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a b s t r a c t

A common barrier to accurately predicting the fate of reactive contaminants is accurately describing the
role of incomplete mixing. In this paper we develop a stochastic analytical framework for an irreversible
kinetic bimolecular reaction in a system with anomalous transport, governed by the fractional advection–
dispersion equation (fADE). The classical well-mixed (thermodynamic) solution dictates that the concen-
tration of reactants after an initial transient decreases proportional to t�1. As the system becomes less and
less well-mixed, the rate of reaction decreases relative to the thermodynamic solution, at late times scal-
ing with t�1/(2a) instead of t�1, where 1 < a 6 2 is the fractional order of the dispersion term in the fADE.
The time at which this transition takes place is derived, giving an indication of the range of validity of the
classical (well-mixed) equation. We verify these analytic results using particle-based simulations of ran-
dom walks and reactions.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Anomalous transport, or transport that does not follow Fick’s
Law of dispersive behavior, is common in a variety of hydrological
and geophysical systems with heterogeneous velocity fields and
typically arises due to nonlocal effects. Fields of interest where such
anomalous behavior occurs include solute transport in surface [22]
and subsurface water systems [33], turbulent environmental flows
[12], sediment transport in rivers [8] and mechanical transport of
soil constituents [19].

The classical 2nd-order advection–dispersion equation often
cannot adequately model anomalous transport and a variety of
mathematical models capable of doing so have emerged. Nonlocal
effects can arise for a variety of reasons [11,32,13], but in short the
concentration at some point should account for contributions from
a variety of distances and/or the prior concentration history. Exam-
ples of the derivation of nonlocal methods in a variety of hydrolog-
ical transport applications include delayed diffusion [15], projector
formalisms [11], moment equations [32], multi-rate mass transfer
[24], continuous time random walks [3] and fractional ADEs [40].
In this work we focus on the space-fractional ADE that is the con-
tinuum equation governing Lévy motion, which has been called
ubiquitous [45]. The appeal lies in the fact that the model is suffi-
ciently complex to display relevant dynamics while sufficiently
ll rights reserved.
simple to allow analytically tractable results that provide great in-
sight into the influence of spatial nonlocality.

To date, the bulk of transport studies have focused on conserva-
tive transport. Many constituents of interest in hydrological systems
do not behave conservatively, and their reactive character should be
included, although predicting reactive transport in porous media
can be quite challenging (see the recent review article by Dentz
et al. [14]). Classical transport and reaction equations based on the
assumption of perfect mixing fail to properly predict reactions with-
in systems ranging from laboratory-scale in homogeneous material
[36,23] to large-scale heterogeneous systems [29,47]. The devia-
tions from classical reaction predictions can arise due to incomplete
mixing [43,42], which must be accounted for in the correct upscaled
model. For example, one might assume in an ad hoc manner that a
kinetic reaction term is the result of upscaling the incomplete mix-
ing process and arrive at accurate predictions of laboratory experi-
ments (e.g. as done by [38] with the experiments of [23]).

Systems that can display anomalous transport for conservative
constituents often display anomalous mixing characteristics (e.g.,
[37,9,46,5,28,27,4,10]). In some instances anomalous mixing can
persist even when spreading of a conservative plume appears to
be Fickian [28]. Such anomalous mixing in turn is expected to sig-
nificantly impact chemical reactions where mixing is the mecha-
nism that brings reactants together. The impact of anomalous
transport on reactive systems of hydrological interest has to date
received some attention (e.g., [6,16,17,47,29]). However, given
the diverse nature of chemical reactions (e.g., instantaneous vs.
kinetic, equilibrium, reversible vs. irreversible) a one-size-fits-all
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approach does not apply and interesting and important features
arise depending on the specific type of reaction.

In this work we focus on irreversible kinetic reactions of the
type A + B ? C. This is the simplest reactive system in which segre-
gation or poor mixing of the species can lead to suppressed reac-
tions. Therefore, the mechanics of transport and mixing bear
directly on the ultimate reaction speed. For this system there is a
competition between the rate of reaction between particles and
the ability for A and B to mix by dispersive mechanisms. In a sys-
tem that is continually well-mixed (say, as in a stirred beaker),
the thermodynamic law follows

dCA

dt
¼ dCB

dt
¼ �kCACB; ð1Þ

where Ci is the concentration of constituent i, and k [LdM�1T�1] is the
reaction rate coefficient. An especially interesting case is when the
initial concentrations CA0 and CB0 are equal, then the solution to
(1) is CA = CB = CA0(1 + CA0kt)�1. It is important to note that these con-
centrations denote the ensemble average of a well-mixed process
[20]. In a natural system that begins in an initially well-mixed state,
the initial rate of reaction follows the thermodynamic law (1). The
role of dispersive mechanisms in such a system is negligible (see
[2,14]). However, as fluctuations of A or B become large with respect
to the mean, isolated islands of A and B can form within which little
or no reaction can occur, thus decreasing the rate at which the mean
amount of A and B are consumed. This behavior was hypothesized
and observed numerically for Fickian dispersion [35,26,44]. Using
asymptotic arguments these authors showed that the rate of con-
sumption of A and B changes from the initial thermodynamic value
(which goes like t�1 after a brief initial time) to a rate that goes like
t�d/4, where d is the number of dimensions under consideration. It
has subsequently been observed by other authors (e.g. [30,2,1]). This
functional form of deviation from the thermodynamic law is valid
for Fickian dispersion, but the deviation may be expected to be dif-
ferent in systems that do not display Fickian behavior.

Rather than rely on purely asymptotic arguments, we analyti-
cally derive solutions for the full time scaling of reaction rates
associated with Lévy motion (including, as a subset, Brownian mo-
tion governed by Fick’s Law). We do so using a stochastic model
and the method of moments (e.g., [41,18]) and verify our results
numerically with a particle-based reaction-dispersion model.
2. Model

Consider a system where two components A and B are distrib-
uted in space and can react chemically and irreversibly with one
another. For simplicity we consider one-dimensional transport
and reaction. The components are transported superdiffusively
and are governed by the spatial fractional dispersion equation, so
that

@Ci

@t
¼ Dp

@aCi

@xa þ Dq
@aCi

@ð�xÞa
� kCACB; i ¼ A; B; ð2Þ

where D [LaT�1] is the dispersion coefficient, 1 6 a 6 2 is the frac-
tional derivative exponent, and p and q are the weights of forward
or backward dispersion, where p + q = 1 and 0 < p < 1 (for symmetric
dispersion p = q = 0.5). Mixing processes are given by both advective
and dispersive mechanism. As a first step in understanding the im-
pact of mixing on the global reaction rate, here we consider the case
where the mixing processes are given only by fractional dispersion,
neglecting the advective contribution. Note that the case of a con-
stant advection term would cause a constant shift in time, but not
affect mixing or reactions due to the principle of Gallillean invari-
ance (i.e. the shift in the location of the center of mass is only af-
fected by advection, while the rate of spreading of the plume
around its center of mass, which influences mixing, is affected only
by dispersion). In order to characterize the role incomplete mixing
on the global chemical reaction rate, we focus on the dispersion-
limited reaction case.

We begin by assuming that A and B are initially distributed in a
uniformly random manner in a one-dimensional domain. This ran-
domness persists, and we may decompose the random concentra-
tions as Ciðx; tÞ ¼ Ciðx; tÞ þ C0iðx; tÞ; i ¼ A;B. The overbar refers to the
ensemble average and the prime to fluctuations about this. We
consider the initial average conditions:

CAðx;0Þ ¼ CBðx;0Þ � CA0 ð3Þ

in an infinite domain with natural boundary conditions. Using (2)
and the previous decomposition of concentration, the governing
equations for the thermodynamic limit and the fluctuations from
it can be written as

@Ci

@t
¼ �kCACB � kC 0AC 0B ð4Þ

and

@C 0i
@t
¼ Dp

@aC 0i
@xa þ Dq

@aC0i
@ð�xÞa

� kCAC 0B � kC0ACB � kC0AC 0B þ kC 0AC0B; ð5Þ

where we used the fact that C0i ¼ 0. We are interested in the evolu-
tion of Ci, that depends on the evolution of the correlation structure
of the local fluctuations. If both chemicals are initially distributed in
the system through the same physical mechanism, it is reasonable
to assume that the fluctuating components have initial identical
correlation structure:

C 0Aðx;0ÞC
0
Aðy;0Þ ¼ C0Bðx;0ÞC

0
Bðy;0Þ ¼ Rðx; yÞ: ð6Þ

Both A and B have similar initial correlation structures because the
initial perturbations will arise due to small scale stochastic fluctua-
tions (due to subscale noise/diffusion), which are expected to be
similar for A and B as defined here.

A deviation from the thermodynamic law occurs when isolated
patches of A and B emerge [44]. We select an initial condition for
the fluctuation concentrations that reflects the emergence of such
islands by taking A0 and B0 as initially anticorrelated such that

C 0Aðx;0ÞC
0
Bðy;0Þ ¼ �Rðx; yÞ: ð7Þ

This is physically justifiable because in regions where there is an
abundance of A relative to B, reactions will take place and result
in a further depletion of B relative to the mean and excess of A rel-
ative to the mean. Similarly areas of excess B correspond to de-
pleted A, thus giving rise to anti-correlation.

We can now write the equation for the covariance f ðx; y; tÞ ¼
C0Aðx; tÞC

0
Bðy; tÞ as (see Appendix A)

@f ðx; y; tÞ
@t

¼ 2D p
@af ðx; y; tÞ

@xa þ q
@af ðx; y; tÞ
@ð�xÞa

� �
ð8Þ

subject to initial condition f(x, y, t = 0) = �R(x, y). The solution to (8)
with natural boundary conditions on an infinite domain can be
found with the Green’s function, i.e.

f ðx; y; tÞ ¼
Z 1

�1
�Rðn; yÞGðx; n; tÞdn; ð9Þ

where

Gðx; n; tÞ ¼ 1
2p

Z 1

�1
e2D½pðikÞaþqð�ikÞa �teikðx�nÞdk: ð10Þ

Because the initial correlation structure acts over a short range, we
do not expect the specific initial correlation structure to play a ma-
jor role. For simplicity we consider the limiting case of a delta cor-
related initial condition for f, i.e.
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f ðx; y; t ¼ 0Þ ¼ �Rðx; yÞ ¼ �r2ldðx� yÞ; ð11Þ

where r2 is the variance and l the correlation length. This can be
thought of as an approximation of an exponential or Gaussian cor-
relation and it is straightforward to show that after some initial
transient the solution for the delta correlation displays the same
behavior (see Appendix B). In other studies it has been shown to
give asymptotically similar results as short range correlation func-
tions [34,7]. We are ultimately interested in the limit y ? x and
with the delta initial condition the solution for f(x, y, t) is

f ðx; y! x; tÞ ¼ �r2l
2p

Z 1

�1
e2D½pðikÞaþqð�ikÞa �tdk

¼ �r2l
2p

t�1=a
Z 1

�1
e2D½pðimÞaþqð�imÞa �dm ¼ �vt�1=a; ð12Þ

where v ¼ r2 l
2p

R1
�1 e2D½pðimÞaþqð�imÞa �dm is a constant. Interestingly, the

time scaling for f only depends on a, the fractional dispersion coef-
ficient. Substituting (12) into (4) our equation for the mean concen-
tration of A or B becomes

@Ci

@t
¼ �kCi

2 þ kvt�1=a: ð13Þ

Strictly speaking, as written, Eq. (13) is not valid from time t = 0 as one
has singular and nonphysical behavior associated with the term
kvt�1/a. This problem is circumvented by accepting that this equation
is only strictly valid after some initial ‘‘setting’’ time t0 and defining
the initial condition at this time such that CAðt ¼ t0Þ ¼ CA0. It is equiv-
alent to having an initial transient period during which the initial cor-
relation and anticorrelation structure forms. We find that the
solutions are insensitive to this small time [41].
3. Solution – discussion and implications

We will now work in nondimensional space. We nondimension-
alize concentrations by the initial CA0 and time by kCA0 so that (13)
can be written as

@Ci

@t
¼ �Ci

2 þ v�t�1=a CAðt ¼ t0Þ ¼ 1; ð14Þ

where

v� ¼ vk
1
aðCA0Þ

1
a�2 ð15Þ

v⁄and a are now the only dimensionless numbers that play a role in
this system. Note that the right side of (14) has a sink and a source
term. At early time the well-mixed (first) term dominates, but at
late time the well-mixed sink is balanced by the ‘‘source’’ that ac-
counts for imperfect mixing.

3.1. Well mixed system (thermodynamic limit)

A well mixed system can be represented by v⁄ = 0. This is equiv-
alent to the classical thermodynamic limit equations where the
fluctuations in concentrations are zero, i.e.

@Ci

@t
¼ �Ci

2 CAðt ¼ t0Þ ¼ 1: ð16Þ

The solution to this equation is well known and given by

CAðtÞ ¼
1

1þ ðt � t0Þ
: ð17Þ

In particular it is worth noting that at large times the concentration
of A scales inversely with time, i.e. CAðtÞ � t�1.
3.2. Incomplete mixing

We now look at the full solution of Eq. (14) accounting for the
source terms that quantifies incomplete mixing. Eq. (14) is a Riccati
equation and has solution

CiðtÞ ¼
ffiffiffiffiffiv�p

t
1

2a

I� a�1
2a�1
ðzÞ � jK a�1

2a�1
ðzÞ

� �
I a

2a�1
ðzÞ þ jK a

2a�1
ðzÞ

� � ; z ¼ 2a
ffiffiffiffiffiv�p

2a� 1
t

2a�1
2a ; t P t0;

ð18Þ

where the I and K are modified Bessel functions of the first and sec-
ond kind and j is a constant that depends on the initial condition
and is given by

j ¼
I� a�1

2a�1
ðz0Þ � v��1

2 t
1

2a
0 I a

2a�1
ðz0Þ

� �
K a�1

2a�1
ðz0Þ þ v��1

2 t
1

2a
0 K a

2a�1
ðz0Þ

� � ; z0 ¼
2a

ffiffiffiffiffiv�p

2a� 1
t

2a�1
2a

0 : ð19Þ
3.3. Early time

At first glance the analytical solution in (18) may not appear to
give much insight. However, early and late time expansions of this
solution clarify the situation significantly. To leading order, at early
time the solution in (18) is given by

CAðtÞ ¼
1

1þ ðt � t0Þ
; ð20Þ

which is identical to the well-mixed thermodynamic solution
(Fig. 1) and shows consistency of the solution with an assumption
of early conditions that are sufficiently mixed for the thermody-
namic rate to dominate. If this thermodynamic solution held at all
times one would expect a late time scaling that goes like inverse
time, i.e., t�1.

3.4. Late time

At late time, the fraction in parentheses in Eq. (18) containing
the Bessel functions converges to unity, and the leading order
behavior becomes

CAðtÞ �
ffiffiffiffiffi
v�

p
t�1=ð2aÞ: ð21Þ

Unlike the thermodynamic solution, which scales as t�1, the solu-
tion of (18) decreases at a slower rate of t�1/(2a) (Fig. 1). For the Fic-
kian case of a = 2 this results in a late time scaling of t�1/4, in
agreement with previous predictions and observations (e.g.
[35,26,44,2,1]).

3.5. Cross-over time

In the above discussion we talk about early and late times with-
out clearly defining these. On physical grounds we define early
times as times when the thermodynamic law still holds and late
times as times when the anomalous kinetics emerge. The cross-
over time that delineates early and late times can be found by bal-
ancing both terms on the right hand side of (14); i.e., it is when the
terms that reflect well-mixed conditions and imperfectly mixed
conditions become comparable in size. Thus we can define a
dimensionless cross-over time s such that 1

s2 ¼ v�s�1=a. Solving
for s we obtain

s ¼ v�
a

1�2a: ð22Þ

When t > s, anomalous kinetics are expected and at early time,
when t < s, behavior consistent with the thermodynamic law is
observed. The larger the value of v⁄, the earlier the onset of
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anomalous kinetics. Recall that v⁄ is a dimensionless number that
reflects how noisy the initial concentration field is, as well as the
competition between diffusion and reaction time scales. For illus-
tration let us consider the Fickian case of a = 2. Here

v� ¼
ffiffiffiffiffiffiffi
1

8p

r
r2

C2
A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kl2CA0

D

s
; ð23Þ

which is closely related to the (dimensionless) dispersive Damkoh-
ler number Da = sD/sR = kl2CA0/D (e.g. [39]). The Damkohler number
is a ratio of the time scale of diffusion sD = l2/D to the time scale of
reaction sR = 1/kCA0, thereby quantifying how quickly reactions oc-
cur relative to dispersion. Our dimensionless v⁄ is proportional to
Da2, with the constant of proportionality including a term r2

C2
A0

that
reflects the amplitude of initial ‘‘noise’’ in the distribution of A
and B. An increase in Da means that reactions are faster relative
to the rate of diffusion and the system has a quicker onset of incom-
plete mixing; i.e., A and B are consumed quickly relative to how
quickly diffusion can bring them together. The additional term ac-
counts for the smoothness in the initial condition, which directly af-
fects that time of the onset of separate A and B islands and
incomplete mixing.
4. Numerical simulations

To verify the theoretical results, we simulated random walks
and particle/particle reactions using the method of [2] modified
for Lévy motion. The details of the algorithm are given in [2] and
the modified version is briefly outlined here. Time is discretized
into steps of identical duration Dt. Each particle jumps a random
distance in the domain of attraction (DOA) of an a-stable law (i.e.
by the generalized central limit theorem they additively converge
to an a-stable distribution [21]) so that the random walk approxi-
mates Lévy motion. We also must rapidly calculate the probability
density of the sum of two random walks to estimate the probabil-
ity that two particles will be co-located and potentially react.
Therefore, we require jumps for which random values are easy to
generate and the density function is also easy to calculate (effec-
tively ruling out a-stable random variables themselves).

Due to the power-law tails, the shifted Pareto distribution
P(jXj > x) = sa(x + s)�a [25] is in the domain of attraction of the a-
stable laws (by the generalized central limit theorem); therefore,
a sum of random jumps drawn from this distribution will converge
to Lévy motion. This is analogous to summing variables from a uni-
form distribution to simulate a Brownian motion by invoking the
classical central limit theorem. However, relative to the corre-
sponding a-stable density, the shifted Pareto density is too peaked
at the origin and nearby particles are too likely to react. Instead we
choose symmetric jumps X from a ‘‘chopped’’ Pareto (see for exam-
ple Fig. 2) distribution following

PðjXj < xÞ ¼ mx if x < ðð1þ aÞcÞ1=a;
1� cx�a otherwise:

(
ð24Þ

The constants c and m dictate the size of the jumps. Both c and m
are functions of Dt and D. Each jump should be DOA a-stable with
scale (DDt)1/a, so that by (7.19)–(7.21) in [31], c = DDt/
(C(1 � a)cos(pa/2)). The slope m and cutoff ((1 + a)c)1/a are chosen
to ensure a mono-modal density by making the small x uniform
cumulative distribution tangent to the power law with prefactor
c. The form we chose for this jump density is one that most closely
approximates an a-stable variable, while still being computation-
ally efficient. For a P 2, the jumps are in the domain of attraction
of a Gaussian and simpler traditional methods can be used. The sep-
arate probability density, denoted v(s), that two particles will be co-
located in any time interval given initial separation s is the convo-
lution of two a-stable densities with each other. This is also a-sta-
ble. We use the chopped Pareto to calculate the density that
approximates the a-stable law with scale (2DDt)1/a.

An initial number N0 of both A and B particles are (uniformly)
randomly placed in a 1 � D domain of size X. Note that we do
not impose the initial conditions in equations (6) and (7) as done
in the theory. Rather, we allow the randomness to naturally evolve
from the uniform initial condition at t = 0. This evolution reflects
the initial ’setting time’ discussed in Section 2. The reactions are
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simulated by calculating the probability density of particle co-loca-
tion (v(s)) by Lévy dispersion. This probability is multiplied by the
thermodynamic probability of reaction given the co-location. Each
particle represents a total mass XCA0=N0, so the probability of reac-
tion [2] is kDtðXCA0=N0ÞvðsÞ. This probability for each A and B par-
ticle pair is compared to a new Uniform(0,1) random variable until
a reaction takes place or pairs are exhausted. The particles then dif-
fuse by random walks and react again ad nauseum.

In all of the Lagrangian simulations, the reaction rate follows the
well-mixed solution until the late time scaling sets in. In agreement
with our theoretical development, the late time solution scales with
t�1/(2a) (Fig. 3). Each simulation used representative values for aque-
ous environments: domain size X = 200 cm; CA0 ¼ CB0 ¼ 0:001 and
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At the latest time in the numerical simulations, another
(approximately exponential) scaling arises that is not predicted
by our analytical development. This deviation from the theoretical
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prediction can be attributed to the finite size of the computational
domain and the fact that the theoretical development is for an infi-
nite medium. While one might expect that the boundaries would
increase reaction rates at all times because of the very large (in-
ter-island) distances that the particles may take at any time, it is
the average size of the islands that dictates the late-time transition
back to well-mixed rates (Fig. 3). A simple argument shows that
the islands grow at a Lévy diffusive rate of (Dt)1/a, so that the
fringes of the largest island may feel the boundary at time t = (X/
K)a/D, where K is some empirical constant that describes the dis-
tance out along an island where the reactions are taking place.
We find that a value of K = 8 is a reasonable guide to the onset of
boundary effects (Fig. 3). To demonstrate that this is truly a bound-
ary effect and test this approximation, we ran the simulations for
Fickian dispersion and reaction as shown in Fig. 4. In this case
the ratio of the initial number of particles to the domain size is
fixed at N0/X = 40 so that the average particle spacing is the same
for any domain size. The domain size is doubled successively,
which increases by a factor of four the time at which the bound-
aries are felt by the reaction (Fig. 4).
5. Conclusions

The role of incomplete mixing greatly complicates the accurate
predictions of effective chemical reaction rates. Not only is the
overall rate different from the well-mixed case, but the functional
form is different, pointing to the insufficiency of the classical (ther-
modynamic) rate equation. We showed, for a simple set of cases,
how the correct ensemble concentration evolution equation can
be derived using stochastic analytic methods. In particular, as
incomplete mixing effects dominate, the rate of decay of chemical
species changes from t�1 to t�1/(2a), which for the Fickian case of
a = 2 is consistent with previous observations [2,1]. Enhanced dis-
persion leads to faster decay than the Fickian counterpart, but the
system is still slowed and dispersion-limited relative to the well-
mixed system.

The mechanics of the underlying dispersion and mixing process
is directly incorporated into the ensemble governing equation
through the action of the fractional dispersion Green function on
the initial degree of imperfect mixing in the system. This analysis
leads to a dimensionless number that marks the transition from
good mixing and the classical governing equation to poor mixing
and the equation with a new term. Analytic arguments also show
the time at which the domain boundaries destroy the poor mixing
by limiting the size of the islands that are enriched in one or the
other reactant.

The work here focuses purely on the role of fractional dispersion
on incomplete mixing and reactions. However, the methodologies
(both analytic and numerical) developed here are quite general and
should allow for the analyses of more complicated and realistic
geometries and mixing mechanisms. Incorporating the small scale
mixing limitations imposed by heterogeneous velocity fields and
local dispersion within larger scale reaction predictions is of signif-
icant practical interest to the water resources community as a
whole.
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Appendix A. Covariance equation

Multiplying (5) for i = A by C0BðyÞ and discarding terms of higher
than second order in fluctuations we obtain

C 0BðyÞ
@C0AðxÞ
@t

¼ D p
@aC 0AðxÞC

0
BðyÞ

@xa þ q
@aC0AðxÞC

0
BðyÞ

@ð�xÞa
� �

� kCAðxÞC 0BðxÞC
0
BðyÞ � kCAðxÞC 0AðxÞC

0
BðyÞ: ðA:1Þ

Similarly multiplying (5) for i = B by C0AðyÞ and discarding terms of
higher than second order in fluctuations we obtain

C 0AðyÞ
@C0BðxÞ
@t

¼ D p
@aCBðxÞC 0AðyÞ

@xa þ q
@aC0BðxÞC

0
AðyÞ

@ð�xÞa
� �
� kCBðxÞC 0AðxÞC

0
AðyÞ � kCBðxÞC0BðxÞC

0
AðyÞ: ðA:2Þ
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Taking the ensemble average of (A.1) and (A.2) and recognizing that
by stationarity C0BðyÞC

0
AðxÞ ¼ C0AðyÞC

0
BðxÞ, we sum the equations and

obtain the following equation for the covariance

C 0BðyÞ
@C 0AðxÞ
@t

þ C 0AðyÞ
@C 0BðxÞ
@t

¼ 2D p
@aC 0AðxÞC

0
BðyÞ

@xa þ q
@aC 0AðxÞC

0
BðyÞ

@ð�xÞa

 !

� 2kCAðxÞC0AðxÞC
0
AðyÞ � 2kCAðxÞC 0AðxÞC

0
BðyÞ; ðA:3Þ

which can be rewritten as

@C 0AðxÞC
0
BðyÞ

@t
¼ 2D p

@aC 0AðxÞC
0
BðyÞ

@xa þ q
@aC0AðxÞC

0
BðyÞ

@ð�xÞa

 !

� 2kCAðxÞC 0AðxÞC
0
AðyÞ � 2kCAðxÞC0AðxÞC

0
BðyÞ: ðA:4Þ

Similarly, an equation for C0AðxÞC
0
AðyÞ is given by

@C 0AðxÞC
0
AðyÞ

@t
¼ 2D p

@aC 0AðxÞC
0
AðyÞ

@xa þ q
@aC0AðxÞC

0
AðyÞ

@ð�xÞa

 !

� 2kCAðxÞC 0BðxÞC
0
AðyÞ � 2kCBðxÞC0AðxÞC

0
AðyÞ: ðA:5Þ

Subtracting Eq. (A.5) from Eq. (A.4) gives:

@½C0Aðx;tÞC
0
Bðy;tÞ�C0Aðx;tÞC

0
Aðy;tÞ�

@t

¼2D p
@a C0AðxÞC

0
BðyÞ�C0AðxÞC

0
AðyÞ

� �
@xa þq

@a C0AðxÞC
0
BðyÞ�C0AðxÞC

0
AðyÞ

� �
@ð�xÞa

0
@

1
A:

ðA:6Þ

As laid out in the main body of the text the initial conditions for
these are

C 0Aðx;0ÞC
0
Aðy;0Þ ¼ �C 0Aðx;0ÞC

0
Bðy;0Þ ¼ Rðx; yÞ: ðA:7Þ

Therefore, from moment Eqs. (A.4) and (A.5) it follows that

C 0Aðx; y; tÞC
0
Bðx; y; tÞ ¼ �C 0Aðx; y; tÞC

0
Aðx; y; tÞ ðA:8Þ

and with this is mind, we can rewrite the 1-D Eq. (A.6)

@½C 0Aðx; tÞC
0
Bðy; tÞ�

@t
¼ 2D p

@a C 0AðxÞC
0
BðyÞ

� �
@xa þ q

@a C 0AðxÞC
0
BðyÞ

� �
@ð�xÞa

0
@

1
A:
ðA:9Þ
Appendix B. Alternative initial correlation structures

In this appendix we demonstrate that another short range cor-
relation structure, namely the exponential, give the same long time
behavior as the delta correlation, thus justifying its selection. Spec-
ify now:

f ðx; y; t ¼ 0Þ ¼ Rðx; yÞ ¼ �r2e�
jx�yj

l : ðB:1Þ

Substituting into (9) for the limit of y ? x

f ðx; y! x; tÞ ¼ �r2

p

Z 1

�1

l

k2l2 þ 1
e2D½pðikÞa �þqð�ikÞa �tdk

¼ �r2

p

Z 1

�1

lt
1
a

m2l2 þ t
2
a

e2D½pðimÞa �þqð�imÞa �dm: ðB:2Þ

If we take the limit of long time (t ?1)

f ðx; y! x; tÞ � �t�1=a r2l
2

Z 1

�1
e2D½pðimÞa �þqð�imÞa �dm ðB:3Þ

which is the same scaling that arises for the delta initial correlation
for all times. Similar results can be shown for other short range cor-
relation structures such a Gaussian one.
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