. Normalized Reaction Rates and Corresponding Prob-

abilities Used in the Two Models Defined in Section 4.2

wj pj

Model w
_
0

0.1 0.4097
0.2 0.1771
0.3 0.0916
0.4 0.0601
0.5 0.0485
0.6 0.0443
0.7 0.0427
0.8 0.0421
0.9 0.0420
1.0 0.0419

Model w
_
1

0.4 0.0397
0.7 0.3043
1.0 0.3754
1.3 0.1982
1.6 0.0640
1.9 0.0150
2.2 0.0028
2.5 0.0005
2.8 0.0001
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MATLAB function for numerical inversion of Laplace
transforms by the de Hoog algorithm, unpublished manu-
script, 1998). Results are discussed in section 5.

5. Evaluation of Concentrations and Rates

[32] The dimensionless mass transfer rate (w) represents
the ratio between mass transfer rate and advection rate. It
has a strong influence on the behavior of breakthrough
curves (BTCs) of the dimensionless immobile concentra-
tion. In the w

_
0 model, mass transfer is very slow. Corre-

spondingly, solute transfers back to the mobile zone with
difficulty, causing significant tailing in BTCs. In the w

_
1

model the characteristic times of mass transfer and disper-
sion are similar. Finally it should be noted that if all w
values were very large (i.e., mass transfer between the

mobile and immobile phases is instantaneous), the system
would respond as that of a homogeneous media with a
retardation factor equal to 1 + b, and consequently reactions
could be obtained from the results of De Simoni et al.
[2005].
[33] We start by looking at the reactive transport problem

presented in section 4 in terms of normalized concentrations.
Owing to the particular choice of boundary conditions (step-
input function), the initial water will eventually be substi-
tuted by the input water. This effect takes place faster in the
mobile phase and eventually transmits to the different
immobile phases (according to the corresponding w values).
In Figure 1 we see the evolution of the concentrations of the
components with time for two particular values of Pe ( = 0.1,
i.e., diffusion-dominated problem, or 10, i.e., advection-
dominated problem) and for three different distances (x =
0.1, 1, and 10). Unless stated otherwise, Figures 1–6 include

Figure 2. Concentration of the two aqueous species in the
mobile and immobile zones (weighted average) and for the
case Pe = 0.1: (top) x = 0.1, (middle) x = 1, and (bottom) x =
10: c01m (solid line); c01im (dashed line); c02m (dash-dotted
line); and c02im (solid bold line).

Figure 1. Values of u0m and u0im (weighted averaged) over
time at three points in space and for two Peclet numbers:
(top) x = 0.1, (middle) x = 1, and (bottom) x = 10: u0m, Pe =
0.1 (solid line); u0im, Pe = 0.1 (dashed line); u0m, Pe = 10
(dash-dotted line); and u0im, Pe = 10 (solid bold line).

Figure 3. Reaction rates with time at three points in space:
(a, d) x = 0.1, (b, e) x = 1, and (c, f) x = 10. Figures 3a–3c
correspond to Pe = 0.1, and Figures 3d–3f correspond to
Pe = 10. The total reaction rate is the sum of the three
individual contributions presented in equations (40) and
(41): mixing term (solid line), mass transfer term (dashed
line), and total reaction in the immobile zone (dash-dotted
line).
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only the results corresponding to model w
_
0. In Figure 1 we

observe a clear separation between the curves corresponding
to the mobile and the immobile zones (the latter is actually
the weighted arithmetic average of the component concen-
trations). For the diffusive case (smaller Peclet number) the
changes in the mobile zone occur earlier, which is a
reflection of the diffusive front that propagates through the
system. For completeness, Figure 2 displays the
corresponding concentration of aqueous species obtained
from the normalized expressions of the actual concentrations
(equation (27)).
[34] The distribution of reaction rates in space and time is

presented next. Figure 3 displays the various contributions
to the total reaction rates over time at three points in space.
For the point closest to the inlet the mixing driven contri-
bution (see equation (41)) is largest, and it is only at late
times that the mass transfer contribution dominates and
becomes the main contributor to the total reaction rate.

For large travel distances almost all of the reaction is driven
by the mass transfer term. While this holds true for both
Peclet numbers, it is clearly visible that the mass transfer
term is more important in the higher Peclet number case. At
short times, the concentration gradients are large and the
reactions are driven by mixing due to local dispersion. With
increasing time, gradients are smoothed out and mass
transfer dominates over local dispersion as a mixing mech-
anism and becomes the dominating driving force of chem-
ical reaction. This effect is more pronounced for advection-
dominated transport (Pe = 10). After the smoothing out of
the large initial gradients, local dispersion plays only a
subordinate role.
[35] The presence of mass transfer between mobile and

immobile zones leads to a broader temporal distribution of
the reaction rates, which indicates that the system relaxes to

Figure 4. Reaction rates versus distance at two points in
time: (a, c) t = 0.01 and (b, d) t = 1. Figures 4a and 4b
correspond to Pe = 0.1, and Figures 4c and 4d correspond to
Pe = 10. The total reaction rate is the sum of the three
contributions presented in equations (40) and (41): mixing
term (solid line), mass transfer term (dashed line), and total
reaction in the immobile zone (dash-dotted line).

Figure 5. Reaction rate (top) integrated over time against
spatial coordinate and (bottom) integrated over space
against time. The two curves correspond to two different
Pe values: Pe = 0.01 (dashed line) and Pe = 10 (solid line).

Figure 6. Integrated reaction rates for the w
_
1 model: (top)

reaction rate integrated over time against spatial coordinate
and (bottom) reaction rate integrated over time against time.
The two curves correspond to two different Pe values: Pe =
0.01 (dashed line) and Pe = 10 (solid line).
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global equilibrium at later times than for a homogeneous
medium, for which mixing is exclusively due to local
dispersion. These features are also reflected in the spatial
distributions of the reaction rates, illustrated in Figure 4 (for
two different times, t = 0.01 and t = 1). Close to the inlet,
the different contributions to the total reaction rate are
basically constant and decrease fast in the vicinity of the
diffusive front. At small dimensionless times (t = 0.01) the
mixing term dominates over the mass transfer term every-
where both for the Pe = 0.1 and Pe = 10 cases. For t = 1, the
mass transfer term is of increasing importance. In the
diffusion dominated case (Pe = 0.1), the mass transfer and
mixing terms are almost equal. For the advection-dominated
case (Pe = 10), the mass transfer term clearly dominates
over the mixing term everywhere. The mixing term is small
close to the inlet and increases toward a maximum close to
the diffusive front, which reflects the spatial distribution of
the gradient of the mobile component. In absolute terms, the
largest reaction rates occur close to the inlet (see Figure 5),
as concentration gradients are largest. Total reaction rates
are heavily affected by Pe. The more diffusive the problem,
the larger the total rate. Another effect of the choice of Pe is
visible when the rate is integrated in space. For the more
diffusive case reactions are measurable over a larger time
span. This effect is independent of the choice of the
distribution of w values (see Figure 6 for the results
corresponding to the w

_
1 model, which are qualitatively

similar to those of Figure 5).

6. Conclusions

[36] We study reactive transport in an effective medium
that is composed by a mobile region and a suite of immobile
regions which are characterized by a distribution of solute
retention times. The mobile and immobile regions commu-
nicate by linear kinetic mass transfer. The retention proper-
ties are the same at each point in space; that is, the solute
can encounter the full spectrum of retention zones at any
point and can be derived from observations corresponding
to a conservative tracer. Such an effective medium can be
visualized as consisting of multiple overlapping continua.
The resulting transport model is termed reactive multirate
mass transfer (R-MRMT) model.
[37] Under the assumption that species are subject to the

same advective velocity and diffusion coefficient, we set the
geochemical problem in term of chemical components.
Then, we derive explicit expressions for the reaction rates
in both the mobile and the immobile zones. We identify
three contributions to the total reaction rate: (1) a term that
is identical in form to the one derived by De Simoni et al.
[2005], which quantifies local dispersive mixing in the
mobile region, (2) a term that quantifies reaction due to
the chemical disequilibrium caused locally by mass transfer
between the mobile and immobile regions, and (3) a term
that quantifies the total reaction in the immobile regions.
The latter term is relatively small compared with the
contributions from the mobile region. Nevertheless, the
mass exchange between the mobile and immobile zones
has an important effect on the reaction dynamics.
[38] For advective-dispersive transport in a system char-

acterized by an ADE, the only mechanism driving reactions
is local dispersion. In the presence of immobile regions,

advective transport and mass transfer between the mobile
and immobile zones leads to mixing of the mobile water and
water that has been released from the immobile regions.
This induces nonequilibrium and thus additional reaction. In
the latter model, the characteristic reaction time is given by
the typical retention time scale, which can be very large.
Thus, for reactive transport in a medium characterized by a
broad distribution of retention times, the time for the system
to reach global equilibrium can be significantly increased.

Appendix A

A1. General Reaction Rate

[39] The starting point is equation (14). Also, note that
species concentrations can be written in terms of compo-
nents concentrations and the equilibrium constants; that is,
cm = cm(um, K), and cim = cim(uim, K). K values can vary
with salinity and temperature. Assuming K is constant in

space and time, we can apply the chain rule (dcm =
@cm
@um

dum,
similar for dcim) to equation (11):

f x; tð Þ ¼ @cm
@um

�fm

@um
@t
� qrum þr � fmDrum½ �

� 	
� fim

Z 1

0

f að Þ @cim
@t

x;a; tð Þdaþ fHrumDrum: ðA1Þ

Finally, incorporating equation (15), we obtain equation (19).
Additional terms would appear in equation (A1) if one were
to consider variability of K values.

A2. General Solution in Laplace Space of the Total
Mobile Concentration

[40] Writing equation (32) in Laplace space, we get

scu0m � u0 þ b g0cu0m þ sbg � g0ð Þcu0mh i
¼ 1

Pe

d2cu0m
dx02
� dcu0m

dx0
; ðA2Þ

With the superscript b indicating a variable in Laplace
space. Reordering equation (A2), we get

1

Pe

d2cu0m
dx02
� dcu0m

dx0
� 1þ b~g½ �scu0m ¼ �u0: ðA3Þ

[41] A particular solution of equation (A3) is given

by cu0m ¼ u0

s
. The general solution is given by

cu0m ¼ A1 exp 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Pe
s 1þ bbgð Þ

r !
Pe x0

2

" #

þ A2 exp 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Pe
s 1þ bbgð Þ

r !
Pe x0

2

" #
: ðA4Þ

From the boundary conditions, A1 = 0, as the solution must
remain finite for x0 ! 1. To obtain the second integration
constant, let us notice that for x0 = 0, it is cu0m ¼ u0

s
. Thus,

A2 =
u0
s
, and the specific solution for this problem becomes

equation (36).
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