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Dynamics of thin vortex rings
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As part of a long-range study of vortex rings, their dynamics, interactions with
boundaries and with each other, we present the results of experiments on thin core
rings generated by a piston gun in water. We characterize the dynamics of these
rings by means of the traditional equations for such rings in an inviscid fluid suitably
modifying them to be applicable to a viscous fluid. We develop expressions for the
radius, core size, circulation and bubble dimensions of these rings. We report the
direct measurement of the impulse of a vortex ring by means of a physical pendulum.

1. Introduction
It has been recognized by many investigators that vortex rings are one of the most

fundamental and fascinating phenomena in fluid dynamics. Two recent The reviews by
Shariff & Leonard (1992) and Lim & Nickels (1995), begin with eloquent discussions
of their beauty and utility. We content ourselves here with Philip Saffman’s statement,
‘one particular motion exemplifies the whole range of problems of vortex motion and
is also a commonly known phenomenon, namely the vortex ring . . . Their formation
is a problem of vortex sheet dynamics, the steady state is a problem of existence,
their duration is a problem of stability, and if there are several we have a problem of
vortex intractions’ (Saffman 1981).

Accordingly, there is also a huge amount of literature on the subject, going back
to Reynolds (1876) on the slowing of vortex rings and even earlier to Rogers (1858).
Much of this literature involves vortices of substantial core thickness, which is a very
difficult problem. The aim of this investigation is to see what can be learned about
vortex rings with very thin cores. There is a natural arena for such an investigation:
namely the propagation of quantized vortex rings in superfluid helium, where the
core has a radius of about 1 Å. The properties and behaviour of quantized vortex
rings are thoroughly discussed by Donnelly (1991). An introduction to the problem
of core corrections for various models of vortex rings is contained in his ğ 1.6.

The plan of this paper is as follows. The rest of ğ 1 is a review of the formulae
for thin-core vortices in an inviscid fluid. Section 2 contains the models developed
during this study. Section 3 describes the apparatus used in the experiments, which
are described in some detail in ğ 4. Section 5 is a comparison with the work of other
investigators.

1.1. Results for thin-core vortex rings in an invisicid fluid

Let us first note the results for thin vortex rings of circulation Γ moving in an
inviscid fluid of density ρ, quoted in many books on fluid mechanics. When the
radius R is much larger than the core radius a, the kinetic energy of such a ring is
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Model α β

Solid rotating core, constant volume 7/4 1/4
Hollow core, constant volume 2 1/2
Hollow core, constant pressure 3/2 1/2
Hollow core with surface tension 1 0
NLSE solution 1.615 0.615
Viscous core 2.04† 0.558‡

† see (4.6)
‡ Saffman (1970) viscous core

Table 1. Values of α and β for classical vortex rings with different core models (adapted from
Donnelly 1991). The nonlinear Schrödinger equation (NLSE) result is obtained by Roberts &
Grant (1971) for one model of a quantized vortex ring.

(assuming the core is hollow)

K = 1
2
ρΓ 2R
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a
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]
. (1.1)

The vortex ring moves forward with its own self-induced velocity V

V =
Γ

4πR

(
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8R

a
− 1

2

)
, (1.2)

and the momentum, or more properly impulse, of such a ring is

P = ρΓ πR2. (1.3)

Thin vortex rings can be described by a total energy (including energy associated
with the core structure as well as kinetic energy as in (1.1)) formally equivalent to
a Hamiltonian, conventionally denoted as E. Then the velocity and impulse of the
vortex rings are connected by Hamilton’s equation

V =
∂E

∂P
, (1.4)

where the details depend on the core model as discussed by Roberts & Donnelly
(1970). The simplest situation occurs when the core radius a is negligible in size
compared to the radius of the vortex ring. Then the case for any core model can be
written

E = 1
2
ρΓ 2R

(
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)
, (1.5)
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. (1.6)

Application of (1.4) to (1.5) using (1.3) gives

V =
∂E

∂P
=

Γ

4πR

(
ln

8R

a
+ 1 − α

)
. (1.7)

The handling of (1.7) depends on the core structure as shown by Roberts & Donnelly
(1970). Thus from (1.6) and (1.7), we see that β = α − 1 under constant pressure.
Under constant volume β = α − 3/2 (table 1).
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Figure 1. A pair of vortex filaments moving through a perfect fluid. (After Lamb 1945).

It is important to note that a direct measurement of the velocity V of quantized
vortex rings as a function of energy E was carried out by Rayfield & Reif (1964).
Their data allowed the circulation Γ to be measured for the first time, with the result
Γ = κ ≡ h/m where h is Planck’s constant and m is the mass of the helium atom. κ

is known as the quantum of circulation. This fundamental result assures us that the
classical expressions for energy, impulse and velocity for vortex rings in an inviscid
fluid, which have been known for decades, have a direct experimental foundation.

1.2. Fraenkel’s second-order formulae

Fraenkel (1972) has given second-order formulae for rings which have finite, but small
values of ε = a/R, the dimensionless core radius. These are written

P = ρΓ πR2
(
1 + 3

4
ε2

)
, (1.8)

E = 1
2
ρRΓ 2

[
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8

ε
− 7

4
+

3

16
ε2ln

8

ε

]
. (1.9)

Since ε is considered small in this paper, we see α =7/4 in (1.5).

1.3. Velocity of a vortex ring in a viscous fluid

Equation (1.6) is the celebrated relationship between V , R, Γ and a for vortex rings
in an inviscid fluid. Before proceeding too far in new investigations, we would like to
know if a similar expression exists for vortex motion in a viscous fluid. Indeed such
an expression as (1.6) has been introduced by Saffman (1970) for a Gaussian vorticity
distribution in the core: it is identical to (1.6), which we will discuss in ğ 4.3 below,
and where he finds

a =
√

4νT , β = 0.558, (1.10)

where ν is the kinematic viscosity and T is the stroke time for the piston. This result
holds only for small times. If the time of observation is limited to the moment of
formation we will show that (1.6) and (1.10) give a good account of experiments
reported here. There are some problems for t > T , which we will discuss in ğ 4.4.

1.4. The vortex bubble

We can gain some insight into the vortex bubble from a drawing in Lamb (1945,
p. 155), reproduced here as figure 1. This represents two infinitely thin straight vortices
with cores situated at +R and −R, moving through the fluid at velocity Γ/4πR, where
Γ is the circulation about the filaments. The picture is drawn from a frame at rest
with respect to the vortex filaments. The oval surrounding the vortices moves with
the vortex pair. The semi-axes of the oval are 2.09R and 1.73R, and the ratio of
semi-minor to semi-major axes is γ = 0.828.
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Figure 2. (a) Sketch of a thin vortex ring of core radius a, ring radius R and bubble radius
Rb . γ is the ratio of semi-minor to semi-major axes. The direction of motion is horizontal.
Streamlines would look much as in figure 1. (b) Photograph of a ring that has just passed
through a sheet of tracer, which casues the apparent jet on the right. The comparison with (a)
is clear.

We can understand the presence of the vortex bubble by a simple analogy from
electromagnetism. Suppose we have a current loop carrying a current density j in
an external magnetic field B . The current loop generates a dipolar magnetic field
of its own which ‘overrides’ the external field near the loop. There is a well-defined
spherical boundary within which the field from the loop dominates and outside of
which the external field dominates (we can picture the analogy by considering figure
1 to have a current loop instead of parallel wires). The current density j is analogous
to the vorticity in the core, and B is analogous to fluid velocity V (see Fetter &
Donnelly 1966). Clearly, the vortex bubble disappears if the ring stops moving, just
as the spherical boundary vanishes if B is made to vanish.

Beginning with these concepts, we aim to find expressions for the various quantities
described in ğ 1.1 which are related to the parameters of the gun: stroke length L,
stroke time T and gun radius R0.

2. Models
2.1. The radius of vortex rings

We would like to characterize our rings in water by means of equations along the
lines of those discussed in ğ 1.1. We have devised a way of measuring the core size a

and impulse P directly, and will describe these methods and determinations below.
In this study, vortex rings are generated by impulsively displacing water with a

piston through a cylindrical gun, the details of which are described in ğ 3. When the
piston is fired, it sweeps out a volume of fluid Ωp = πR2

0L. The fluid associated with
the vortex ring and its flow pattern form a vortex bubble, which is flattened in the
direction of propagation of the ring as (figure 2). Let us assume it is an ellipsoid of
revolution with semi-major axis Rb and semi-minor axis γRbwhere the eccentricity
γ < 1. The volume of this spheroid would then be Ωb = (4π/3)R3

bγ . Measurements
show that the volume of this bubble is greater than Ωp owing to entrainment of
surrounding fluid during the formation process as described by Dabiri & Gharib
(2004).

We make use of these ideas in the calculations of ring and bubble dimensions.
Assuming that the impulse of the ring P defined in (1.3) is approximately equal to
the momentum given to the water by the piston (a fact later verified experimentally
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in ğ 4.5) we have

MpVp = ρΓ πR2, (2.1)

where Mp is the mass of water displayed by the piston and Vp =L/T is the velocity
of the piston. At the same time, when the ring is moving with its bubble at velocity
V ,

MpVp = MbV, (2.2)

where V is the velocity of the vortex ring and Mb is the mass of fluid in the ring–
bubble complex. The practical use of (2.2) requires an amendment to include the
induced mass of the bubble, as will be explained below.

We have found it useful to imagine that the vortex ring itself encircles the major
axis of an entirely fictitious and geometrically similar ellipsoid, as indicated by the
inner curve of figure 2(a). The volume of fluid in the inner spheroid is Ωr = (4π/3)R3γ ,
and if we guess that its volume is equal to the volume swept out by the piston, Ωp ,
then

Ωr = Ωp (2.3)

and

R =

(
3Ωp

4πγ

)1/3

=

(
3R2

0L

4γ

)1/3

. (2.4)

The assumption (2.3) is unlikely to be exact, but is justified a posteriori by the good
correlation of figure 5 in ğ 4.

2.2. An estimate for vortex circulation and velocity

What would help the designer of an experiment is an estimate of the expected ring
circulation based on the stroke length and stroke time. Here we appeal to a simple
argument called the ‘slug model’ (see, for example, Didden 1979). This model assumes
that the ring is formed from a cylindrical ‘slug’ of fluid with U0 the velocity at the
exit of the tube at the axis of symmetry which is ejected from the nozzle. The slug
model is based on the flux of vorticity from the nozzle. The result is an expression
for the circulation

Γs =
L2

2T
, (2.5)

assuming the stroke length is L and the stroke time is T . In this expression, we use
the original slug model and have neglected the overpressure correction term (which
is necessary for the formation of the vortex ring), (Krueger 2005). Using (2.4) for the
ring radius then the expected velocity of the rings at the gun based on the slug model
of circulation is

Vs =
Γs

4πR

(
ln

8R

a
− β

)
=

L2

8πRT

(
ln

8R

a
− β

)
, (2.6)

This observation leads us to attempt another estimate of the circulation based upon
the assumption that the impulse of the ring is not far from the momentum given to
the water in the gun by the piston, later verified experimentally in ğ 4.5. Thus from
(2.1),

ρπR2
0LVp = ρΓ πR2, (2.7)

we have an expression for the circulation in terms of gun parameters

Γ =
R2

0LVP

R2
=

R2
0L

2

R2T
, (2.8)
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and the corresponding velocity V using (1.6), (1.10) and (2.4) is

V =
Γ

4πR

(
ln

8R

a
− 0.558

)
=

γVp

3π
Λ, (2.9)

where

Λ = ln
8R

a
− 0.558. (2.10)

2.3. The core size

There is a remarkable prediction of the propagation velocity of a vortex ring in a
viscous fluid by Saffman (1970). Saffman supposed that the vorticity in the core of
the vortex ring has a Gaussian distribution given by

ωφ =
Γ

4πνt

{
exp

(
−r2

4νt

)}
, (2.11)

where t is measured from a virtual origin where the core is of zero diameter. He then
derived the propagation velocity to leading order

V =
Γ

4πR

{
ln

8R√
4νt

− 0.558

}
, (2.12)

valid for small times where the core remains small. Comparing (2.12) with (1.6)
suggests a guess for the core parameter:

a =
√

4νT , (2.13)

where t = T is the stroke time of the gun. This result is verified experimentally in
ğ 4.3. Furthermore, the value of β discussed in table 1 is clearly 0.558.

2.4. Dimensions of the vortex bubble in water

Equation (2.9) shows that the velocity of the ring–bubble complex is directly pro-
portional to the velocity of the piston, Vp = L/T , so conservation of momentum allows
us to solve for the mass and hence the volume of the bubble (including the fluid within
the ring). From (2.2), we obtain

MpVp = ρΩpVp = ρπR2
0LVp = MbV. (2.14)

The volume of the bubble is

Ωb =
4

3
πR3

bγ (2.15)

and its momentum in flight is MbV . However, as observed by Baird, Wairegi & Loo
(1977), the creation of the bubble by the piston involves the induced (or added) mass
Mi . The mass of the bubble in the momentum balance relation (2.14) which we call
M ′

b must include the induced mass Mi which is usually written Mi = kρΩb. For a
sphere k =1/2. For more general shapes, we can refer to ğ 80 of Loitsyanskii (1966).
The case shown in figure 2(b) has γ � 0.6, k =0.65. Thus the momentum balance in
(2.2) is amended to read

MpVp = M ′
bV , (2.16)

where M ′
b � Mb + kMb = (1 + k)Mb. Therefore the mass of the bubble associated with

the ring is given by Mb =MpVp/(1 + k)V and the corresponding radius is

Rb =

[
9πR2

0L

4γ 2Λ(1 + k)

]1/3

, (2.17)
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which using (2.4) leads to

R

Rb

=

[
γ (1 + k)

Λ

3π

]1/3

, (2.18)

independent of R0, L and only logarithmically dependent upon T .
We define the entrained fluid fraction η = (Ωb − Ωp)/Ωb, which in our experiments

is given by,

η = 1 − Λ(1 + k)γ

3π
, (2.19)

again independent of R0, L and only logarithmically dependent upon T .

2.5. The slowing of vortex rings

There are a number of reasons why vortex rings might slow down. One common
suggestion is that the core grows by diffusion, reducing the velocity by (1.6), another
that bending waves grow and take energy from the ring, or that the ring may become
turbulent in some sense and start to break up. Reynolds (1876) observed that ‘rings
grow in size as they proceed, and consequently they are continually adding to their
bulk water taken up from that which surrounds them, and with which this forward
momentum has to be shared. A loss of velocity must result from this growth in size.’

One of the commonly cited works that discusses the slowing of vortex rings is
Maxworthy (1972). He states that the velocity decays exponentially with the distance
travelled by the ring and is proportional to 1/t for long times. Maxworthy observes
that there is viscous entrainment of the fluid surrounding the vortex bubble as well as
a detrainment of rotational fluid ejected into a wake that trails the ring, a combination
of which results in the slowing of the vortex ring. This phenomenon of entrainment
and detrainment was first observed by Krutzsch (1939). He fired vortex rings through
sheets of dyed fluid, which initially wrapped up around the bubble and were then
shed into the wake of the ring.

Since the rings in the present study have quite small cores, and do not change their
radius during propagation, it is tempting to consider viscous drag on the core, much
as was done in experiments in superfluid helium. The role of friction on quantized
ring vortices has been reviewed by Barenghi, Donnelly & Vinen (1983). They compute
the drag per unit length on the core, and since the circulation is quantized, the only
way to lose energy is to reduce the radius of the ring (recall the energy of a vortex
ring is proportional to its radius as in (1.5). This shrinking actually causes the ring to
travel faster, as we see from (1.6), and we have the unusual situation that quantized
vortex rings speed up as they decay. We therefore proceed to model the viscous drag
on the core in the spirit of the liquid helium investigators. It is important to note that
with this ‘drag’ concept we aim to capture all the physical mechanisms that slow the
ring down.

Of course we do not know the relevant drag coefficient for anything as exotic as a
viscous vortex core (such as that suggested by Saffman), but we can certainly try to
measure it. Let us define the drag coefficient on the core as

Cdc =
Df

1
2
ρV 2A

, (2.20)

where V is the ring velocity and A= 2a ×2πR, where, as usual, a � R. The drag force
will result in a loss of impulse given by

Df = Cdc × 1
2
ρV 2 × 4πaR = −dP

dt
, (2.21)
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where P is given by (1.3). Thus the circulation decreases according to

dΓ

dt
=

4πR

Λ

dV

dt
, (2.22)

where Λ is given by (2.10).
If X is the distance travelled from the gun and V0 is the speed at the mouth of the

gun as given by (2.9), then the velocity at distance X is

V = V0e
−cX (2.23)

and the velocity at time t is

V =
V0

1 + V0ct
, (2.24)

where the damping coeffient c is

c =
CdcaΛ

2πR2
. (2.25)

It is worth noting that the velocity decays exponentially with distance and as 1/t for
large times, which is in agreement with the predictions of Maxworthy (1972) and the
experiments of Scase & Dalziel (2006). The distance X(t) travelled by time t can be
written

X(t) =
1

c
ln (V0ct + 1) , (2.26)

and (2.26) can be directly compared to experiment.
Note that we could calculate the drag on the vortex bubble instead of the vortex core

and achieve the same equations with modified drag coefficients. Since the damping
coefficient c defined in (2.25) remains the same, it is easy to convert one drag coefficient
to another.

It is well known that a circular vortex ring has a translational velocity which arises
from its own curvature (the smaller the radius R of the ring, the faster the ring
travels). More quantitative knowledge is now available about the slowing of a ring
vortex by finite-amplitude Kelvin waves. Building on a seminal paper by Kiknadze &
Mamaladze (2002), Barenghi, Hänninen & Tsubota (2006) using the exact Biot-Savart
Law, have analysed the motion of a vortex ring in an inviscid fluid perturbed by
Kelvin waves of finite amplitude. They have found that the translational velocity of
the perturbed ring decreases with increasing amplitude; at some critical amplitude,
the velocity becomes zero, that is, the vortex ring hovers like a helicopter. A further
increase of the amplitude changes the sign of the translational velocity, that is, the
vortex ring moves backward. This remarkable effect is due to the tilt of the plane
of the Kelvin waves which induce motion in the ‘wrong’ direction. The magnitude
of the tilt oscillates, what results is a wobbly translational motion in the backward
direction. They have also found that the frequency of the Kelvin wave decreases
with increasing amplitude and that the total length of the perturbed vortex ring
oscillates with time. This oscillation in vortex length is related to the oscillation of
the tilt angle. This analysis suggests that the velocity of vortex rings may well depend
on the amplitude of Kelvin waves at the time of formation. Rings with substantial
amplitude of Kelvin waves will be expected to move more slowly than rings with
little or no Kelvin wave amplitude. Thus, we may expect different investigators to
observe different ring velocities under nominally identical values of L and T . Indeed,
successive rings from the same gun could well have Kelvin waves of different phase and
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Motor drive

Piston

Electrode

1 in

Figure 3. The vortex gun used for most of the experiments reported here.

different amplitudes. This may well explain the large scatter we often see in vortex-
ring experiments.

3. Apparatus
3.1. The vortex guns

3.1.1. The orginal vortex-ring gun

The vortex guns shown in figures 3 and 4 have an exit diameter of D0 = 2.54 cm.
Embedded in the wall at the exit is the cathode for the Baker visualization technique.
A rod suspended elsewhere in the tank serves as the anode.

A small servo motor mounted on the gun assembly shown in figure 3 drives the
rack via a pinion gear. The servo motor incorporates an encoder to provide positional
feedback. The gun is capable of a stroke length limited to between about 1 and 4 cm.
Less than 1 cm is unusable owing to mechanical backlash.

The servo motor is driven by a custom built servo amplifier The amplifier maintains
the position of the motor based upon a command voltage level input. The amplifier
incorporates two linear feedback loops – a proportional loop and an integral loop. The
proportional loop generates a motor drive based upon the positional error signal. The
integral loop generates a motor drive based upon the time integral of the error signal.

One of the analogue voltage outputs from a National Instruments PCI-MIO-16XE-
10 card is connected to the command input of the servo amplifier. A custom program
written in National Instruments LabView Version 5.0 is used to generate the trajectory
profile for the motor. Usually a constant-velocity ramp (based upon the L and T

variables) is used to generate the rings. This gun design has been shown to be capable
of generating rings as fast as 40 cm s−1. The performance of the gun has not been
entirely satisfactory, however, owing to the problems of aligning the rack and pinion
and piston, and to vibrations transmitted to the tank.
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1 in bore
10 cm stroke

1 in bore

Linear motor

24 in

Tygon hose

Figure 4. An improved vortex gun used only recently. Brushless/ironless; 1.74 kg thrust rod;
780N maximum thrust; 12 µm resolution.

3.1.2. The new vortex-ring gun

The newer gun shown in figure 4 has the same electrodes as the older gun. The new
gun is now constructed in two separate parts. The guns are hollow 1 in diameter tubes,
bent at 90◦. Separate 1 in diameter cylinder and piston assemblies are connected to
the gun via plastic tubing. The tubing must be reinforced so that it does not expand
during the piston stroke. Twin O-ring seals provide the pistons with a water-tight
fit to the cylinders. The pistons are driven by Copley model STA2510S-104-S-S03X
linear motors (capable of 780 N of peak thrust). The pistons are directly attached to
the magnet rods of the motors, eliminating mechanical backlash. Also, the motors are
brushless and ironless, resulting in smoother motion due to minimal motor cogging.
The motor and piston assemblies provide a stroke length anywhere between 0 and
10 cm.

The motors are driven by a Copley model XSL-230-18 Xenus indexer/amplifiers.
Since the motors are brushless, electronic commutation is provided by the Xenus
amplifiers via linear Hall-effect sensors mounted on the forcer assembly. These same
sensors also provide positional feedback. The basic resolution of the motors is 12.5 µm.
The Xenus amplifiers are an entirely digital system, allowing ready reprogramming of
the feedback-loop coefficients, and they also internally generate the motion trajectory
based upon variables sent via an RS-232 link.

Our piston velocity follows a trapezoidal ramp. Setting the piston velocity at
32 cm s−1, the rise time from rest to 32 cm s−1 was 0.025256 s and the fall time was
0.028392 s. Thus the average acceleration is 1267 cm s−2 and the average deceleration
was 1127 cm s−2.

Based upon preliminary usage, the new gun provides smooth repeatable perfor-
mance and beautiful consistent rings. The piston can reach 50 cm s−1. With optimiza-
tion of the feedback loops, even better performance may be possible.

3.2. Visualization technique

We use the Baker (1966) technique for visualization of fluid flows. It consists of
generating hydroxyl ions (OH−) in situ in a flowing fluid by electrochemical means.
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An acid–base indicator is added to the solution, which has been adjusted to an
appropriate pH. The local generation of hydroxylions will change the pH locally and
hence the colour of the indicator will change locally. One immediate advantage of
this technique is that the tracer is neutrally buoyant. It can work in stratified flows;
it is also free from influence by centrifugal forces, and hence is useful in rotating
experiments. It works even in glycerol–water mixtures. This technique is useful also
because the voltage and the length of time it is applied can be computer controlled.

The working fluid is prepared by adding enough thymol blue indicator to 1000 ml
of distilled water to produce a 0.01 % solution by weight. This solution is titrated to
the endpoint (pH � 8.0) by adding 1 n sodium hydroxide (NaOH) drop (≈0.25 cm3)
drop by drop until it turns deep blue, then adding one drop of 1 n hydrochloric
acid (HCl) to cause the solution to be on the acid (or yellow) side of the endpoint.
Although Baker does not suggest this, a small amount of NaCl was occasionally
added to increase the conductivity of the solution in the experiments described below.
Of course, the preparation of the system as just described self-generates some sodium
chloride (NaCl) in the solution.

As the fluid flows, the hydroxyl ions are carried along as part of the moving fluid
particles. (The word particle is used here in the fluid dynamics sense, and not in
the sense of atom or molecule.) Hence the colour moves with the flowing fluid. It
is important to realize, however, that the colour tags the fluid particles that have a
certain pH, not the velocity in its own right. If the particle is moving, the colour
motion will show how, but if the fluid particle is stagnant, the colour will persist
as long as no process changes the pH. Typically, 8 V was sufficient to give good
visualization in a short time. However, any voltage above about 2 V will produce
electrolysis of water and produce hydrogen bubbles, which by themselves gave some
useful visualization of vortex rings, as the bubbles are attracted to the vortex core by
the pressure gradient, just as ions are attracted to quantized vortex cores for quantized
vortices in helium II. However, trapped hydrogen bubbles in sufficient quantity could
alter the dynamics of the vortex rings in unknown ways, and even cause them to
become buoyant. As a result, we have come to use about 2 V, and wait longer for
the ‘ink’ to appear. This technique is particularly useful because the voltage can be
computer controlled, and, as we shall see below, it also works for glycerol–water
solutions, so that the viscosity can be customized to a given experiment.

There is no doubt that the Baker technique is useful for flow patterns such as steady
or oscillating Taylor vortex flows (see Park, Barenghi & Donnelly 1980; Hollerbach
et al. 2002). As far as we can ascertain, the tracer follows the fluid motion faithfully,
except when the motion ceases; then ionic recombination sets the time scale for
disappearance of the tracer (perhaps a few minutes). Note that the oscillating Taylor
vortex flows cited above have diffusion of vorticity which is marked because the
electric field generates hydroxyl ions continuously at the anode. If the electric field is
absent, the hydroxyl ions have low diffusivity and will not follow diffusion of vorticity
(i.e. there is a high Schmidt number, of order 6000). This is of considerable interest
to our vortex rings, because they detach from the anode on formation, and the ‘ink’
then has a very high Schmidt number.

A thorough discussion of the Baker technique is contained in Mazo, Hershberger &
Donnelly (2008).

We also used Kalliroscope AQ-1000 to study vortex rings in water. Kalliroscope is
a commercial product first described scientifically in a paper by Matisse & Gorman
(1984). Exactly what is shown by light reflection from these anisotropic particles is still
not entirely clear, although an analytical study by Savas (1985) suggests that the flakes



330 I. S. Sullivan, J. J. Niemela, R. E. Hershberger, D. Bolster and R. J. Donnelly

R (cm) at

L (cm) T (s) 5 cm 28 cm

2.0 0.07 1.44 1.46
2.5 0.07 1.51 1.49
3.0 0.07 1.58 1.58
3.5 0.07 1.62 1.63
4.0 0.07 1.64 1.60

Table 2. Comparison of the radii of several rings at 5 and 28 cm from the gun.

align themselves with stream surfaces with rapid turnovers and further notes that it
is a useful technique for determining certain flow patterns. A discussion by Gauthier,
Gondoret & Rabaud (1998) is useful in this respect: in particular, they show that
the observed light cannot be used to reconstruct the velocity field. However, they do
show that Kalliroscope can be used specifically to visualize a vortex core in Taylor–
Couette flow by comparing numerical predictions to experimental observations. Much
qualitative information has been obtained about vorticity patterns in Taylor–Couette
flow.

The contrast between the two visualization techniques is important to note. In the
Baker technique the marker tracks fluid particles; Kalliroscope can be thought of
roughly as marking regions of concentrated vorticity.

4. Experimental results
We study some of the basics of vortex rings in water with a few preliminary

experiments. We observe that the rings have thin cores, as would be expected from
the relative smallness of the stroke. The dimensionless ratio of stroke length L to
orifice diameter D0, L/D0, is called the ‘formation time’ and in our experiments is
generally less than 2. Here, D0 = 2R0. Gharib, Rambod & Shariff (1998) show that
for L/D0 < 4, only an isolated ring is formed, whereas for L/D0 > 4, the flow field
consists of a vortex ring followed by a trailing jet. The diameter of the rings, 2R,
is approximately the same as the exit diameter D0, and is found to increase slowly
with the stroke length L and is independent of stroke time T . In our experiments,
the diameter of the rings was measured photographically with a high resolution
digital camera. The rings can move quickly, spanning a velocity range from about
1 cm s−1up to about 50 cm s−1. The diameter of the rings appears to remain constant
during propagation, and eventually rings exhibit bending waves on the cores. In what
follows, it is important to realize that we are discussing the motion of vortex rings
in a viscous fluid in the limits a/R = 0 and L/D0 = 0 (except if L/D is too small the
vortex may move back into the gun).

The Reynolds numbers can be variously defined. Unless otherwise mentioned, we
take Re ≡ Γ/ν � 100Γ appropriate to experiments in room temperature water.

4.1. The radius of vortex rings and of the bubble

The ring radius as given by (2.4) does not involve space or time and hence we do
not expect the radius to change by much as it propagates across the tank. Data sup-
porting this is given in table 2 where we compare ring radii at 5 cm and 28 cm from
the gun. The results in table 2 show that we may take the ring radius to be constant
while slowing down to very good accuracy. Equation (2.17) suggests that except for
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t (s) Rb (cm)

1 3.4
4 3.4
8 3.6

12 3.4

Table 3. Measurements of the bubble radius as a function of flight time t .
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Figure 5. Relationship between the observed ring radius R and the piston stroke L. The solid
line is given by (2.4): R = 1.27L1/3 − 0.195. Errors in the measurement are about ± 5 % and
increase considerably at short stroke lengths.

a possible logarithmic dependence on time, the bubble radius should also remain
constant. Photographs show that the bubble radius is not observably changing size
during flight and a sample data set is shown in table 3.

Our model of ğ 2.1 suggests that vortex ring radii are not necessarily given by
the diameter of the gun D0, but may be both smaller and larger depending on the
stroke length. The data shown in figure 5 were taken photographically. We measured
the eccentricity of the bubble to be γ = 0.60. The intercept −0.195 seen in the data
in figure 5 arises because arbitrarily small rings cannot be produced, since they are
sucked back into the gun. The apparent bubble from the work of Dabiri & Gharib
(2004) reproduced in figure 17 below has γ = 0.63. An image from figure 4 of Didden
(1979) has γ =0.55.

The discussions of ğ 2.4 show that for L = 1.23 cm and T = 0.167 s, the entrainment
fraction picked up from ambient fluid after the piston stroke η = (Ωb − Ωp)/Ωb = 0.55
(see Dabiri & Gharib 2004). Equations (2.4) and (2.17) predict R = 1.35 cm and
Rb = 1.76 cm, compared to measurements 10 cm from the gun which give R = 1.32 ±
0.02 cm and Rb = 1.79 ± 0.02 cm. The experimental value of R/Rb =0.74 is not
far from the value 0.77 determined by (2.18), and considerably different from the
two-dimensional case of figure 1, where R/Rb = 0.48.

Since we really expect the core to grow in time, we can find a rough estimate of the
effect on various quantities by amending (2.13), taking account of the total elapsed
time by adding the time of flight t to the stroke time T :

a =
√

4ν (T + t) . (4.1)
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T (s)

L (cm) 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16

1.0 4.88 4.03 3.70 3.23 2.94 2.59 2.27 1.98 1.82 1.39 1.61 1.47
1.2 6.90 5.26 4.76 4.65 4.03 3.51 2.75 2.45 2.22 2.17 2.00 2.08
1.4 8.20 6.85 6.02 5.75 4.76 4.31 3.40 2.92 2.58 2.43 2.50 2.50
1.6 10.64 8.77 6.85 6.67 5.43 4.85 4.27 3.57 3.07 3.13 2.94 2.78
1.8 12.20 9.90 8.17 7.81 6.58 5.81 5.15 4.50 3.85 3.85 3.68 3.45
2.0 14.97 11.63 10.00 9.26 7.58 6.58 5.88 5.21 4.50 4.39 4.29 3.82
2.2 16.95 13.51 11.90 10.64 8.77 7.46 6.49 5.88 5.95 5.38 4.90 4.46
2.4 19.46 15.29 12.89 11.63 10.00 8.20 7.14 6.41 6.17 5.38 4.90 4.72
2.6 21.46 15.97 14.25 12.72 11.34 9.43 8.59 7.58 6.94 6.17 5.62 5.15
2.8 23.70 18.45 15.06 14.29 11.85 10.20 9.09 8.06 7.58 6.76 6.25 5.95
3.0 26.18 19.84 16.50 15.87 13.16 11.63 9.96 8.77 8.33 7.69 7.04 6.49
3.2 28.90 22.12 18.18 16.67 14.71 12.82 11.11 9.43 8.93 8.33 7.58 7.04

Table 4. Ring velocities V0 (cm s−1) as determined by the methods of ğ 4.5 as a function of
stroke length L (cm) and stroke time T (s).

In particular, the bubble radius Rb given by (2.17) will grow in time if the core size in
the the logarithmic factor Λ in (2.10) is replaced by (4.1). Using Kalliroscope as the
tracer we took the following data on Rb as a function of the flight time t . T was fixed
at 0.5 s, and L at 1.5 cm. We see from table 3 that there is no evidence for growth of
Rb. If (4.1) were correct, the bubble radius Rb would have grown by a factor of 1.19
in 12 s.

In order to see whether the bubble was entraining and detraining as predicted by
Maxworthy (1972) and observed by Krutzsch (1939), we fired vortex rings through
fluid dyed with Baker ink. The fluid was dyed by releasing drops of NaOH into
specified locations in the tank. As Krutzsch observed, the inked fluid wrapped up
around the outside of the bubble and a little later shed into the wake of the ring. As
such it appears that there is a fine balance between the entrainment and detrainment
process that suppresses any significant growth of the bubble. The wake behind the
bubble was particularly visible in our experiments conducted with Kalliroscope, which
highlights regions of vorticity.

4.2. The velocity of vortex rings

The simple considerations of ğ 2.2 are compared to experiment in table 4. The values
of V in (2.9) ignore the formation of the rings as they emerge from the gun. We
can make an estimate of such values using the methods outlined in ğ 4.5. The data,
fitted to the theoretical function describing slowing, can be extrapolated back to the
location of the gun. They are denoted V0.

The best way to understand these data can be seen from (2.9) written in the form

V

Vp

=
γΛ

3π
� 0.3. (4.2)

While there are various slow trends in the data of table 4, the data can be summarized
by V/Vp = 0.328 ± 0.024, in good agreement with (4.2). We shall see in ğ 5.3, however,
that this apparent agreement may be accidental.

4.3. The core size of vortex rings

We have found that the rotating core can be visualized directly by the Baker
technique. What is seen experimentally is shown in figure 6. Figure 6(a) shows the
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(a)

(b)

Figure 6. Visualization of vortex rings and core. (a) Ring and some surrounding flow as seen
from above the tank. Here, L = 1.23 cm, T = 0.167 s. (b) Ring as seen looking along the x-axis.
Note the thin core and large-amplitude Kelvin waves. A few hydrogen bubbles deliberately
introduced help to identify the core. A number of interesting pictures of this instability are
contained in Krutzsch (1939).

ring propagating across the tank as seen from above the tank, and figure 6(b) shows
the ring as seen looking directly into the mouth of the gun. The bending waves in
this example are quite evident.

The core size was measured by taking photographs of the ring and measuring the
extent of the densest part of the core structure. Results from data with the newer gun
are shown in tables 5 and 6. Table 5 shows that the core size scales roughly as the
square root of the stroke time, and table 6 shows that the core size is independent of
stroke length. The Saffman core radius is a =

√
4νT , independent of stroke length.
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L (cm) T (s) aobs (cm) a (cm) aobs/a

2.0 0.05 0.048 0.045 1.07
2.0 0.08 0.053 0.057 0.93
2.0 0.10 0.064 0.063 1.02
2.0 0.12 0.066 0.069 0.96
2.0 0.16 0.073 0.080 0.91

Table 5. Core radius as a function of stroke time and stroke length in water
(ν = 9.78 × 10−3 cm2 s−1) for a constant stroke length. Data taken with the new gun.

L (cm) T (s) aobs (cm) a (cm) aobs/a

1.4 0.10 0.061 0.063 0.97
1.8 0.10 0.066 0.063 1.05
2.0 0.10 0.064 0.063 1.02
2.2 0.10 0.070 0.063 1.11
2.6 0.10 0.064 0.063 1.02

Table 6. Core radius as a function of stroke time and stroke length in water for a constant
stroke time. Data taken with the new gun.

(a)
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Figure 7. (a) Photograph of a vortex ring core using a stroke time T = 0.176 s. (b) Plot of the
normalized intensity profile through the middle of the core in (a). The half-width at half-power
is 0.087 cm. The Saffman core size is 0.082 cm. —, dataset; - - -, Gaussianfit; . . . , half-power.

The results of tables 5 and 6 show that the experimentally determined core size
scales directly with the Saffman core size. A set of experiments conducted in a water–
glycerol mixture show that the core size scales correctly with kinematic viscosity.
However, the results in water–glycerol solutions are not as accurate as in pure water
and are not shown here.

If the ring is travelling slowly enough, we can obtain an entire array of intensities
such as we show in figure 7(b). We have made a fit to this data with a Gaussian whose
half-width at half-power is 0.087 cm, in good agreement with the Saffman result.
However, we do not know the quantitative relation between vorticity and intensity,
so we cannot comment on the distribution of vorticity in the core. We could try to
modify the Saffman core diameter from experiment, but to little avail. A 30 % change
in a results in only a 6 % change in velocity because the core size is in the logarithmic



Dynamics of thin vortex rings 335

1.2

1.1

1.0

0.9

0.8

ameasured

0 5 10 15
Time (s)

T = 0.167 s
T = 0.5 s
T = 1 s

asaffman

Figure 8. The radius of the core as a function of time for several stroke times. Kalliroscope
was used for visualization.

term. This is really beyond our current level of measurement ability and so it seems
best to adopt Saffman’s result as stated by him.

Given the success of the Saffman core model, it would seem natural to believe
that the core would grow as the ring propagates across the tank. If the core were
growing with time according to (4.1), a slow ring would attain a core radius of several
millimetres. The Baker method can only be used to visualize the initial core and not
any subsequent growth, because the Baker ‘ink’ diffuses 6000 times more slowly than
vorticity (Mazo et al. 2008).

We have attempted to measure the core size of a vortex ring in flight by turning off
the electrode in the gun so that the core is not initially marked and sending the ring
through a cloud of dark fluid created by injecting a small amount of NaOH in the
path of the ring using a syringe. This method was excellent for marking the vortex
bubble, but did not mark the core at all. This shows that the vortex bubble seals the
interior from oncoming flow, and the fluid inside the bubble is isolated from the rest
of the bath.

Since the Baker technique cannot be used to measure the growth of the core, we
turned our attention to Kalliroscope, which is useful here because it is distributed
throughout the entire tank and does not rely on diffusion to mark the core. The
Kalliroscope flakes in the core orient themselves so as to reflect light more intensely
in regions of vorticity. If the core grows by diffusion, the Kalliroscope flakes will
reorient to mark the new pattern of the core. We see from the data contained in
figure 8 that there is no evidence for enlargement of the core. If the core grew as in
(4.1), it would have enlarged by a factor of 5.

We observed that the intensity of light reflected from the core decreases over time
and while, to our knowledge, no direct correlation between the vorticity and light
intensity is possible, it does suggest a loss of circulation within the core as would be
expected from a slowing ring.

4.4. The slowing of vortex rings

We now turn to measurements of the slowing of vortex rings, and comparison to our
model of ğ 2.5. We use a high-speed camera to track individual vortex rings as they
propagate across the tank. The entries in table 4, then, are measurements on a single
vortex ring and the value of V0 comes from the best fit to the propagation data.

Figure 9 shows data taken on the arrival time of rings as a function of distance X

from the gun. The solid line is the best fit of (2.26) to the data. This yields a value



336 I. S. Sullivan, J. J. Niemela, R. E. Hershberger, D. Bolster and R. J. Donnelly

30

20

10

0 1 2 3
t (s)

X
 (

t)
 (

cm
)

Figure 9. Ring distance travelled X as a function of time. Time is measured from the end of
the stroke which is 9.5 × 10−3 cm long, and is accomplished in 60 ms.
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Figure 10. Slowing curve as a function of distance calculated from (2.22).

of V0 of 12 cm s−1, which is a fictitious initial velocity, as it ignores the formation
process which extends about one diameter from the mouth of the gun. We generally
compare our experimental values of V0 to the V calculated from (2.9). The data in
figure 9 yield the value of the damping coefficient c = 133 cm−1 defined in (2.25),
which together with (2.23) yields the slowing curve of figure 10. The drag coefficient
on the core Cdc is obtained from (2.25).

The decay of velocity as exponential in distance was first reported by Maxworthy
(1972). The decay law t−1 quoted by Maxworthy is true only at long times when
t 	 1.

Since we really expect the core to grow in time, we can find a rough estimate of the
effect of core diffusion upon velocity by combining (2.9) and (4.1), assuming R and
Γ are fixed. The result is shown by the dashed curve in figure 11, where we observe
that the shape of the decay is dramatically different from experiment. This supports
our result that the slowing of thin core rings as a function of time in water occurs
because the circulation is decreasing according to (2.22).

Assuming that our drag model captures the dominant factors in slowing the rings,
it is useful to deduce the drag coefficient from our experiments. The drag coefficients
are calculated as a best fit to the trajectory of the vortex rings obtained with the
high-speed camera using (2.23). The results are shown in figure 12, where we call the
core drag coefficient Cdc to distinguish it from the standard drag on a solid cylinder,
which we denote by Cd . Two sets of data are shown, one for the old gun design and
one for the new. Note that the values of Cdc as shown here are for the drag on the
core as envisaged by Saffman. They do drop with Reynolds number, as expected.
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Figure 11. The upper curve is the slowing curve measured as described above. The lower
curve is obtained by neglecting the drag on the core and assuming the core continues to grow
according to (4.1).
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Figure 12. The drag coefficient on the core Cdc as a function of Reynolds number
(Re =V02a/ν). The upper curve is the drag coefficient Cd for a solid cylinder. The solid
dark curve represents the drag on an equivalent sphere with radius of the bubble. ×, the
measured drag coefficients with the old vortex ring gun; grey curve is the best fit given by (4.4).
+, the drag coefficients measured with the new gun; the lower curve is the best fit to these
data given by (4.4).

The first thing worth noting is that the drag coefficients for the new gun are
significantly smaller than those measured with the old one. Additionally, the scatter
of data for the old gun is much greater than that with the old gun. One possible
reason for these differences is that the rings produced by the old gun form Kelvin
waves, such as those depicted in figure 6(b), at early stages, which cause slowing of the
ring. See Barenghi et al. (2006) for an analytical discussion of this slowing. The reason
we include this data is to illustrate how significant the slowing effect of the waves
is relative to other slowing mechanisms, a phenomenon first observed by Krutzsch
(1939). We hope to pursue the finer details of this observation in a future study.
Additional effects such as the piston velocity as a function of time and generator
geometry can also affect this.

For both guns the values of Cdc are lower than those for a solid cylinder. While
the drag on a rotating solid cylinder can be lower than on a non-rotating cylinder
(Goldstein 1938), there is not much precedent for the data shown in figure 12. It is
important to note though, that the drag mechanism we are capturing here is quite
different from that of a solid rotating cylinder as there are many complex processes
that contribute to the drag on the ring that do not exist in the solid cylinder case. For
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Figure 13. Use of a bob pendulum to calibrate the physical pendulum. The bob is suspended
by a long string to give it a long period. The bob is drawn back by means of an electromagnet
and released to hit the physical pendulum at the bottom of its swing. The velocity of the
pendulum at impact is obtained from the measurement in figure 14. The momentum given to
the pendulum is then the product of the mass and velocity of the bob.

the sake of comparison, we also include the drag coefficient for a sphere of radius
equal to that of the bubble. While the general trend of this coefficient behaves the same
for the solid sphere, note that this coefficient is higher than that which we measured
with the new vortex ring gun, whereas it is less than that observed with the old gun.

The data from figure 12 can be represented for the range 40 < Re < 300 by

Cdc = 7.07 × 10−6Re2 − 4.9 × 10−3Re + 1.49, (4.3)

Cdc = 1.007 × 10−5Re2 − 5.52 × 10−3Re + 0.8, (4.4)

which are fits to the data.
We know experimentally that vortex rings in superfluid helium do not experience

any dissipation below about 300 mK (Rayfield & Reif 1964). The representation of
data from experiments in water in a form such as we show figure 12, implies that
viscosity is the origin of the drag. In order to test this, we carried out the following
experiment. We measured the drag coefficient with stroke L = 2.0 cm, T = 0.33 s and
obtained Cdc = 0.52 in water at Re = 43.9. We then prepared a glycerol–water solution
of kinematic viscosity ν =1.7×10−2 cm2 s−1 and repeated the measurement obtaining
Cdc =0.60 at a Reynolds number of 33.3. Equation (4.4) gives a drag coefficient
Cdc =0.52 at Re =43.9, and Cdc = 0.63 at Re = 33.3. These results, well within the
observed scatter, confirm that the effect of viscosity on drag coefficient is properly
accounted for by Reynolds-number scaling.

4.5. Measurement of the impulse of vortex rings

A familiar measure of impulse is the ‘ballistic pendulum’ consisting of a bag of sand
suspended by a rope which was used in tests of bullets before modern electronics
was developed. A bullet fired into the bag causes the bag to swing, and hence gives
a measure of the impulse imparted by the bullet. In our case, we decided to make a
physical pendulum of 6 in × 6 in aluminium plate 1/32 in thick. Tests showed that
this is large enough to collect all the momentum from a vortex ring approximately
1 in in diameter. The problem, then, was to find a way to calibrate this pendulum
which is completely submerged in water without trying to understand effects such as
viscosity and added mass of such an awkward object. The method adopted is shown
in figures 13, 14 and 15. The key idea was to calibrate the pendulum by means of a
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Figure 14. The speed of the bob at its lowest point is measured as shown in (a). The bob is
released and a small rod on its bottom occults the laser at its lowest point of trajectory which
results in an oscilloscope trace similar to (b). Since the laser beam is roughly the same size
as the rod on the bob there are diffraction effects and a separate calibration must be used
to find its apparent diameter. Using different initial displaments of the bob, we can calculate
the impulse given to the pendulum as a function of the angle of deflection of the physical
pendulum.

Gun
Vortex ring

Physical
pendulumLaser

Figure 15. The last step is to remove the bob pendulum and fire vortex rings at the physical
pendulum. The original gun was used in these experiments. Since we have an absolute
calibration of the deflection as a function of momentum, we can determine the impulese of
the vortex ring without knowing anything about the physical characteristics of the pendulum.

bob pendulum suspended above the tank on a long string. The bob had a short rod
attached to its bottom for timing purposes. Measurements were taken when the bob
reached its lowest point.

Angular deflections were measured using a laser beam hitting a small mirror on
the rear of the physical pendulum and read on a metre stick some distance away. In
a more recent revision of the apparatus, we used a solid-state laser diode and lens as
a source of light and a line scan CCD angle sensor, outputting to an oscilloscope.
This gave a reliable measure of deflection which can be difficult to do by eye when
the deflections are very rapid.

The momentum calibration was expressed as a second-order power series in the
angle of deflection of the pendulum. Thus, measurement of the deflection of the
pendulum gave the experimental value of impulse Pe. It is not entirely clear to us
what role the added mass plays in this calibration. If it does apply, the added mass
is 1.84 g compared to the physical mass of the bob which is 28.8 g. The values of Pe

in tables 7 and 8 would increase by 6.4 %.
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L (cm) 1.5 2.0 2.5 3.0 3.0 3.0

T (s) 0.05 0.05 0.05 0.05 0.075 0.10
V (cm s−1) 9.4 15 20.5 26.2 16.2 11.6
R (cm) 1.37 1.55 1.65 1.70 1.70 1.70
a × 102 (cm) 4.47 4.47 4.47 4.47 5.48 6.33
Pe × 103 (g cm s−1) 257 448 632 877 622 468
Pv × 103 (g cm s−1) 193 432 714 978 629 464
Pe/Pv 1.3 1.0 0.88 0.89 0.98 1.0

Table 7. Measured impulse Pe for vortex rings from a gun with D0 = 2.54 cm compared to
impulse Pv calculated from velocity measurements, (2.9).

L (cm) 1.5 2.0 2.5 3.0 3.0 3.0

T (s) 0.05 0.05 0.05 0.05 0.075 0.10
Pe × 103 (g cm s−1) 257 448 632 877 622 468
Pp × 103 (g cm s−1) 228 405 633 912 608 456
Pe/Pp 1.1 1.1 1.0 0.96 1.0 1.0

Table 8. Comparison between the measure impulse Pe and the momentum given to the water
by the piston, Pp .

We can compare the momentum to other measurements by using the circulation Γv

as calculated from the velocity as described in ğ 2.2, equation (2.9). Then, Pv = ρπR2Γv .
Table 7 shows the results of six different calibration trials with various stroke

lengths L and stroke times T . We see that the direct measurement of impulse Pe is in
good agreement with the impulse calculated from velocity measurements.

The mass displaced by the piston Mp = ρπR2
0L and the momentum given to the

water by the piston in the gun is

Pp = MpVp. (4.5)

We show in table 8 a comparison between the measured impulse Pe and Pp .

4.6. The energy of vortex rings

Since the expression for the velocity of a viscous ring (2.9) is not much different from
the corresponding inviscid result (1.6), we might hope that the energy might not be
too far from the inviscid result

E = 1
2
ρΓ 2R

[
ln

8R

a
− α

]
= 1

2
ρΓ 2RΛ′ . (4.6)

The energy given to the water in the gun by the piston is called Ep ,

Ep = 1
2
MpV 2

p =
P 2

p

2Mp

. (4.7)

However, there are a couple of subtle points required in order to show this. The first
is the added mass discussed in ğ 2.4. The mass of water travelling with the bubble,
corrected for added mass, is Mb = Ωbρ(1 + k) and the momentum of water travelling
with the bubble is Pb = MbV . The kinetic energy associated with the travelling bubble
is P 2

b /2Mb. Now we have shown experimentally that Pp =Pb, and that Mb > Mp .
Thus, the kinetic energy associated with the bubble is considerably less than Ep . The
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Γobs (cm2 s−1) 11.4 16.6 21.9 27.0 31.0
Γcalc (cm2 s−1) 10.5 12.3 13.8 15.0 16.0
Γobs/Γcalc 1.09 1.35 1.59 1.80 1.90

Table 9. Comparison of circulation measured by Didden (1979) with our calculated values.
Reynolds numbers here are about 100Γ .

difference must be some potential energy associated with the bubble. It is known that
rectilinear vortices have an energy per unit length, or tension (see Donnelly 1991,
p. 13). Thus the ring has, in effect, an energy per unit length multiplied by 2πR and
that will be the energy E of the ring (4.6).

Let us explore this numerically. For a typical ring with L =1.23 cm, T = 0.167 s,
we find P 2

p/2Mp = 169.0 and P 2
b /2Mb = 46.58. The difference is given by (4.6) with

α = 2.04, not far from the values in table 1.

5. Comparison with the work of other investigators
We have not located another study of vortex rings with such thin cores. Nevertheless,

it is useful to compare our formulae to certain other experimental situations. Most
previous studies have focused on larger stroke time T and larger formation times,
L/D. Nevertheless, we compare our formulae to other experimental studies.

Two of the most influential papers in this field were written by Maxworthy (1972,
1974). His studies were carried out on a somewhat different orifice geometry and
initiated by a hand-operated syringe, involved thick core rings, making it difficult to
compare his results with ours. A careful discussion of Maxworthy’s work is contained
in Dabiri & Gharib (2004).

We noted the comparison between our measurements of eccentricity γ and those
of other authors in ğ 4.1.

5.1. The radius of vortex rings

We discussed in ğ 4.1 measurements of ring radii and a formula (2.4) for estimating
their radius. Auerbach (1988) reports

R

R0

= 0.937

(
L

R0

)1/3

, 0.6 �
L

R0

� 2. (5.1)

Our result can be written

R

R0

= 1.03

(
L

R0

)1/3

, 0.4 �
L

R0

� 2.4, (5.2)

which is in good agreement with Auerbach’s result.

5.2. Vortex circulation

Didden (1979) reports measurements of ring circulation with a 5 cm diameter tube
and a piston velocity of 4.6 cm s−1 taken at 15 cm from the gun. We show in table 9 the
comparison between Didden’s measurements of circulation reported in figure 17 of
his paper, and our calculations based on (2.8) and Didden’s experimental conditions.

After our impulse measurements were completed, we found that a related
measurement of impulse by means of a surge tube was carried out by Baird et al.
(1977). Although their method is less accurate, they too verified that the momentum
of the vortex ring is just equal to the momentum imparted by the piston.
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Figure 16. Comparison of our decay model with the measurements of Dabiri & Gharib
(2004) for the case L/D = 2. The upper symbols are the experimental data, the line represents
2.24.

5.3. Vortex velocities

Baird et al. (1977) showed that the ring velocity is approximately equal to 0.5 Vp.
That proportionality is demonstrated in our (2.9). It can be seen that our formulae
give a surprisingly good account of their data especially for smaller values of L/D0.
These are very fast rings with sometimes large formation times. Their figure 5 shows
a bubble with γ =0.55, in reasonable agreement with our value of 0.60.

Gharib et al. (1998) have made systematic measurements of vortex circulations as
a function of L/D ratios. Their results show that the flow for large L/D consists of
a leading vortex ring followed by a trailing jet. Clearly, our model does not contain
such information, but the results show that our model gives reasonable results for
small L/D, say L/D < 2.

Our model predicts (4.2) based on Saffman’s value of β = 0.558. Our data is in fair
agreement with (4.2): V/Vp = 0.328±0.024. However, our new gun gives V/Vp =0.63,
Baird et al. (1977) give V/Vp =0.493 ± 0.072 and Dabiri & Gharib (2004) give
V/Vp = 0.4. At first sight there is nothing we can do to alter (4.2). However, we can
appeal again to Saffman (1978) who shows that for viscous vortex rings the quantity
β , and hence the speed of rings, can depend upon the distribution of vorticity in the
core, see his equations (2.17), (3.5) and (3.6). Indeed, the core structure itself affects
the ring velocity as we see in ğ 1.1. This problem clearly deserves further investigation.
In the meantime, we suggest taking the ratio V/Vp as a figure of merit for each gun
design.

5.4. The slowing of vortex rings and decay of circulation

Dabiri & Gharib (2004) have studied the decay of both velocity and circulation for
vortex rings fired at a piston velocity of 5.5 cm s−1 from a 2.54 cm diameter gun. Using
digital particle-image velocimetry (DPIV), the authors measured the decay of ring
velocity and circulation as a function of time. We digitized their results for velocity in
their figure 7(a) and circulation in figure 9 for the case of zero counterflow. Figure 16
shows the decay of velocity as a function of time according to (2.24). Both the decay
of velocity and decay of vorticity were captured well by our methods. The magnitude
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Figure 17. Instantaneous streamlines and vorticity patches for L/D =2 and T = 1.67 s.
(After Dabiri & Gharib 2004.)

of the velocity itself depends on the structure of the gun, as discussed in the previous
section.

Our model predicts that the rate of decay if circulation is proportional to the
slowing of the ring (2.22):

dΓ

dt
=

4πR

Λ

dV

dt
. (5.3)

Approximating the velocity and circulation decay by straight lines over their limited
range, we find, very roughly dV/dt = − 0.074, and dΓ/dt = − 0.456. The ratio of
these quantities is 6.16, not far from 4πR/Λ = 6.92.

While we find fair agreement on the value of the velocity for the case of figure
16, our core size is calculated to be a = 0.192 cm at the end of the stroke (0.924 s).
Figure 17 shows a core at 1.67 s nearly filling the bubble. The darker shaded region
corresponds to regions of vorticity greater than 1 s−1.

Dabiri & Gharib (2004) show in their figure 6, peak vorticities of order 10 s−1.
Using our core size, we find peak vorticities about an order of magnitude greater.
This is probably due to the finite resolution of the PIV instrument used by them,
which has a pixel resolution of approximately 0.19 × 0.19mm2 and laser time pulse
of 18 ms.

Shusser & Gharib (2000) recommended a formula for the velocity of thick rings
based on the slug model (equation (23) of their paper),

Vsg = 0.5352

√
ρΓ 3

πP
. (5.4)

Applying (5.4) using their expressions for Γ and P to the data in figure 17, we find
the velocity V = 1.2 cm s−1 very close to our result shown there. In the notation of
this paper

Vsg = 0.5352
Γs

πR0

. (5.5)

The principal difference between (5.4) and (2.9) is to replace our logarithmic term by
a constant and the ring radius by the orifice radius.

Weigand & Gharib (1997) studied the evolution of laminar vortex rings using
laser-Doppler anemometry (LDA) and DPIV methods and present a discussion on
the slowing of vortex rings. They consider the analysis of Saffman (1970) for rings
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without small core sizes, which is based on dimensional arguments. This argument
states that rings slow owing to loss of impulse due to an increase in the vortex ring
radius, R, and it is argued that the velocity decays as

V ≈ 1

k
(R2 + k′νt)−2/3, (5.6)

where k and k′ are constants. Fitting these constants, they find reasonable agreement
between experimental measurements and predictions of the ring velocities. However,
as discussed in ğ 4.1, and table 2, we found that the radius of the ring did not increase
during flight, and therefore (5.6) does not seem to apply to our experiments.

Fukumoto & Moffatt (2000) have considered the motion of a vortex ring in a
viscous fluid starting from an infinitely thin circular loop of radius R at time t =0.
They have carried Saffman’s formula (2.12) a further step.

V =
Γ

4πR

{
ln

4R√
νt

− 0.558 − 3.6716
νt

R2

}
. (5.7)

Equation (5.7) describes slowing of vortex rings. It is in good agreement with direct
numerical simulations by Stanaway, Cantwell & Spalart (1988) and on a scale such as
we show in the lower curve of figure 11, it is very close to the Saffman result shown
there.

6. Conclusions and discussion
The expressions developed in this paper are in many ways a matter of guessing,

and we may have strayed too far from the real physics of the situation. Nevertheless,
it is clear that these results correlate with a substantial amount of the published data,
especially that of recent years. The situation on several fronts remains unsatisfactory.
It is difficult to try to imagine why the vortex core does not diffuse. Our picture does
not contain any information about rings of formation time L/D greater than 4.

We summarize the relations developed in this paper below, for convenience.

L, T stroke length and stroke time,
Vp = L/T mean velocity of the piston,
L/D0 = VpT /D0 dimensionless formation time,
L/D0 = 4 formation number,
D0, R0 diameter and radius of the gun,
ν kinematic viscosity of the fluid,
γ eccentricity of the bubble,
k Bessel added mass factor,
Cdc measured drag coefficient on a ring.

Saffman velocity for propagation of a vortex ring in a viscous fluid

V =
Γ

4πR
Λ, (6.1)

Λ = ln

(
8R

a

)
− β, (6.2)

β = 0.558. (6.3)

Saffman core size

a =
√

4νT . (6.4)
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Radius of the vortex ring

R =
3

√
3R2

0L

4γ
. (6.5)

Circulation of the vortex ring

Γ =
R2

0LVp

R2
=

R2
0L

2

R2T
. (6.6)

Velocity of the ring at formation

V0 =
Γ

4πR

(
ln

8R

a
− 0.558

)
=

γVp

3π
Λ. (6.7)

Radius of the bubble

Rb =
3

√
9πR2

0L

4γ 2Λ (1 + k)
. (6.8)

Entrained fraction of fluid in the bubble

η = 1 − Λ (1 + k) γ

3π
. (6.9)

Velocity of the ring as a function of distance

V = V0e
−cX. (6.10)

Velocity of the ring as a function of time

V =
V0

(1 + V0ct)
. (6.11)

Distance travelled by the ring in time t

X(t) =
1

c
ln (V0ct + 1) . (6.12)

Damping coefficient of vortex ring velocity

c =
CdcaΛ

2πR2
. (6.13)

Energy of a ring at formation

E = 1
2
ρΓ 2RΛ′, (6.14)

Λ′ = ln

(
8R

a

)
− α, (6.15)

α = 2.05. (6.16)
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