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5 [1] We study the influence of buoyancy and spatial heterogeneity on the spreading of the
6 saturation front of a displacing fluid during injection into a porous medium saturated
7 with another, immiscible fluid. To do so we use a stochastic modeling framework. We
8 derive an effective large‐scale flow equation for the saturation of the displacing fluid that
9 is characterized by six nonlocal flux terms, four that resemble dispersive type terms and
10 two that have the appearance of advection terms. From the effective large‐scale flow
11 equation we derive measures for the spreading of the saturation front. A series of
12 full two‐phase numerical solutions are conducted to complement the analytical
13 developments. We find that the interplay between density and heterogeneity leads to an
14 enhancement of the front spreading on one hand and to a renormalization of the evolution
15 of the mean front position compared with an equivalent homogeneous medium. The
16 quantification of these phenomena plays an important role in several applications,
17 including, for example, carbon sequestration and enhanced oil recovery.

18 Citation: Bolster, D., I. Neuweiler, M. Dentz, and J. Carrera (2010), The impact of buoyancy on front spreading in
19 heterogeneous porous media in two‐phase immiscible flow, Water Resour. Res., 46, XXXXXX, doi:10.1029/2010WR009399.

20 1. Introduction

21 [2] Capturing the influence of physical heterogeneity on
22 flow and transport in geological media is still one of the
23 great challenges facing us today. Even for linear problems,
24 such as single phase flow and transport many questions
25 remain unanswered and while many have been presented
26 with some success, no single clear model has emerged as
27 capable of capturing all effects of heterogeneity [see, e.g.,
28 Dagan, 1989; Gelhar, 1993; Neuman and Tartakovsky,
29 2009]. Similarly, accounting for the influence of buoyancy
30 on single phase flow [e.g., Henry, 1964; Kalejaiye and
31 Cardoso, 2005; Huppert and Woods, 1995; Dentz et al.,
32 2006] and transport [e.g., Graf and Therrien, 2008; Bolster
33 et al., 2007] in porous media is a challenging problem that
34 has a rich body of work dedicated to it.
35 [3] Many interesting and relevant problems in porous
36 media involve the flow and interaction of two immiscible
37 fluids. Relevant examples that receive much attention include
38 CO2 sequestration [e.g., Bachu, 2008; Bachu and Adams,
39 2003; Bryant et al., 2008; Riaz and Tchelepi, 2008] and
40 enhanced oil recovery [e.g., Lake, 1989; Ferguson et al.,
41 2009; Dong et al., 2009; Tokunaga et al., 2000]. Account-
42 ing for the effects of mobility (viscosity differences between
43 phases) and capillarity introduces significant complexity and
44 results in highly nonlinear and coupled governing equations

45[e.g., Binning and Celia, 1999]. Add to this buoyancy effects
46when the two phases are of differing density and one has a
47very interesting and challenging problem (even in the absence
48of heterogeneity).
49[4] In this work we focus on the interaction of buoyancy
50and heterogeneity effects on multiphase flows. To do so, we
51consider a displacement problem where an invading phase
52displaces another one as depicted in Figure 1. We neglect
53the influence of capillarity by using the commonly used
54Buckley‐Leverett approximation, which we discuss in more
55detail in section 2. In such a displacement problem there is
56typically a sharp interface between the invading and dis-
57placed phases. Spatial variability in the flow field, induced
58by heterogeneity, cause this sharp interface to vary in space,
59which results in spreading of the front. At the same time
60buoyancy plays its role. In the case of a stable displacement,
61the spreading ultimately induces lateral pressure gradients
62that slow down the spreading of the interface. Similarly, an
63unstable injection will result in greater spreading due to
64buoyancy. This is illustrated clearly in Figure 1 where the
65results of three numerical simulations are presented, one with
66no buoyancy effects (Figure 1, left), one with stabilizing
67buoyancy (Figure 1, middle) and one with destabilizing
68buoyancy (Figure 1, right).
69[5] To date, in the field of single phase flows, the approaches
70to capture the effect of heterogeneity that have achieved
71most success are stochastic methods. The theory of such
72approaches is described extensively in the literature [e.g.,
73Dagan, 1989; Brenner and Edwards, 1993; Gelhar, 1993;
74Rubin, 2003]. In the context here, if one averages trans-
75versely across the transition zones depicted in Figure 1, the
76resulting transition zone between high and low saturation
77of the displacing fluid can have the appearance of a dis-
78persive mixing zone. It should of course be noted that this
79averaged dispersive zone does not represent actual mixing
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80 as only spreading occurs. However, for applications where
81 the fluid‐fluid interfacial area is important, it is important
82 to have model predictions that quantify the spreading zone.
83 [6] Dispersive transition zones in solute transport pro-
84 blems have typically been characterized by spatial moments
85 and a wide body of literature exists doing so [e.g., Aris,
86 1956; Gelhar and Axness, 1983; Dagan, 1989; Kitanidis,
87 1988; Dentz and Carrera, 2007; Bolster et al., 2009b].
88 Similar approaches have been applied to two‐phase flow,
89 but most work along these lines has been limited to hori-
90 zontal displacements that neglect buoyancy effects. Cvetovic
91 and Dagan [1996] and Dagan and Cvetkovic [1996] applied
92 a Lagrangian perturbation theory approach in order to
93 determine the averaged cumulative recovery of the displa-
94 cing fluid and the spatial moments of the fluid distribution.
95 They found that the heterogeneities cause a dispersive growth
96 of the second moment. However, they did not quantify it.
97 Similarly, Zhang and Tchelepi [1999] found a dispersion
98 effect for the immiscible displacement in the horizontal
99 direction. This dispersion coefficient was calculated semi-
100 analytically by numerical means by Langlo and Espedal
101 [1995], who also applied a perturbation theory approach.
102 Their approach was extended by Neuweiler et al. [2003] to
103 quantify the dispersion coefficient analytically and later by
104 Bolster et al. [2009a] to include temporal fluctuations in the
105 flow field. Within the validity of perturbation theory and in

106direct analogy to single phase flow, they showed that the
107dispersive growth for neutrally stable displacement was
108directly proportional to the variance and the correlation
109length of the permeability field. As such a natural question
110arises: given the additional influence of buoyancy, can we
111anticipate the same behavior?
112[7] For vertical immiscible displacement in the presence
113of buoyancy effects we anticipate a similar quasi‐dispersive
114transition zone of the averaged front, which will be aug-
115mented or suppressed due to buoyancy. The heterogeneity
116still leads to fluctuations in the velocity field as illustrated in
117Figure 1. However, the process will be more complicated
118and not solely due to the stabilizing and destabilizing
119processes mentioned above. After all, such stabilization/
120destabilization effects will occur even for single phase mis-
121cible displacement [e.g., Welty and Gelhar, 1991; Kempers
122and Haas, 1994], leading to the question what additional
123role the multiphase nature of this flow plays?
124[8] In the absence of buoyancy effects the Buckley‐Leveret
125problem is governed by a single dimensionless parameter,
126which is the viscosity ratio (or ratio of the viscosities of the
127two phases). This dimensionless number does not depend on
128any of the parameters associated with the flow or porous
129medium. This means that while heterogeneity in the porous
130medium induces fluctuations in the flow field it does not
131affect the fundamental fluid properties in an equivalent

Figure 1. Sample contour plots of saturation within the same random permeability field: (left) zero
buoyancy, neutrally stable case; (middle) buoyantly stable case; and (right) buoyantly unstable case. In
all cases the viscosity ratio M = 1. The color bar displays saturations from 0 to 1.
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132 homogeneous medium. Thus, the (mean) front positions
133 obtained from the solutions of the homogeneous and het-
134 erogeneous media are identical.
135 [9] On the other hand, when one includes buoyancy effects,
136 a second dimensionless number is necessary to describe the
137 system, namely, the gravity number. The gravity number
138 physically reflects the ratio of buoyancy to viscous forces.
139 The buoyancy number (defined formally and discussed
140 further in section 2) is directly proportional to the perme-
141 ability of the porous medium. Therefore when the perme-
142 ability field is heterogeneous in space, so too is the buoyancy
143 number. This means that while the viscosity ratio is insen-
144 sitive to heterogeneity, the gravity number can potentially
145 vary over orders of magnitude depending on how variable
146 the permeability field is. This raises another important
147 and potentially problematic question: as this system is so
148 inherently nonlinear, does the arithmetic mean (or for that
149 matter any other mean) of the gravity number provide a
150 good representative measure of the behavior of the hetero-
151 geneous system?
152 [10] In fact, as the buoyancy number varies in space, in a
153 manner directly proportional to the spatial variations in
154 permeability one might anticipate a local contribution to the
155 dispersion front spreading effect beyond the nonlocal con-
156 tribution that arises from fluctuations in the velocity field. In
157 this paper we aim to answer the following questions regarding
158 buoyancy influenced multiphase immiscible displacement in
159 a heterogeneous medium.
160 [11] 1. Can we, using perturbation theory, asses the rate of
161 front spreading that occurs?
162 [12] 2. What measures of the heterogeneous field (e.g.,
163 variance, correlation length) control this spreading? Also,
164 why and how do they?
165 [13] 3. What influence does the heterogeneity in gravity
166 number have? And does the arithmetic mean of the gravity
167 number represent a mean behavior in the heterogeneous
168 system considering that the problems considered here are
169 highly nonlinear?

170 2. Model

171 [14] The flow of two immiscible fluids in a porous
172 medium can be described by conservation of mass and
173 momentum. Momentum conservation is expressed by the
174 Darcy law, which is

q jð Þ x; tð Þ ¼ � k xð Þkrj Sj
� �

�j
rpj x; tð Þ þ �jge1
� �

; ð1Þ

175 where q( j)(x, t) and pj (x, t) are specific discharge and
176 pressure of fluid j, mj and rj are viscosity and density of fluid
177 j, k(x) is the intrinsic permeability of the porous medium,
178 krj [Sj (x, t)] is the relative permeability of phase j (which
179 depends on saturation). The 1 direction of the coordinate
180 system is aligned with negative gravity acceleration as
181 expressed by e1, which denotes the unit vector in the 1
182 direction. Mass conservation for each fluid is given by [e.g.,
183 Bear, 1988]

@

@t
!�jSj x; tð Þ þ r � �jq jð Þ x; tð Þ ¼ 0: ð2Þ

184 [15] We assume here that the medium and the fluid are
185 incompressible so that porosity w and density rj of each

186fluid are constant. The saturations Sj of each fluid sum up to
187one and the difference of the pressures in each fluid defines
188the capillary pressure pc (S)

Snw þ Sw ¼ 1; pnw � pw ¼ pc Snwð Þ; ð3Þ

189where j = nw indicates the nonwetting fluid and j = w the
190wetting fluid. In the problem studied here we will use two
191phases j = i, d, where i refers to an injected phase and d to a
192displaced phase. From here on, S refers to the saturation of
193the injected phase Si. From the incompressibility conditions
194and mass conservation, it follows that the divergence of
195the total specific discharge Q(x, t) = q(i)(x, t) + q(d)(x, t) is

zero:

r �Q x; tð Þ ¼ 0: ð4Þ

196[16] Eliminating q(i)(x, t) from equation (2) in favor of
197Q(x, t), one obtains [Bear, 1988]

@S

@t
þr � Qf Sð Þ þ kD�g

�d
e1g Sð Þ

� �

�r � f Sð Þk krd Sð Þ
�d

dpc Sð Þ
dS

rS

� �
¼ 0; ð5Þ

198where Dr = rd − ri. We set w = 1 for simplicity (which is
199equivalent to rescaling time). The fractional flow function
200f (S) and modified fractional flow function g(S) are defined

by

f Sð Þ ¼ kri Sð Þ
kri Sð Þ þMkrd Sð Þ ; g Sð Þ ¼ krd f Sð Þ: ð6Þ

201where the viscosity ratio M is defined by

M ¼ �i

�d
: ð7Þ

202[17] In this work we consider the commonly studied
203problem of one fluid displacing another immiscible one. We
204focus on fluid movement in a vertical two‐dimensional
205porous medium which is initially filled with fluid d. As
206outlined above, the 1 axis points upward. Fluid i is injected
207along a horizontal line at a constant volumetric flux Q,
208displacing fluid d. We consider flow far away from the
209domain boundaries and thus disregard boundary effects.
210The resulting mean pressure gradient is then aligned with the
2111 direction of the coordinate system. We restrict our focus
212on flows where capillary pressure effects are small and thus
213we neglect them. The approximation to neglect capillary
214forces implies thus displacement processes on large length
215scales, such as that of an oil reservoir, are considered and
216that the flow rates are high. The approximation neglects the
217influence of small‐scale heterogeneity of the capillary entry
218pressure [e.g., Neuweiler et al., 2010]. This might be
219questionable if residual saturations and macroscopic trap-
220ping would be important. However, as the focus of this
221paper is the spreading of immiscible displacement fronts in
222geotechnical applications, we proceed by neglecting these
223effects. This problem of immiscible two phase viscous
224dominated flow is commonly known as the Buckley‐Leverett
225problem. Unlike many previous studies we include the
226influence of buoyancy.
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227 [18] We define the dimensionless coordinates, time and
228 total flow by

xi ¼ l~xi; t ¼ �Q~t; Q ¼ ~QQ; ð8Þ

229 where l is a characteristic length scale such as the length of
230 the domain and the advection scale tQ is defined by tQ =
231 l/Q. In the following l will be set equal to the correlation
232 scale of the permeability field k(x). The governing equation
233 reads in nondimensional terms as

@S

@~t
þ ~r � ~Q f Sð Þ þ @

@x1
Ng Sð Þ;¼ 0; ð9Þ

234 where we disregard the capillary diffusion term, conform
235 with the Buckley‐Leverett approximation. We define the
236 (dimensionless) gravity number N by

N ¼ kD�g

�dQ
: ð10Þ

237 [19] It compares buoyancy forces to forces driving the
238 movement of the front. A positive gravity number implies a
239 less dense fluid displacing a denser one, a negative gravity
240 number vice versa. Note that the gravity number is spatially
241 variable because the permeability k is spatially variable. For
242 convenience, in the following the tildes will be dropped and
243 all quantities are understood to be dimensionless.

244 3. Homogeneous Solution

245 [20] In order to study the heterogeneous problem it is
246 important to explore and understand the homogeneous one,
247 that is, for constant permeability, k = constant. In this case,
248 equation (9) simplifies to

@Sh
@t

þ @f

@x1
þ N

@g

@x1
¼ 0; ð11Þ

249 where Sh is the homogeneous saturation. The solution of this
250 problem is governed by two dimensionless quantities,
251 namely, the viscosity ratio M and the gravity number N.
252 Both these numbers determine the form of the solution of (11).
253 Equation (11) can be solved using the method of char-
254 acteristics [e.g., Marle, 1981]. The velocity of the char-
255 acteristics of constant saturation are given by the derivatives
256 of the total fractional flow function � (S):

� Shð Þ ¼ f Shð Þ þ Ng Shð Þ: ð12Þ

257 [21] Owing to the hyperbolic nature of equation (11) the
258 solution has a sharp front that travels with the front velocity
259 Q f. It can be written in the scaling form

Sh x1=tð Þ ¼ Srh x1=tð ÞH 1� x1
Qf t

� 	
; ð13Þ

260 where H(x) is the Heaviside step function. The front position
261 is given by xf (t) = Q ft. The front velocity is

Q f ¼
d� S f

h


 �
dSh

; ð14Þ

262where the front saturation Sh
f can be determined by the

263Welge tangent method [e.g., Marle, 1981], which states that

d� S f
h


 �

dS f
h

¼
� S f

h


 �

S f
h

: ð15Þ

264This implies together with (14) that the front velocity is
265given by Q f = � (Sh

f )/Sh
f.

266[22] The form of the rear saturation Sr is obtained by the
267method of characteristics. As outlined above, the charac-
268teristic velocities behind the front are given by d� (Sh

r)/dSh
r.

269As isosaturation points travel with constant velocity, the
270characteristic velocity at a given point x1 and time t is

x1
t
¼ d� Srh

� �
dSr

: ð16Þ

271The rear saturation is obtained by inverting this relation.

2723.1. Homogeneous Saturation Profiles

273[23] For negative gravity numbers, when the density of
274the injected phase is greater than that of the displaced phase,
275the total fractional flow function � may not be a monotoni-
276cally increasing function and may have a maximum between
277the front andmaximum saturations. This causes the derivative
278d�(Sh)/dSh to be negative for saturations larger than the sat-
279uration at which �(Sh) is maximum. As d�(Sh)/dSh is the
280velocity at which zones of saturation Sh move, this implies
281that saturation values larger than the value at which velocities
282turn negative wouldmove in the direction opposite to the flow
283direction. In order to deal with these unphysical character-
284istics, a procedure similar to the one to determine the position
285of the shock front exists [e.g., Lake, 1989]. It results in sat-
286uration distributions that are either constant at a value smaller
287than one until the abrupt front position, or are constant until
288they reach a transition zone in which saturation decreases to
289the front value.
290[24] This behavior reflects the fact that buoyancy carries
291the injected phase away too quickly for the medium to
292saturate. Thus, the saturation close to the injection boundary
293is always smaller than one and remains at this value up to a
294certain point that is determined by the injection rate and
295buoyancy. This is illustrated in Figure 2 for a gravity number
296of N = 5.
297[25] In order to illustrate the influence of the dimension-
298less numbers M and N on the homogeneous solutions a
299sample set is illustrated in Figure 2. All solutions are for
300quadratic functions as relative permeabilities. In Figure 2
301(top) we see the influence of varying N while maintaining
302M constant. Decreasing N increases the value of the front
303saturation. This is because buoyancy pulls back the advanc-
304ing intruding phase thus causing higher local saturations. As
305the area under all the curves must be the same due to mass
306conservation the larger the gravity number the further into the
307domain the injected phase will intrude. Similarly, Figure 2
308(bottom) illustrates the influence of varying M while main-
309taining constant N. Decreasing this viscosity ratio decreases
310the value of the front saturation, causing deeper intrusion
311of the displacing phase. This is a reflection of the fact that
312the less the viscosity of the displacing phase, the easier it is
313for this phase to slip through the porous matrix. This
314mechanism, whereby it is easier for the invading fluid to slip
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315 through the porous matrix, can lead to instabilities in the
316 interface that lead to fingering patterns [e.g., Saffman and
317 Taylor, 1958]. Buoyancy, if the invading phase is less
318 dense than the displaced on, can similarly induce gravita-
319 tional instabilities [e.g., Noetinger et al., 2004]. A criterion
320 for these instabilities in outlined in section 3.2.
321 [26] The location of the front may be analyzed by looking
322 at the derivative of the saturation field as this has a sharp
323 delta function at the front, which allows the quantification of
324 spreading around it [Bolster et al., 2009a]. The expression
325 for the derivative of saturation is given by

� @Sh
@x1

¼ � @Srh x1=tð Þ
@x1

H
x1
Qf t

� 1

� 	
þ 1

Qf t
Sr x1=tð Þ� 1� x1

Qf t

� 	
:

ð17Þ

326 The derivatives of saturation for the profiles in Figure 2
327 (bottom) are shown in Figure 3. Here the delta function at
328 the front is clearly illustrated.

3293.2. Stability of the Solution

330[27] The solution of (11) can become unstable. Both
331viscous and gravity forces have an impact on the stability of
332the solution. If the total viscosity (krel,1/m1 + krel,2/m2)
333directly behind of the front is greater than the total viscosity
334directly ahead of the front the interface becomes unstable
335[e.g., Saffman and Taylor, 1958; Riaz and Tchelepi, 2006].
336[28] On the other hand, for Dr < 0 gravity tends to damp
337out perturbations to the interface if the displacing fluid is
338heavier than the displaced fluid. Conversely if Dr > 0 any
339perturbation will be enhanced. A criterion for stability can
340be found by introducing a critical velocity [Noetinger et al.,

2004]

qcrit ¼ kS fD�g

�d Mshock S fð Þ�1� 1

 � ; ð18Þ

341where

Mshock Sð Þ ¼ kri=�i þ krd=�dð ÞjS¼S f

kri=�i þ krd=�dð ÞjS¼0

: ð19Þ

342Solutions with flow velocities qtotal will be stable if

qtotal � qcrit <
Mshock

Mshock � 1
ð20Þ

343and unstable otherwise. In a heterogeneous medium the
344heterogeneities cause perturbations of the interface between
345the fluids. Depending on the stability criteria of the flow
346these perturbations can either be enforced or damped out.
347Thus heterogeneities can either trigger fingering or be coun-
348teracted if the flow is stabilizing.

3494. Large‐Scale Flow Model

350[29] In this section, we derive large‐scale flow equations
351by stochastic averaging of the original local‐scale flow
352equation. This results in a large‐scale effective flow equa-
353tion for the average saturation. In section 5, using this

Figure 2. (top) Normalized homogeneous solution to
Buckley‐Leverett displacement for M = 1 and N = 5
(dash‐dotted line), 0 (dashed line), and −5 (solid line) and
(bottom) N = −1 and various values of M: M = 0.1 (red),
M = 1 (light blue), and M = 10 (dark blue). The front loca-
tion is normalized by Qt, reflecting the self‐similar in time
nature of this solution.

Figure 3. Normalized derivative of saturation dS
dx1

calcu-
lated from equation (17) for M = 0.1 (red dashed line), 1
(light blue dashed line), and 10 (blue solid line) and N = −1.
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354 effective flow equation, we define measures for the front
355 spreading due to fluctuations in the permeability field.

356 4.1. Stochastic Model

357 [30] We employ a stochastic modeling approach in order
358 to quantify the impact of medium heterogeneity on the
359 saturation front of the displacing fluid. The spatial vari-
360 ability of the intrinsic permeability k (x) is modeled as a
361 stationary correlated stochastic process in space. Its constant
362 mean value is kðxÞ = k, where the overbar denotes the
363 ensemble average. We decompose the permeability into its
364 mean and (normalized) fluctuations about it,

k xð Þ ¼ k 1þ � xð Þ½ �: ð21Þ

365 Their correlation function of the permeability fluctuations is

� xð Þ� x′ð Þ ¼ Ckk x� x′ð Þ: ð22Þ

366 [31] The variance and correlation length are defined by

�2
kk ¼ Ckk 0ð Þ; l2kk ¼

Z
d2xCkk xð Þ
�2
kk

: ð23Þ

367 For simplicity, we assume the permeability is statistically
368 isotropic. The gravity number (10) is a linear function of
369 permeability. Using the decomposition (21), it is given by

N xð Þ ¼ N 1þ � xð Þ½ �; ð24Þ

370 where the mean gravity number is given by

N ¼ kD�g

�dQ
: ð25Þ

371 [32] We consider injection of the displacing fluid at an
372 injection plane perpendicular to the one direction of the
373 coordinate system. The boundary flux in dimensionless
374 notation is equal to Q = 1. The spatial randomness is
375 mapped onto the phase discharges and thus on the total
376 discharge via the Darcy equations (1), which renders the
377 total discharge a spatial random field as well. Due to the
378 boundary conditions the (dimensionless) mean flow velocity
379 is Qðx; tÞ = e1. Thus, we can decompose the total flux into
380 its (constant) mean value and fluctuations about it:

Q x; tð Þ ¼ e1 þ q′ xð Þ: ð26Þ

381 [33] Note that q′(x, t) in principle depends on saturation.
382 However, since it is driven by a constant boundary flux, it is
383 a reasonable approach to consider the total flow velocity as
384 independent of saturation. In particular, it is worth noting
385 that this is a good assumption away from the front position.
386 This is no longer valid close to the front [e.g., Neuweiler
387 et al., 2003]. Thus, strictly speaking, the velocity fluctua-
388 tions cannot be considered stationary and thus the velocity
389 correlation function is given by

qi′ xð Þqj′ x′ð Þ ¼ Cqq
ij x; x′ð Þ: ð27Þ

390The cross correlation between the velocity and permeability
391fluctuations are accordingly

qi′ xð Þ� x′ð Þ ¼ Ckq
i x; x′ð Þ: ð28Þ

3924.2. Average Flow Equation

393[34] In analogy to solute transport in heterogeneous media
394[e.g., Gelhar and Axness, 1983; Koch and Brady, 1987;
395Neuman, 1993; Cushman et al., 1994], the spread of the
396ensemble averaged saturation front Sðx; tÞ ≡ S(x, t) due to
397spatial heterogeneity is modeled by a non‐Markovian effec-
398tive equation. Note that the averaging equation is in general
399non‐Markovian [e.g.,Zwanzig, 1961;Kubo et al., 1991;Koch
400and Brady, 1987; Cushman et al., 1994; Neuman, 1993],
401which is expressed by spatiotemporal nonlocal flux terms.
402Under certain conditions, these fluxes can be localized.
403[35] We follow the methodology routinely applied when
404deriving average dynamics [e.g., Koch and Brady, 1987;
405Neuman, 1993; Cushman et al., 1994; Tartakovsky and
406Neuman, 1998], which consists of (1) separating the satura-
407tion into mean and fluctuating components, (2) establishing
408a (nonclosed) system of equations for the average saturation
409and the saturation fluctuations, and (3) closing the system by
410disregarding terms that are of higher order in the variance of
411the fluctuations of the underlying random fields.
412[36] Following (24) and (26), we also decompose the sat-
413uration into its ensemble mean and fluctuations about it:

S x; tð Þ ¼ S x; tð Þ þ S′ x; tð Þ: ð29Þ

414Assuming that the saturation variance is small we can
415expand the the fractional flow function f (S) and g(S) as

f Sð Þ ¼ f S
� �þ @f

@S
jSS′þ . . . ; g Sð Þ ¼ g S

� �þ @g

@S
jSS′þ . . . :

ð30Þ

416[37] In order to be consistent with the second‐order per-
417turbation analysis that follows, the above expressions should
418technically be expanded to second order. However, includ-
419ing these additional terms significantly complicates the
420analysis and previous work [e.g., Efendiev and Durlofsky,
4212002; Neuweiler et al., 2003; Bolster et al., 2009a] illus-
422trates that these additional terms do not contribute signifi-
423cantly to the system in the absence of buoyancy effects. We
424disregarded them in the following and justify this a posteriori
425by the agreement with numerical simulations in section 6.
426The results of this work discussed in section 6 also justify
427this approximation.
428[38] Using decompositions (24), (26) and (29) as well as
429(30) in (9), the local‐scale equation for the saturation S(x, t)
430is given by

@S x; tð Þ
@t

þ @S′ x; tð Þ
@t

þ @f S
� �

@x1
þ @

@x1

d f S
� �
dS

S′ x; tð Þ þ N
@

@x1
g S
� �

þ N
@

@x1

dg S
� �
dS

S′ x;tð Þþq′ xð Þ �rf S
� �þ N

@

@x1
� x;tð Þg S

� �

¼ �q′ xð Þ � r df S
� �
dS

S′ x; tð Þ � N
@

@x1
� xð Þ dg S

� �
dS

S′ x; tð Þ:
ð31Þ
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431 Averaging the latter over the ensemble gives

@S x; tð Þ
@t

þ @f S
� �

@x1
þ N

@g S
� �

@x1
¼ �r � q′ xð ÞS′ x; tð Þ d f S

� �
dS

� N
@

@x1
� xð ÞS′ x; tð Þ dg S

� �
dS

: ð32Þ

432 Subtracting (32) from (31), we obtain an equation for the
433 saturation fluctuations. However, this system of equations is
434 not closed with respect to the average saturation. In order to
435 close it we disregard terms which are quadratic in the
436 fluctuations, obtaining

@S′ x; tð Þ
@t

þ @

@x1

df S
� �
dS

S′ x; tð Þ þ N
@

@x1

dg S
� �
dS

S′ x; tð Þ

¼ �q′ xð Þ � rf S
� �� N

@

@x1
� xð Þg S

� �
: ð33Þ

437 This is then solved using the associated Green function, i.e.,

S′ x; tð Þ ¼ �
Z t

0

Z
ddx′G x; tjx′; t′ð Þ

� q′ x′ð Þ � r′f S
� �þ N

@

@x1′
� x′ð Þg S

� �� �
S¼S x′;t′ð Þ

; ð34Þ

438 where G(x, t∣x′, t′) solves

@G x; tjx′; t′ð Þ
@t

þ @

@x1

d f S
� �
dS

G x; tjx′; t′ð Þ þ N
@

@x1

dg S
� �
dS

�G x; tjx′; t′ð Þ ¼ 0 ð35Þ

439 for the initial condition G(x, t∣x′, t′) = d(x − x′), zero
440 boundary conditions at x1 = 0 and x1 = ∞ and zero normal
441 derivative at the horizontal boundaries. Inserting (34) into (32),
442 we obtain a nonlinear upscaled equation for the ensemble
443 averaged saturation

@S x; tð Þ
@t

þ @f S
� �

@x1
þ N

@g S
� �

@x1

�r �
Z

dx′
Z t

0

dt′A x; tjx′; t′ð Þg S x′; t′ð Þ� �

�r �
Z

dx′
Z t

0

dt′D gð Þ x; tjx′; t′ð Þr′g S x′; t′ð Þ� �

�r �
Z

dx′
Z t

0

dt′D fð Þ x; tjx′; t′ð Þr′f S x′; t′ð Þ� � ¼ 0; ð36Þ

444 where the advection kernel A(x, t∣x′, t′) is defined by

ci x; tjx′; t′ð Þ ¼ N
d f S x; tð Þ� �

dS
G x; tjx′; t′ð Þ @C

kq
i x; x′ð Þ
@x1′

þ �i1N
2 dg S x; tð Þ� �

dS
G x; tjx′; t′ð Þ @C

kk x � x′ð Þ
@x1′

:

ð37aÞ

445 [39] The dispersion kernels have four contributions in
446 total, two of which are due to autocorrelations of the

447velocity and permeability fluctuations and two due to cross
448correlations between them,

D gð Þ
ij x; tjx′; t′ð Þ ¼ �j1N

d f S x; tð Þ� �
dS

G x; tjx′; t′ð ÞCnq
i x; x′ð Þ

þ �i1�j1N
2 dg S x; tð Þ� �

dS
G x; tjx′; t′ð ÞCnn x� x′ð Þ

ð37bÞ

D fð Þ
ij x; tjx′; t′ð Þ ¼ d f S x; tð Þ� �

dS
G x; tjx′; t′ð ÞCqq

ij x; x′ð Þ

þ �i1N
dg S x; tð Þ� �

dS
G x; tjx′; t′ð ÞCnq

j x; x′ð Þ: ð37cÞ

449[40] The first contribution in (37c) quantifies the impact
450on the large‐scale flow behavior due to velocity fluctua-
451tions, which has been quantified by Bolster et al. [2009a].
452The remaining terms reflect the added influence of buoy-
453ancy, which manifest themselves due to cross correlation
454between velocity and permeability fluctuations.
455[41] Note that equation (36), the large‐scale flow equation
456for the mean saturation, has the structure of a nonlinear
457advection‐dispersion equation characterized by spatiotem-
458poral nonlocal advective and dispersive fluxes. As outlined
459above, such nonlocal fluxes typically occur when averaging.
460While in the absence of buoyancy, the spatial heterogeneity
461gives rise to a nonlinear and nonlocal dispersive flux, in the
462presence of buoyancy, there are additional contributions to
463this dispersive flux as well as disorder‐induced contributions
464to the advective flux as quantified by the kernelA(x, t∣x′, t′).
465[42] Note that the nonlinear character of the two‐phase
466problem is preserved during the upscaling exercise. The
467nonlinearity of the problem is quasi‐decoupled in terms of the
468Green function; equation (35) for G(x, t∣x′, t′) is linear but
469depends on the average saturation.

4705. Quantification of Average Front Spreading
471by Apparent Dispersion

472[43] In direct analogy to solute transport we will quantify
473the additional spreading that occurs due to heterogeneity by
474an apparent dispersion coefficient. It should be stressed that
475the apparent dispersion coefficient does not only capture
476effects due to an effective dispersion term in the averaged
477flow equation (36). The renormalized advective flux term
478quantified by the kernel (37a) also contributes to the evolu-
479tion of the apparent dispersion coefficient as defined below.

4805.1. Spatial Moments

481[44] As done by Bolster et al. [2009a] we will study the
482influence on the derivative of the saturation, given by

s x; tð Þ ¼ �L�1 @S x; tð Þ
@x1

; ð38Þ

483where L is the horizontal extension of the flow domain.
484Recall that fluid is injected over the whole medium cross
485section. The motivation for this is that the homogeneous
486solution develops a shock front, which is captured sharply
487by measuring the derivative. The resulting averaged profile
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488 under the influence of heterogeneity has an appearance
489 similar to a Gaussian type bell that diffuses about this sharp
490 delta function (much like a point injection in the case of
491 single phase solute transport). The goal is to quantify the
492 spreading of the averaged front of S(x, t) by the width of the
493 averaged profile of si(x, t). (For an illustration see Figure 9.)
494 [45] In analogy to the definition of the width of a tracer
495 plume by spatial moments, we will analyze the spatial
496 moments of s(x, t). Let us define the first and second
497 moments in direction of the mean flow by

m 1ð Þ
1 tð Þ ¼

Z
d2xx1s x; tð Þ; m 2ð Þ

11 tð Þ ¼
Z

ddx21s x; tð Þ; ð39Þ

498 The second centered moment

�11 tð Þ ¼ m 1ð Þ
11 tð Þ � m 2ð Þ

1 tð Þ2 ð40Þ

499 describes the width of the saturation front. The growth of the
500 width of the saturation front is characterized by an apparent
501 dispersion, which we define as half the temporal rate of
502 change of the second centered moment as

Da tð Þ ¼ 1

2

d�11

dt
: ð41Þ

503 Equations for the moments (39) and thus forDa(t) are derived
504 in Appendix B by invoking first‐order perturbation theory.
505 [46] We identify three contributions to Da(t), i.e.,

Da tð Þ ¼ Dh tð Þ þ DA tð Þ þ De tð Þ: ð42Þ

506 Dh(t) is the contribution to spreading that occurs with the
507 rarefaction wave of the homogeneous solution. DA(t) are the
508 contributions that occur to the nonlocal advection kernel A
509 and De(t) those that occur due to the nonlocal dispersive
510 kernels D(g) and D( f ).

511 5.2. Homogeneous Contribution to Spreading

512 [47] The homogeneous contribution Dh(t) is given by

Dh tð Þ ¼
Z

dx1 f Sh x1=tð Þ½ � þ Ng Sh x1=tð Þ½ �� 
� t: ð43Þ

513 The width of the saturation profile evolves purely due to
514 advective widening as expressed by the terms Dh(t) and
515 DA(t) and due to actual front spreading as expressed byDe(t).
516 For a homogeneous medium, the growth of the width of the
517 saturation profile is due to the fact that different saturations
518 have different characteristic velocities. The term Dh(t) is
519 identical to the one that measure this effect in a homoge-
520 neous medium [e.g., Bolster et al., 2009a]. We can see from
521 (36) that heterogeneity leads to an additional advective flux,
522 which contributes to this purely advective increase of the
523 width of the saturation profile. This is quantified by the term
524 DA(t). The actual front spreading is quantified by De(t).
525 The homogeneous contribution Dh(t) can be obtained by
526 rescaling the integration variable x1 in (43) according to
527 x1 = ht, which gives

Dh tð Þ ¼ t

Z
d	 f Sh 	ð Þ½ � þ Ng Sh 	ð Þ½ �� 
� 1

� �
: ð44Þ

528 Thus, as detailed by, e.g., Bolster et al. [2009a], purely
529 advective effects due to different characteristic velocities

530lead to a linear evolution of the width of the saturation
531distribution. Here we observe that for a heavier fluid displa-
532cing a lighter one, that is,N < 0, (25), the increase of the width
533is slowed down by gravity.

5345.3. Contributions From Advective Kernels
535to Spreading

536[48] In Appendix B, we derive for the contribution DA(t)
537for dimensionless times t � 1

DA tð Þ ¼ �t

Z∞

0

d		�1 N�2
kq 	tð Þ d f Sh 	ð Þ½ �

dSh

�

þ N
2
�2
kk

dg Sh 	ð Þ½ �
dSh

�
g Sh 	ð Þ½ �

þ
Z∞

0

d		�2 N�2
kq 	tð Þlkq 	tð Þ d f Sh 	ð Þ½ �

dSh

�

þ N
2
�2
kk lkk

dg Sh 	ð Þ½ �
dSh

�
g Sh 	ð Þ½ �; ð45Þ

538where we defined

�2
kq 	tð Þ ¼ Ckq

0 	t; 	tð Þ; �2
kq 	tð Þlkq 	tð Þ ¼

Z∞

0

dxC kq
0 	t; xð Þ:

ð46Þ

539C0
kq(ht, x) is defined in (B5). The variance and correlation

540length of the permeability field are given by (23). They are
541constant as k(x) is modeled as a stationary random field.
542[49] Here we identify two contributions, one that evolves
543linearly with time and a second contribution that evolves
544toward a constant value at large times.

5455.4. Contributions From Dispersive Kernels
546to Spreading

547[50] For the contribution De(t), we obtain in Appendix B

De tð Þ ¼ �N

Z∞

0

d	
d f Sh 	ð Þ½ �

dSh

@g Sh 	ð Þ½ �
@	

	�1�2
kq 	tð Þlkq 	tð Þ

� N
2
Z∞

0

d	
dg Sh 	ð Þ½ �

dSh

@g Sh 	ð Þ½ �
@	

	�1�2
kk 	tð Þlkk 	tð Þ

� N

Z∞

0

d	
dg Sh 	ð Þ½ �

dSh

@f Sh 	ð Þ½ �
@	

	�1�2
kq 	tð Þlkq 	tð Þ

�
Z∞

0

d	
d f Sh 	ð Þ½ �

dSh

@f Sh 	ð Þ½ �
@	

	�1�2
qq 	tð Þlqq 	tð Þ: ð47Þ

548The variance and correlation length of the velocity fluc-
549tuations are defined as

�2
qq 	tð Þ ¼ Cqq

0 	t; 	tð Þ; �2
qq 	tð Þlqq 	tð Þ ¼

Z∞

0

dxCqq
0 	t; xð Þ:

ð48Þ

550C0
qq (ht, x) is defined in (B5).
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551 5.5. Approximate Solutions of the Apparent Dispersion
552 Coefficients

553 [51] In order to further evaluate DA(t) and De(t) we
554 introduce another approximation (which we justify a pos-
555 teriori by comparing the numerical and analytical values).
556 For the case of the homogeneous Buckley‐Leverett flow it is
557 well known that behind the saturation front the derivative of
558 the fractional flow function �(Sh) is given by

d� Shð Þ
dSh

¼ x1
t

ð49Þ

559 at the rear of the saturation profile; see (16). It is this
560 property which allowed Neuweiler et al. [2003] and Bolster
561 et al. [2009a] to evaluate their expressions for the dispersion
562 coefficients for the nonbuoyant case. Buoyancy complicates
563 things in that the fractional flow function is given by the
564 sum of f (S) and Ng(S), see (12). Under these conditions, it is
565 no longer trivial to calculate d f ðSÞ

dS and dgðSÞ
dS . However, we do

566 know their values both at the front as well as the injection
567 boundary. Motivated by the results that emerge from
568 Neuweiler et al. [2003] and Bolster et al. [2009a] we assume
569 that these vary linearly between these two points, that is,

d f Shð Þ
dSh

¼ af
x1
t
;

dg Shð Þ
dSh

¼ ag
x1
t
; ð50Þ

570 for x1 < Qft. The constants af and ag are the respective slopes
571 of d f Shð Þ

dSh
and dg Shð Þ

dSh
. These are given by calculating the satu-

572 ration at the front Sh
f from condition (15) and substituting it

573 into the respective expression for
d f S f

hð Þ
dSh

and
dg S f

hð Þ
dS for the

574 specific form of relative permeability chosen. A quick study
575 of these functions reveals that in general they do not vary
576 linearly. However, as they appear inside of an integral it
577 may provide a reasonable approximation for quadrature
578 purposes. The numbers af and ag are obtained by simple
579 interpolation between the derivatives of f (Sh) and g(Sh) at
580 the front and at the injection point. Note that af is positive
581 while ag can be positive or negative. The quality of this
582 approximation (50) is discussed Appendix C.
583 [52] Furthermore we assume that the variances and cor-
584 relation length in (46) and (48) are constant, which is a
585 reasonable assumption away from the front [e.g., Neuweiler
586 et al., 2003]. Using these approximations and the fact that
587 Sh is given by (13), that is Sh

r is zero for x1 ≥ Q ft, DA(t), is
588 given by

DA tð Þ ¼ �t N�2
kqaf þ N

2
�2
kkag


 � Z1=Q f

0

d	g Srh 	ð Þ� �

þ N�2
kqlkqaf þ N

2
�2
kk lkkag


 � Z1=Q f

0

d	
g Srh 	ð Þ� �

	
: ð51Þ

589 [53] Note that due to the negative sign in front of the first
590 term, this contribution can lead to a reduction of the linear
591 growth of the saturation distribution. For certain values of
592 the variance and the gravity number it could lead to negative
593 values for the evolution of the front width, which is clearly
594 unphysical. This, however, is a relic of low‐order pertur-
595 bation theory.

596[54] For the contribution De(t) these approximations yield

De tð Þ ¼ N�2
kqlkqag þ af �

2
qqlqq; ð52Þ

597where we used that g[Sh
r(h)] is zero at the injection

598boundary and at the front, g[Sh
r(0)] = g[Sh

r(1/Q f )] = 0 and
599that f [Sh

r(h)] is one at the injection boundary and zero at
600the front, f [Sh

r(0)] = 1 and f [Sh
r(1/Qf )] = 0. Note that strictly

601speaking, all the results are only valid for small variances of
602permeability and velocity.

6035.6. Apparent Dispersion

604[55] The contributions to the apparent dispersion coeffi-
605cients in (51) and (52) illustrate various interesting features.
606The contribution (52) and the second term in (51) are similar
607to the contributions predicted by Neuweiler et al. [2003] and
608Bolster et al. [2009a] for uniform horizontal flow. These
609contributions are proportional to the correlation lengths and
610variance of the random fields. However, beyond this con-
611stant contribution, there is a further contribution that grows
612linearly in time given by the first terms in (51). Interestingly,
613this contribution is independent of the correlation length
614(a resultwhichwe testwith numerical simulations in section 6).
615[56] The linearity with the correlation length of the con-
616stant contributions is in direct analogy to the effective dis-
617persion coefficient in a solute transport problem, which is
618identical to the macrodispersion coefficient [e.g., Gelhar
619and Axness, 1983]. The terms that are only proportional to
620the variance and independent of the correlation length could
621be interpreted as analogous to an effective permeability in a
622single phase flow problem, which is also only proportional
623to the variance and not to the correlation length. The terms
624proportional to the correlation length can thus be related to an
625effective dispersion term in the averaged flow equation (36),
626while the other terms can be related to effective contribu-
627tions to the gravity term.
628[57] The contribution that is linear in time in (51) can thus
629be interpreted as the way that heterogeneity adds contribu-
630tions to the buoyant counterflow of the fluids. This shows
631that the mean gravity number is only a rough measure to
632estimate the true flow behavior and does not capture this
633additional influence of heterogeneity.

6346. Numerical Simulations

635[58] In order to test the solutions presented here we also
636conducted a numerical study of the buoyant Buckley‐
637Leverett problem in a heterogeneous medium. To do this we
638used an in‐house finite volume code, which uses an implicit
639in pressure and explicit in saturation (IPES) scheme. The
640details of the algorithm used can be found in work by Hasle
641et al. [2007] and the setup is the same as that used by Bolster
642et al. [2009a]. The numerical dispersion using this method
643was generally found to be small compared with the apparent
644dispersion (<10% typically)we calculate. For situations where
645buoyancy is excessively stabilizing the condition could not
646be met.
647[59] For each set of parameters 100 random permeability
648fields were generated using a random generator, which is
649based on a Fourier transform method. Spatially isotropic
650permeability fields were generated with a Gaussian distri-
651bution, characterized by a relative variance of skk

2 and a
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652 correlation length of lkk. All simulations were performed
653 using square functions as relative permeability functions, i.e.,

kri Sð Þ ¼ S2; krd Sð Þ ¼ 1� Sð Þ2: ð53Þ

654 [60] Figure 1 shows three sample saturation fields from
655 single realizations using this methodology. The first corre-
656 sponds to the case where there is no density difference
657 between the two phases, the second where the injected phase
658 is denser and the third where the injected phase is less dense
659 than the displaced one. Figure 1 clearly illustrates the stabi-
660 lizing and destabilizing effect that buoyancy has on spreading
661 by heterogeneity.
662 [61] Figure 4 shows the temporal evolution of average
663 saturation profiles (averaged over 100 realizations in each
664 case) for three different cases, clearly displaying the dis-
665 persive effect that occurs due to heterogeneity. All cases in
666 Figure 4 are stable. However, the influence of buoyancy is
667 evident. The case in the middle where the injected phase is
668 very dense leads to much less spreading than the other two
669 cases. As the system becomes less stabilizing the spreading
670 effect becomes more pronounced. In this work we do not
671 present the results of unstable simulations as it is well
672 known that a perturbation approach such as the one devel-
673 oped here cannot capture unstable effects [e.g., Bolster et al.,

6742009a]. Instead we refer the interested reader to works that
675explore these instabilities [e.g., Riaz and Tchelepi, 2004,
6762007; Tartakovsky, 2010].
677[62] Figures 5 and 6 illustrate a typical measurement of
678the dispersion coefficient attributed to heterogeneity. In
679Figure 5 we illustrate the terms Dh(t) (44) for the homo-
680geneous medium and the apparent dispersion coefficient
681Da(t) (41). The heterogeneity‐induced contributionsDA(t) (45),
682and De(t), (47) are given by the difference of these two lines,
683which is shown in Figure 6. Note that as predicted by the
684theory, we have a constant contribution and a contribution
685that grows linearly in time. To calculate the constant contri-
686bution as well as the one that grows linearly in time we per-
687form a best fit of the late time data. The intercept provides the
688constant contribution, while the slope gives the linear com-
689ponent. The results shown in Figure 6 are normalized by the
690constant contribution.

6916.1. Influence of Variances

692[63] As mentioned briefly previously in section 6, the
693apparent dispersion coefficient in (52) and (51) illustrates
694various interesting features. For one, it depends propor-
695tionally on the variances of the permeability and velocity
696fields. This suggests that an increase in the variance of the
697permeability field should lead to a proportional increase in

Figure 4. Average saturations for the cases (top)M = 1 and N = −0.1, (middle)M = 10 and N = −10, and
(bottom) M = 0.1 and N = −0.1. Solid lines are the homogeneous numerical solutions, while the dashed
lines represent the ensemble averaged heterogeneous cases.
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698 the dispersion coefficient. This means that the constant
699 contribution should be proportionally larger as should the
700 slope of the linear in time contribution (compare Figure 6).
701 [64] Figure 7 illustrates the normalized dispersion coef-
702 ficient for a sample case with three different variances,
703 namely, skk

2 = 0.1, 0.5 and 1. The dispersion coefficients are
704 normalized by the constant value associated with the skk

2 =
705 0.1 case (i.e., where the fitting line intersects the vertical
706 axis). As is clearly visible the skk

2 = 0.5 and skk
2 = 1 cases

707 have progressively larger values of this constant contribu-
708 tion. Similarly, the slope associated with each case is pro-

709gressively larger thus reflecting the qualitative influence of
710the variance of the heterogeneity field. Beyond this quali-
711tative agreement between prediction and simulation the
712quantitative agreement is also good in that the constant
713contribution skk2 = 0.5 is roughly 5 (actually 4.78) times
714larger than the skk

2 = 0.1 and that the skk2 = 1 case is roughly
71510 (actually 9.25) times greater. Similarly, the slopes are 5
716(actually 4.4 times) and 10 (actually 8.9 times) times larger.
717The fact that the disagreement in the slopes is larger than
718in the intercepts suggests that this measure is more sensitive
719to the perturbation approximations used here.

7206.2. Influence of Correlation Length

721[65] One of the interesting features of the dispersion
722coefficients predicted in (52) and (51) is that the constant
723contributions all depend proportionally on the correlation
724length, while the terms that grow linearly in time have no
725dependence on this. In order to test the validity of this
726prediction we ran a test case with a variance of skk

2 = 0.1 and
727two different correlation lengths lkk = 0.25 and 0.5. If the
728qualitative nature of the prediction in (52) and (51) is correct
729then the only influence on the dispersion coefficient should
730be an increase in the constant contribution (or graphically an
731upward shift in the intersection with the vertical axis), while
732the slope of the dispersion coefficient against time should
733remain constant.
734[66] Figure 8 illustrates the normalized dispersion coef-
735ficient for the proposed case for the two different correlation
736lengths. The dispersion coefficients are normalized by the
737constant value associated with the lkk = 0.25 case. As pre-
738dicted the intersect is shifted upward by a factor of roughly 2
739(actually 2.11), while the slope remains almost identical (the
740slope of the larger correlation length case is only 1.07 times
741greater). This seems to verify the analytical prediction that
742the correlation length does not influence the terms that grow
743linearly in time. Some of the good agreement between
744theory and simulations can be attributed to the fact that the

Figure 5. Illustration of the temporal derivative of the sec-
ond centered moment for homogeneous (red solid line) and
heterogeneous (blue dashed line) fields. The difference
between these two represents the additional effect of hetero-
geneity, which is drawn in Figure 6. For equal densities the
difference between these two lines asymptotes to a constant
representing the dispersion coefficient.

Figure 6. Heterogeneity‐induced contribution to the appar-
ent dispersion coefficient Da(t) (equation (42)) (normalized
so that the constant contribution to Da(t) is equal to 1). Note
the linear growth reflecting the influence of the Da terms,
while all other terms amount to the constant dispersion
coefficient case.

Figure 7. The normalized dispersion coefficients calcu-
lated for M = 1 and N = −1 for three different variances of
the permeability field (skk = 0.1, 0.5, 1). In all cases the dis-
persion coefficient is normalized with the constant contribu-
tion associated with the skk

2 = 0.1 case (this constant value is
1.7488).
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745 averaging across a wide injection line can smooth out point
746 to point deviations. It should be noted here that this behavior
747 was difficult to observe for values of N close to and smaller
748 than −1, suggesting that excessive stabilization due to
749 buoyancy invalidate the perturbation approach and analyti-
750 cal deductions made [see, e.g., Noetinger et al., 2004].

751 6.3. Effective Advection

752 [67] As mentioned in section 2 and performed in the
753 analysis in this work it can be useful to look at the derivative
754 of the saturation field, rather than saturation field to quantify
755 the spreading around the front. This is due to the delta
756 function that coincides with the front location for the
757 homogeneous solution. A figure illustrating this for a set of
758 numerical simulations is shown in Figure 9. The homoge-
759 neous solution depicts a relatively sharp front much like the
760 delta function fronts shown in Figure 3 (some differences
761 exist due to unavoidable numerical dispersion and limited
762 spatial resolution). As expected the average heterogeneous
763 solution is more spread out due to the dispersive effects we
764 have discussed so far. However, another interesting feature
765 is visible here. The peak of the spreading front does not
766 coincide with the front for the homogeneous case. This does
767 not occur for situations when the density of both phases is
768 the same (i.e., N = 0), where the peak and homogeneous
769 front coincide.
770 [68] This behavior occurs due to the effective advection
771 terms that arise, namely, those associated with A in (36).
772 These terms quantify the shift of the peak and do not
773 quantify actual spreading of the front. Much as the case
774 presented by Bolster et al. [2009a] where they illustrated
775 that when not averaged correctly temporal fluctuations may
776 appear to increase spreading, here one must be cautious in
777 interpreting increases in the second centered moment as
778 spreading of the front. After all, the homogeneous solution
779 has a contribution to spreading Dh(t) and these additional
780 effective advection terms merely add to this effect. The
781 actual spreading of the front is only quantified by the con-

782stant contributions. This is physically reassuring as other-
783wise the theory presented here suggests that the apparent
784dispersion coefficient could grow linearly in time forever,
785leading to potentially massive spreading zones, despite the
786stabilizing effect of buoyancy. A physical interpretation of
787these effective advection terms and the shift in peaks in
788Figure 9 is given in section 6.4.

7896.4. Qualitative Interpretation of Results
790and Observations

791[69] In Figure 9 we clearly see that the spreading does not
792occur around the sharp front associated with the homoge-
793neous solution associated with the mean permeability.
794Instead it occurs at some point further ahead of this sharp
795front. The natural question that arises is why this is so and in
796order to interpret this we will resort to a qualitative analysis
797based on averaging several homogeneous solutions. The
798main issue here is that the governing system of equations are
799so nonlinear that the mean permeability (or equivalently
800gravity number) is not representative of the mean behavior
801of this system.

Figure 8. The dispersion coefficients calculated for two
different correlation lengths of the permeability field (lkk =
0.25, 0.5). The case shown here is for M = 1 and N =
−0.5. The results are normalized by the constant value asso-
ciated with the case lkk = 0.25 (this constant value is
7.9584).

Figure 9. Derivative of saturation: (top) measurements
from numerical simulations of saturation profiles and (mid-
dle) derivatives of saturation. Here M = 1 and N = −1.
(bottom) Illustrative interpretation of advective shift and
dispersive spreading. In all cases the blue solid line repre-
sents the homogeneous solution and the red dashed line
represents the heterogeneous one.
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802 [70] This can be qualitatively interpreted by considering
803 the following simple case. Consider the situation with vis-
804 cosity ratioM = 1 and three homogeneous media with gravity
805 numbers N = 0, −2.5 and −5, respectively. The solutions
806 associated with such a system are shown in Figure 10.
807 Although the mean gravity number in this case is −2.5 it is
808 clear from Figure 10 that the mean front location will lie
809 further ahead of the front associated with this case. This is
810 merely a reflection of the fact that the front location does
811 not scale linearly with gravity number. Thus in a system
812 such as the one we consider here where an array of per-
813 meabilities exist it is to be expected that the spreading
814 occurs around a front ahead of that associated with the
815 mean permeability. The effective advection terms are merely
816 telling us that the effective permeability of the system and
817 the mean permeability are not one and the same. Note that
818 the same statement would hold if we had expanded the
819 intrinsic permeability around the geometric mean. Panilov
820 and Floriat [2004], who studied a similar problem using
821 homogenization, also found that the mean and effective
822 permeability are not the same. However, they claimed that
823 they only expect the two to be different for nonstationary
824 random permeability fields. In this work our fields can be
825 stationary and we still find a discrepancy. The effective
826 advection term could also lead to an effective shape of the
827 gravity function, so that the introduction of an effective
828 permeability would not be sufficient.

829 7. Conclusions

830 [71] In section 1 we posed a series of questions regarding
831 the influence of buoyancy and heterogeneity on spreading in
832 two‐phase flow under the Buckley‐Leverett approximation.
833 We remind the reader that these were as follows.
834 [72] 1. Can we, using perturbation theory, asses the rate of
835 spreading that occurs?
836 [73] 2. What measures of the heterogeneous field (e.g.,
837 variance, correlation length) control this spreading? Also,
838 why and how do they?

839[74] 3. What influence does the heterogeneity in gravity
840number have? And does the arithmetic mean of the gravity
841number represent a mean behavior in the heterogeneous
842system?
843[75] The answer to the first question is that following the
844methodology of Neuweiler et al. [2003] and Bolster et al.
845[2009a], where perturbation theory around the mean
846behavior is employed, we can estimate the apparent dis-
847persion coefficient, which is a measure for the spreading of
848the front. The dispersion coefficient that arises is more
849complex than for the case without buoyancy. When we write
850an effective equation there are now six distinct nonlocal
851terms that contribute to it. Four of these terms have the
852appearance of an effective dispersion and the first of these
853terms is identical to the case without buoyancy. The other
854two additional terms look more like contributing as effective
855advections. This is distinctly different from the case with no
856buoyancy.
857[76] The answers to the second and the third question are
858closely related. We explored the different contributions to
859the front spreading and illustrate that only two of the dis-
860persive nonlocal terms seem to play an important role in
861spreading of the interface. These terms are proportional to
862the variance and the correlation length of the heterogeneous
863fields. The terms that are advective in appearance appear to
864have no influence on the actual spreading of the front.
865Instead these terms reflect the location of the front around
866which spreading occurs. It is proportional to the variance of
867the heterogeneous fields, but not related to the correlation
868length. This front is typically further ahead of the front
869obtained in a homogeneous field with the arithmetic mean of
870the intrinsic permeability. Thus these terms represent an
871effective contribution to the gravity term, which might be an
872effective intrinsic permeability different from the arithmetic
873mean. This is unexpected according to previous works. As
874stabilization slows the front down and leads to a more
875compact saturation profile, the influence of heterogeneity
876combined with buoyancy is a diminishing of the stabiliza-
877tion effect on the averaged front. This effect is not captured
878by the arithmetic average of the gravity number. The
879arithmetic mean of the gravity number does thus not capture
880the whole flow behavior in a heterogeneous field.
881[77] Finally, it is remarkable that the time behavior of the
882different contributions to the apparent dispersion could be
883confirmed by numerical simulations even in a quantitative
884manner, although they are derived from applying linear
885perturbation theory to a highly nonlinear problem. When
886carrying out numerical simulations in fields with large
887variances, this is no longer true and demonstrates the lim-
888itations of the perturbation approximation used here.

889Appendix A: Green Function

890[78] The Green function for a homogeneous medium
891satisfies the equation

@G0 x1; tjx1′; t′ð Þ
@t

þ @

@x1

d� Sh x1; tð Þ½ �
dSh

G0 x1; tjx1′; t′ð Þ ¼ 0 ðA1Þ

892for the initial condition G0(x1, t′∣x′1, t′,) = d(x1 − x′1).
893Analyzing the homogeneous problem (11) using the method
894of characteristics [e.g., Marle, 1981], one finds that the
895derivative of the total flow function �[Sh (x1, t)] with
896respect to Sh is the velocity of the characteristic of Sh(x1, t)

Figure 10. Homogeneous saturation profiles forM = 1 and
N = 0 (light blue dashed line), N = −2.5 (red dash‐dotted
line) and N = −5 (blue solid line).
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897 at x1 at time t. The fact the characteristic velocity for a given
898 saturation is constant, means that the saturation at a given
899 point was transported there by a constant velocity, which is
900 given by

d� Sh x1; tð Þ½ �
dS

¼ x1
t
: ðA2Þ

901 This simplifies (A1) to

@G0 x1; tjx1′; t′ð Þ
@t

þ 1

t

@

@x1
x1G0 x1; tjx1′; t′ð Þ ¼ 0: ðA3Þ

902 The latter can be solved by the method of characteristics and
gives

G0 x1; tjx1′; t′ð Þ ¼ 1

t
�

x1′

t′
� x1

t

� 	
; ðA4Þ

903 which is identical to the one obtained for the homoge-
904 neous medium in the absence of buoyancy [e.g., Neuweiler
905 et al., 2003; Bolster et al., 2009a]. As the initial condition
906 for G(x, t∣x′, t′) is given by d(x − x′), the zeroth‐order
907 approximation of the Green function is given by

G x; tjx′; t′ð Þ ¼ G0 x1; tjx1′; t′ð Þ� x2 � x2′ð Þ: ðA5Þ

908 Appendix B: Spatial Moment Equations
909 and Apparent Dispersion

910 [79] Applying definition (38) to (36) we obtain an equa-
911 tion for s(x, t):

@s x; tð Þ
@t

¼ L�1 @
2f S x; tð Þ� �

@x21
þ L�1N

@2g S x; tð Þ� �
@x21

� L�1 @

@x1
r �

Z
dx′

Z t

0

dt′A x; tjx′; t′ð Þg S x′; t′ð Þ� �

� L�1 @

@x1
r �

Z
dx′

Z t

0

dt′D gð Þ x; tjx′; t′ð Þr′g S x′; t′ð Þ� �

� L�1 @

@x1
r �

Z
dx′

Z t

0

dt′D fð Þ x; tjx′; t′ð Þr′f S x′; t′ð Þ� �
:

ðB1Þ

912 Approximating S(x, t) by the homogeneous solution Sh(x1/t),
913 given in (13), and using the Green function (A5) results in

@s x1; tð Þ
@t

¼ L�1 @2

@x21
� Sh x1=tð Þ½ �

� L�1 @2

@x21

Z
dx1′

Z t

0

dt′Ah x1; tjx1′; t′ð Þ’g x1′=t′ð Þ

� L�1 @2

@x21

Z
dx1′

Z t

0

dt′D gð Þ
h x1; tjx1′; t′ð Þ @’g x1′=t′ð Þ

@x1′

� L�1 @2

@x21

Z
dx1′

Z t

0

dt′D fð Þ
h x1; tjx1′; t′ð Þ @’f x1′=t′ð Þ

@x1′
; ðB2Þ

914where s(x, t) in this approximation only depends on x1,
915therefore s(x, t) ≡ s(x1, t). Furthermore, the total fractional
916flow function �(Sh) is defined in (12). For convenience, we
917have defined the functions

’g x1=tð Þ ¼ g Sh x1=tð Þ½ �; ’f x1=tð Þ ¼ f Sh x1=tð½ � ðB3Þ
918using the fact that Sh has the scaling form (13). Furthermore,
919we define the advection kernel Ah(x1, t∣x′1, t′) by

Ah x1; tjx1′; t′ð Þ ¼ N�f x1=tð Þ 1
t
�

x1
t
� x1′

t′

� 	
@Ckq

0 x1; x1′ð Þ
@x1′

þ N�g x1=tð Þ 1
t
�

x1
t
� x1′

t′

� 	
@Ckk

0 x1 � x1′ð Þ
@x1′

; ðB4aÞ

920where we used the explicit form (A4) of the homogeneous
921Green function. Additionally, we define

�f x1=tð Þ ¼ df Sh x1=tð Þ½ �
dSh

; �g x1=tð Þ ¼ dg Sh x1=tð Þ½ �
dSh

;

ðB4bÞ
922using again the fact that Sh has the scaling form (13). With all
923this, the dispersion kernels are given by

D gð Þ
h x1; tjx1′; t′ð Þ ¼ N�g x1=tð Þ 1

t
�

x1
t
� x1′

t′

� 	
Ckq
0 x1; x1′ð Þ

þ N
2
�g x1=tð Þ 1

t
�

x1
t
� x1′

t′

� 	
Ckk
0 x1 � x1′ð Þ ðB4cÞ

D fð Þ
h x1; tjx1′; t′ð Þ ¼ N�f x1=tð Þ 1

t
�

x1
t
� x1′

t′

� 	
Cqq
0 x1; x1′ð Þ

þ �f x1=tð Þ 1
t
�

x1
t
� x1′

t′

� 	
Ckq
0 x1; x1′ð Þ; ðB4dÞ

924where we define the correlation function as

Ckq
0 x1; x1′ð Þ ¼ Ckq

1 x; x′ð Þjx2¼x2′ ¼ 0: ðB5Þ
925C0

qq(x1, x′1) and C0
kk(x1, x′1) are defined correspondingly.

926[80] We obtain an expression for the time derivative of
927m1

(1)(t) by multiplying (B2) by x1 and subsequent integration
928over space. This gives

dm 1ð Þ
1 tð Þ
dt

¼ 1; ðB6Þ

929where we used that Sh (0, t) = 1 and the fact that f (1) = 1, f (0) =
9300, g(0) = g(1) = 0, and thatAh(x1, t∣x′1, t′) is zero at x1 = 0 and
931x1 = ∞. The evolution equation of the second moment m11

(2)(t)
932is obtained by multiplying (B2) by x1 and subsequent inte-
933gration over space

dm 2ð Þ
11 tð Þ
dt

¼ 2

Z
dx1� Sh x1=tð Þ½ �

� 2

Z
dx1

Z
dx1′

Z t

0

dt′Ah x1; tjx1′; t′ð Þ’g x1′=t′ð Þ

� 2

Z
dx1

Z
dx1′

Z t

0

dt′D gð Þ
h x1; tjx1′; t′ð Þ @’g x1′=t′ð Þ�

@x1′

� 2

Z
dx1

Z
dx1′

Z t

0

dt′D fð Þ
h x1; tjx1′; t′ð Þ @’f x1′=t′ð Þ

@x1′
: ðB7Þ
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934 [81] Note that the apparent dispersion coefficient (41) is
935 expressed in terms of m1

(1)(t) and m11
(2)(t) as

Da tð Þ ¼ 1

2

dm 2ð Þ
11

dt
� m 1ð Þ

1 tð Þ dm
1ð Þ
1

dt
: ðB8Þ

936 Therefore, combining (B6) and (B7), Da(t) can be decom-
937 posed as in (42) with

Dh tð Þ ¼
Z

dx1� Sh x1=tð Þ½ � � t ðB9Þ

DA tð Þ ¼ �
Z

dx1

Z
dx1′

Z t

0

dt′Ah x1; tjx1′; t′ð Þ’g x1′=t′ð Þ ðB10Þ

De tð Þ ¼ �
Z

dx1

Z
dx1′

Z t

0

dt′D gð Þ
h x1; tjx1′; t′ð Þ @’g x1′=t′ð Þ�

@x1′

�
Z

dx1

Z
dx1′

Z t

0

dt′D fð Þ
h x1; tjx1′; t′ð Þ @’f x1′=t′ð Þ

@x1′
: ðB11Þ

938 Inserting the kernel Ah (t) defined by (B4a), we notice that
939 DA(t), can be written as

DA tð Þ ¼ NMA �f

� 

; Ckq

0

n o
; ’g

� 

; t


 �

þ N
2
MA �g

� 

; Ckk

0

� 

; ’g

� 

; t

� �
; ðB12Þ

940 where the functional MA ({�}, {C}, {�}, t) is defined by

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

dx1

Z t

0

dt′

Z∞

0

dx1′�
x1
t


 � 1

t
�

x1
t
� x1′

t′

� 	

� @C x1; x1′ð Þ
@x1′

’ x1′=t′ð Þ: ðB13Þ

941 [82] We now rescale x1 = ht and x′1 = h′t′. This gives

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	

Z t

0

dt′

Z∞

0

� d	′� 	ð Þ� 	 � 	′ð Þt′C′ 	t; 	′t′ð Þ’ 	′ð Þ;
ðB14Þ

942 where C′(a, x) = @Cða;xÞ
@x . Executing the h′ integration gives

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	

Z t

0

dt′� 	ð Þt′C′ 	t; 	t′ð Þ’ 	ð Þ:

ðB15Þ
943 Rescaling time as t′ = x/h, we obtain

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	� 	ð Þ’ 	ð Þ	�2

Zt	

0

dxxC′ 	t; xð Þ:

ðB16Þ

944Integration by parts gives

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	� 	ð Þ’ 	ð Þ

� 	�1tC 	t; 	tð Þ þ 	�2

Zt	

0

dxC 	t; xð Þ
2
4

3
5:
ðB17Þ

945For dimensionless times t � 1, we approximate the latter by

MA �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	� 	ð Þ’ 	ð Þ

� 	�1tC 	t; 	tð Þþ	�2

Z∞

0

dxC 	t; xþ	tð Þ
2
4

3
5:

ðB18Þ

946Similarly, we observe that De(t), (B11), can be written in the
947unified form

De tð Þ ¼ NMe �f

� 

; Ckq

0

n o
; ’g

� 

; t


 �
þ N

2
Me

� �g

� 

; Ckk

0

� 

; ’g

� 

; t

� �þ NMe �g

� 

; Ckq

0

n o
; ’f

� 

; t


 �

þMe ’f

� 

; Cqq

0

� 

; ’f

� 

; t

� �
; ðB19Þ

948where the functional Me ({�}, {C}, {�}, t) is defined by

Me �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

dx1

Z t

0

dt′

Z∞

0

dx1′�
x1
t


 � 1

t
�

x1
t
� x1′

t′

� 	

� C x1; x1′ð Þ @’ x1′=t′ð Þ
@x1′

: ðB20Þ

949[83] Using the same steps that lead to (B16), we obtain

Me �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	� 	ð Þ @’ 	ð Þ
@	

	�1
Zt	

0

dxC 	t; xð Þ:

ðB21Þ
950As above, we approximate the latter for times t � 1 by

Me �f g; Cf g; ’f g; tð Þ ¼ �
Z∞

0

d	� 	ð Þ @’ 	ð Þ
@	

	�1
Z∞

0

dxC 	t; xþ 	tð Þ:

ðB22Þ

951Appendix C: Integral Approximations

952[84] The approximation (50) considerably reduces the
953complexity of this problem. To illustrate that this approxi-
954mation works well we consider the following integrals:

Af ¼
Z∞

0

dx
t

x

d f Sh x=tð Þ½ �
dSh

d f Sh x=tð Þ½ �
dx

ðC1Þ

Ag ¼
Z∞

0

dx
t

x

dg Sh x=tð Þ½ �
dSh

d f Sh x=tð Þ½ �
dx

: ðC2Þ
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955 Using the approximation (50) we obtain

Af ¼ �af ðC3Þ

Ag ¼ �ag: ðC4Þ

956 These integrals arise naturally if one were to consider a delta
957 correlated permeability field, which can be thought of as a
958 limit of many other correlation functions. Figure C1 com-
959 pares the integrals obtained numerically and calculated by
960 using approximation (50). Figure C1 (top) illustrates Af. For
961 all values of N and M chosen, the approximation works very
962 well. Similarly, Figure C1 (bottom) shows the numerical
963 evaluation of Ag compared to af. The agreement is very good
964 for larger values of M. For small values of M the approxi-
965 mation only seems to work for values of N that are not close
966 to 0.
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Figure C1. A comparison of the approximate estimate of
the integrals (top) Ag and (bottom) Af based on (50) for
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