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Abstract

The Henry formulation, which couples subsurface flow and salt transport via a variable-density flow formulation, can be used to eval-
uate the extent of sea water intrusion into coastal aquifers. The coupling gives rise to nontrivial flow patterns that are very different from
those observed in inland aquifers. We investigate the influence of these flow patterns on the transport of conservative contaminants in a
coastal aquifer. The flow is characterized by two dimensionless parameters: the Péclet number, which compares the relative effects of
advective and dispersive transport mechanisms, and a coupling parameter, which describes the importance of the salt water boundary
on the flow. We focus our attention on two regimes – low and intermediate Péclet number flows. Two transport scenarios are solved
analytically by means of a perturbation analysis. The first, a natural attenuation scenario, describes the flushing of a contaminant from
a coastal aquifer by clean fresh water, while the second, a contaminant spill scenario, considers an isolated point source.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Contamination of freshwater bodies by salt water poses
one of the most significant environmental challenges.
Within the past few decades, the water quality in many
of the coastal aquifers across the world has rapidly
degraded. Over-exploitation of the groundwater basins
has led to the drops of water tables and seawater intrusion
into the aquifers. In many countries, e.g., Cyprus, Mexico,
Oman and Israel, hundreds of wells along the coastline had
to be shut down. A common source of this salt water is the
sea, although naturally occurring brines, landfill leachate
and irrigation practices can also result in contamination.
The scenario we consider in this study is when sea water
intrudes into a coastal aquifer, which poses significant envi-
ronmental and economical challenges around the world,
because even very small proportions of seawater render
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freshwater unpotable. Facing a shortage of suitable drink-
ing water, many arid coastal countries have had either to
look for alternative sources, such as imported water, or
to implement costly technological solutions, such as
desalination.

While salt as a source of contamination of coastal aqui-
fers has received considerable attention, other threats to
the quality of the groundwater have been studied less sys-
tematically. Results from an EU-sponsored project entitled
BOREMED (Boron contamination of water resources in
the Mediterranean region: distribution, sources, social
impact and remediation) show that Boron contamination
in coastal aquifers poses a potential threat to the future
use of many Mediterranean groundwater basins as a source
of drinking and irrigation water [1]. Not only might Boron
render potential drinking water unpotable, but it may also
make it unsuitable for irrigation since elevated Boron con-
centrations are known to cause certain crop failure.

Every summer, coastal communities from Maine to Cal-
ifornia are forced to temporarily close some of their most
popular beaches because of unsafe levels of bacteria in
the water. Typically, these sudden bacterial blooms disap-
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pear, only to return without warning later in the season. In
many cases, health officials are unable to pinpoint the cause
of the contamination, leading frustrated beachgoers to
blame everything from inadequate sewage treatment plants
to overwhelmed storm drain systems, while ignoring the
possibility of groundwater contamination in the beach
aquifer itself. The studies by Boehm et al. [2,3] indicate that
a large fraction of this contamination may actually be com-
ing from coastal groundwater.

Across the world, in coastal regions with heavy mining
communities, deterioration of coastal aquifers is reaching
serious proportions and their viability is currently threa-
tened. For example, according to the Minister of Water
Affairs and Forestry of South Africa, the Cape Flats aqui-
fer, a part of the important coastal aquifer system in South
Africa, which underlies large mining developments, fits into
this category of rapidly deteriorating water sources. These
are but a few examples. Others include contamination by
heavy metals, groundwater nutrients, fertilizers, etc.

Modeling of contaminant transport in coastal aquifers is
complicated by the influence of an intruding seawater
wedge on the velocity field within the aquifer. Increased
salinity at the seaward boundary distorts the velocity field
from a simple cross-flow and introduces vertical velocities
along with velocity gradients. Regardless of application,
there is a scarcity of analytical solutions to advective-dis-
persion equation with a variable velocity fields. Such solu-
tions are mostly limited to either steady-state transport or
simplified flow conditions or both (e.g., [4]).

For seawater intrusion, the velocity fields can be com-
puted with two alternative paradigms. The first postulates
the existence of a sharp interface separating the fresh and
salt water. This assumption allows the use of potential the-
ory to derive analytical solutions for the location of this
interface (e.g., [5–8]). Since the sharp interface paradigm
ignores a transition zone between the fresh and salt water,
these and other similar results are strictly valid for advec-
tion-dominated systems.

The second paradigm explicitly accounts for the exis-
tence of a transitional zone. The model consists of a variable
density (Darcy) flow equation coupled with the advection-
diffusion equation for the transport of salt. Even for the
simplest geometries of a flow domain, this coupling makes
it difficult to obtain analytical solutions, which are essential
for the testing and validation of numerical codes. To the
best of our knowledge, the Henry [9] formulation of vari-
able density flow in coastal aquifers provides the only math-
ematical setting for which analytical solutions are available.
Consequently, Henry’s problem is one of the most widely
used benchmarking problems. Henry’s quasi-analytical
solution to this problem is based on a Galerkin projection
and results in infinite series, whose slow convergence rates
require the extensive use of numerics. Numerical errors that
are inherent in these computations might compromise the
usefulness of Henry’s solution for benchmarking.

Simpson and Clement [10] hypothesized that under cer-
tain conditions the Henry problem can be simplified by
replacing the full coupling of the governing equations with
a pseudo-coupling that is applied via the boundary condi-
tions (i.e. by assuming that the spatial variability of the
water density has negligible effect). Dentz et al. [11] tested
this hypothesis by deriving perturbation-based analytical
solutions for the fully and pseudo-coupled systems and
testing their accuracy and robustness numerically. They
showed that for many cases it is indeed sufficient to only
implement the coupling via the boundary conditions, which
is the approach we adopt in this study.

In this paper, we are concerned with the transport of
passive contaminants in a coastal aquifer. The problem is
formulated in Section 2 and its dimensional analysis is pre-
sented in Section 3. Sections 4 and 5 contain the analyses of
two different contamination scenarios corresponding to
natural attenuation and isolated sources, respectively.

2. Formulation of Henry problem for contaminant transport

Consider flow and contaminant transport in a confined
coastal aquifer in which the diffused seawater wedge is in
equilibrium with the freshwater flow field (Fig. 1a). The
aquifer is also assumed to be homogeneous and isotropic,
with constant hydraulic conductivity and porosity. Follow-
ing Henry [9], we idealize this problem by treating the flow
domain as a rectangle shown in Fig. 1b.

Henry’s formulation of the corresponding two-dimen-
sional flow problem is based on mass conservation and a
modified Darcy equation written in terms of freshwater
head hðxÞ

r � q ¼ 0; q ¼ �Kr hþ y�
c
cs

� �
; � � qs � qf

qf

; ð1Þ

where q is the fluid flux; K is the hydraulic conductivity; c

and cs are the concentrations of salt in groundwater and
sea water, respectively; and qf and qs are the fresh and
sea water densities, respectively. The equivalent freshwater
head h is defined as

h ¼ p
qf g
þ y; ð2Þ

where p is water pressure, g is the gravitational acceleration
constant, and y is the vertical coordinate. These equations
are subject to the boundary conditions

hðx ¼ 0; yÞ ¼ h0; hðx ¼ L; yÞ ¼ d þ �ðd � yÞ ð3Þ
oh
oy
ðx; y ¼ 0Þ ¼ �� cðx; y ¼ 0Þ

cs

;

oh
oy
ðx; y ¼ dÞ ¼ �� cðx; y ¼ dÞ

cs

: ð4Þ

The concentration of salt in groundwater, cðxÞ, satisfies a
steady advection-diffusion equation

Krh � rcþ K
c
cs

oc
oy
þ xDr2c ¼ 0; ð5Þ

where x is the porosity of the medium and D is the effective
(average) dispersion coefficient for salt which, in Henry’s



Fig. 1. (a) A schematic representation of a coastal aquifer system and (b) its mathematical conceptualization by Henry [9].
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formulation, is assumed to be constant throughout the en-
tire domain. The boundary conditions for salt transport are
freshwater at the inlet boundary, saline water at the outlet
boundary and impermeable conditions on the top and bot-
tom of the aquifer. This corresponds to

cðx ¼ 0; yÞ ¼ 0; cðx ¼ L; yÞ ¼ cs; ð6Þ
oc
oy
ðx; y ¼ 0Þ ¼ 0;

oc
oy
ðx; y ¼ dÞ ¼ 0: ð7Þ

Additionally, consider the migration of a conservative con-
taminant in the velocity field u ¼ q=x given by a solution
of the Henry problem (1)–(5). The concentration of this con-
taminant, cðx; tÞ, satisfies a transient advection-diffusion
equation

oc
ot
þ u � rc ¼ DL

o2c
ox2
þ DT

o2c
oy2

: ð8Þ

In the spirit of Henry’s formulation, the longitudinal (DL)
and transverse (DT) dispersion coefficients are assumed to
be constant. Kalejaiye and Cardoso [12] showed that this
is a legitimate assumption for flows where the Rayleigh
number is less than 1000, which holds for all models pre-
sented in this paper. We formally define this Rayleigh num-
ber, Ra, in the following section on dimensionless analysis.
Introducing Dc � DL and DT ¼ bDc, we rewrite (8) as

oc
ot
þ u � rc ¼ Dc

o
2c

ox2
þ b

o
2c

oy2

� �
: ð9Þ
Depending on a pollutant, Dc might or might not coincide
with the dispersion coefficient for salt, D. To simplify the
subsequent presentation, we assume that these two disper-
sion coefficients are of the same order, Dc � OðDÞ. The
specification of initial and boundary conditions for (8) de-
scribes a particular contamination scenario, among which
we consider two.

The first represents natural attenuation of a contami-
nated coastal aquifer, a setting in which seaward flow of
fresh water flushes out a contaminant that is initially dis-
tributed uniformly throughout an aquifer. In addition to
its practical significance, this problem allows one to iden-
tify regions where contamination is most persistent and
to elucidate the effects of seawater intrusion on contami-
nant transport in coastal aquifers. In particular, our anal-
ysis can be used to address important logistical questions,
such as: How does the sea boundary affect the clean up
process? What are the long-term consequences of contam-
ination? How does contaminant fate and migration in
coastal aquifers differ from those in inland confined
aquifers?

The second scenario models the spread of a contaminant
released from an isolated spill conceptualized here as a
point source. Common examples include contaminants
leaking from a septic tank, a leak from a pipe or a small
spill pool. Due to the linearity of the transport equation,
understanding the problem associated with a single source
is equivalent to understanding that of any number of point
and/or distributed sources.
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3. Dimensional analysis

Following [11], we introduce dimensionless parameters

n ¼ x
L
; g ¼ y

L
; f ¼ d

L
; s ¼ jDh0

L2
t;

C ¼ c
cs

; C ¼ c
c0

; ð10Þ

H ¼ h� d
Dh0

; U ¼ uL
KDh0

; Pe ¼ KDh0

hD
;

Pec ¼
KDh0

hDc
; a ¼ �L

Dh0

ð11Þ

where c0 is a problem specific reference contaminant con-
centration. The governing Eqs. (1)–(8) are recast in the
dimensionless form

r2H ¼ �a
oC
og
; U ¼ �rH � e3aC; ð12Þ

rH � rC þ aC
oC
on
þ 1

Pe
r2C ¼ 0; ð13Þ

and

oC
os
þ u � rC ¼ 1

Pec

o2C

on2
þ b

o2C
og2

� �
: ð14Þ

The gradients in (12) and (13) are nondimensional (i.e.
r ¼ ½ o

on
o
og�) as are all gradients from here on in. These equa-

tions are subject to the boundary conditions

Hð0; gÞ ¼ 1; Hð1; gÞ ¼ aðf� gÞ; ð15Þ
and

oH
og
ðn; 0Þ ¼ �aCðn; 0Þ; oH

og
ðn; 0Þ ¼ �aCðn; 0Þ: ð16Þ

It now becomes apparent that flow and transport are gov-
erned by three dimensionless parameters Pe, Pec, and a.
The Péclet numbers Pe and Pec compare the relative impor-
tance of advection and dispersion mechanisms for the
transport of salt and contaminant, respectively. The cou-
pling parameter a accounts for density variation between
the seawater and fresh water and quantifies the effects of
gravity and the salt water boundary on the flow field. Spe-
cifically, a = 0 corresponds to a uniform horizontal flow; as
a increases, gravity effects introduce vertical velocities and
modify horizontal ones. The Rayleigh number as defined
by [12] is the product of a and Pe (i.e. Ra = aPe).

Contaminant transport under the high Péclet number
regimes is dominated by advection. Since diffusion is negli-
ble, contaminant is carried along the flow streamlines, so that
its migration is described by solutions to the flow problem.
Our analysis deals with the remaining two Péclet number
regimes: low and intermediate. Since typical Péclet numbers
for coastal aquifers fall within the range Oð10�2Þ 6 Pe 6
Oð105Þ (Nishikawa of USGS, personal communication),
these two Péclet number regimes are of practical significance.

4. Natural attenuation of contaminated coastal aquifers

Consider the following simplified problem of natural
attenuation of coastal aquifers. Suppose that at time
t = 0 an aquifer is uniformly contaminated by, say, indus-
trial or agricultural pollutants, whose concentration is cin.
Then the sources of contamination are eliminated, and
fresh water flowing towards the sea begins to remove the
contaminants from the aquifer.

An analytical solution for this idealized scenario, which
is based on the assumption that the contaminant is distrib-
uted uniformly throughout the aquifer, can be used as a
benchmark for numerical analyses of more realistic natural
attenuation scenarios. Additionally, the technique of allow-
ing a uniformly distributed contaminant to be drained
from the ambient environment – the so-called ‘‘step down’’
method – is routinely used to understand the fundamental
physics of the transport phenomenon [13,14].

Our goal is to describe the seaward migration of con-
taminants and to identify regions where the contamination
remains persistent. For this case the reference density
defined in the nondimensionalisation in (10) is c0 ¼ cin.
Contaminant transport is described by (14) subject to the
initial and boundary conditions

Cðn; g; 0Þ ¼ 1;
oC
og
ðn; 0; sÞ ¼ oC

og
ðn; f; sÞ ¼ 0;

Cð0; g; sÞ ¼ Cð1; g; sÞ ¼ 0: ð17Þ

The last boundary condition implies that the sea acts as an
infinite reservoir that dilutes and immediately carries off the
contaminant.

4.1. Intermediate Péclet number

The velocity distribution U in (14) can be obtained ana-
lytically via a perturbation expansion of hydraulic head H

and other system states in the coupling parameter a [11]

H IPðnÞ ¼
X1
k¼0

akH IP
k ðnÞ; UIPðnÞ ¼

X1
k¼0

akUIP
k ðnÞ: ð18Þ

The convergence of these series requires that a be small, an
assumption whose validity is discussed in [11]. If one fur-
ther assumes that the pseudo-coupled model is valid as
well, then the terms in the expansion (18) are

H IP
0 ¼ 1� n; H IP

1 ¼ gBðnÞ; H IP
i � 0: ð19Þ

where

gB ¼
nf
2
þ
X1
l¼1

al cos
lpg
f

� �
sinhðlpn=fÞ
sinhðlp=fÞ and

al ¼ 2f
1� ð�1Þl

l2p2
: ð20Þ

It is worthwhile to recall that the second assumption im-
plies that flow and salt transport are coupled only through
the boundary conditions. The numerical and analytical
studies [10,11] demonstrated that this assumption remains
accurate over a wide range of flow conditions.

Substituting (19)-(20) into (12) and (18), we obtain a
solution for the velocity field U ¼ ðU ; V ÞT
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U IP
0 ¼ 1;

U IP
1 ¼

f
2
�
X1
l¼1

lpal cos
lpg
f

� �
coshðlpn=fÞ
sinhðlp=fÞ ; ð21Þ

and

V IP
0 ¼ 0; V IP

1 ¼
X1
l¼1

lpal sin
lpg
f

� �
sinhðlpn=fÞ
sinhðlp=fÞ : ð22Þ

Both U IP
i � 0 and V IP

i � 0 for i P 2. In analogy to (18), we
look for a solution of the contaminant transport problem
(14) and (17) in the form of an infinite series in the powers
of a,

CIP ¼
X1
k¼0

akCIP
k : ð23Þ

The leading term in this expansion satisfies

oCIP
0

os
þ oCIP

0

on
¼ 1

Pec

o
2CIP

0

on2
þ b

o
2CIP

0

og2

� �
ð24Þ

subject to initial condition CIP
0 ðx; y; t ¼ 0Þ ¼ 1 and the

boundary conditions (17). The corresponding solution is

CIP
0 ¼ 8pe

Pe
2 ðn�

t
2Þ
X1
n¼0

an sinðnpnÞe�p2n2 t
Pe ;

an ¼ n
1� ð�1Þne�Pe=2

Pe2 þ 4n2p2
: ð25Þ

The first-order term CIP
1 in the expansion (23) satisfies

oCIP
1

os
þ oCIP

1

on
¼ 1

Pec

o2CIP
1

on2
þ b

o2CIP
1

og2

� �
� U IP

1

oCIP
0

on
ð26Þ

subject to the homogeneous initial and boundary condi-
tions. A coordinate transformation

ĝ ¼ g=
ffiffiffi
b

p
ð27Þ

maps (26) onto an isotropic advection–diffusion equation

oCIP
1

os
þ oCIP

1

on
¼ 1

Pec

o
2CIP

1

on2
þ o

2CIP
1

oĝ2

� �
� U IP

1 ðn; ĝÞ
oCIP

0

on
: ð28Þ

Let

Gðx; y; n; f; sÞ ¼ 4

f

X1
p¼1

sinðppxÞ sinðppnÞ exp � p2p2

Pe
s

� �" #

� 1

2
þ
X1
m¼1

cos
mpy
f

� �
cos

mpg
f

� �"

� exp � p2m2

Pef2
s

� �#
ð29Þ

denote the Greens function for an isotropic diffusion equa-
tion subject to the appropriate homogeneous initial and
boundary conditions. Then a solution of (28) can be writ-
ten as

CIP
1 ¼ �

Z s

0

Z 1

0

Z f̂

0

Gðn; ĝ; n1; ĝ1; s� tÞU IP
1 ðn1; ĝ1Þ

� oCIP
0 ðn1; ĝ1; tÞ

on
e�

Pe
2 ðn1� t

2Þ dĝ1 dn1 dt; ð30Þ
which can be written in the original coordinate system
ðn; gÞ as

CIP
1 ¼ �

Z s

0

Z 1

0

Z f̂

0

Gðn; g; n1; ĝ1; s� tÞU IP
1 ðn1; ĝ1Þ

� oCIP
0 ðn1; ĝ1; tÞ

on
e�

Pe
2 ðn1� t

2Þ dĝ1 dn1 dt: ð31Þ

This solution can be evaluated either analytically or numer-
ically. The former approach consists of evaluating the
quadratures analytically and is given in terms of infinite
series. These series converge at least exponentially, and
hence can be truncated after a few terms. (We do not repro-
duce this expression here due to its length.) The numerical
evaluation consists of computing the quadratures with an
adaptive recursive Simpson’s method. Both methods pro-
duced identical results and required approximately the
same computational time.

To validate the proposed approach and to test its accu-
racy, we compare the first-order perturbation solution
CIP � CIP

0 þ aCIP
1 with a numerical (finite difference) solu-

tion of the contaminant transport problem (14) and (17).
Fig. 2 displays this comparison for Pe = 10 and two values
of a, (a) a = 0.5 and (b) a = 1. The two solutions agree very
well for the a = 0.5 case. The agreement is still good for
a = 1, although small differences between the perturbation
and numerical solutions are more evident.

The effects of the coupling parameter a on contaminant
transport are elucidated in Fig. 3, which shows concentra-
tion profiles for Pe = 10, b = 1, and several values of a. We
also considered different values of b ¼ DT=DL 2 ½0:1; 1� and
found their effects on contaminant distributions to be neg-
ligible. This is because the vertical component of the con-
centration gradient in this transport regime is very small.

The effects of the coupling parameter a are strongest in
the region adjacent to the sea, and diminish further inland.
The increase in a leads to a redistribution of contaminant
relative to the case where no seawater intrusion occurs.
The contaminant concentration is highest in the upper
coastal side of the domain and decreases slightly in the
lower right part. This behavior is due to the fact that the
region of outflow is diminished because of the presence
of the intruding sea water. (It does not imply that the con-
taminant concentration increases as it approaches the sea-
ward boundary.) Similarly, less contaminant is present in
the lower right region, because uncontaminated seawater
enters and flushes this region. This has important implica-
tions for the fate of a contaminant, as discussed in detail in
Section 5.
4.2. Small Péclet number

Small Péclet numbers correspond to either high disper-
sion or small mass fluxes. Both scenarios can occur in
coastal aquifers, in which tidal fluctuations increase the
effective dispersion coefficients and natural hydraulic gradi-
ents are small. Analytical solutions to the flow problem can



Fig. 2. Temporal snapshots of contaminant concentration distributions of the natural attenuation problem with Pe = 10 and (a) a = 0.5, (b) a = 1 at two
heights (g = 0.1 (top row) and g = 0.4 (bottom row)) across the width of the aquifer provided by the perturbation (solid line) and numerical (dots)
solutions.

Fig. 3. Temporal snapshots of contaminant concentration distributions provided by the perturbation (solid line) solution of the natural attenuation
problem with Pe = 10 and a = 0 (solid lines), a = 0.5 (dots) and a = 1 (dashed lines).
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now be obtained via perturbation expansions in small Pe

[11]

H SP ¼
X1
n¼0

PenHSP
n ; USP ¼

X1
n¼0

PenUSP
n : ð32Þ
The leading terms in these expansions are given by
HSP
0 ¼ 1� nþ anðf� gÞ; USP

0 ¼ USP
0 ðgÞen � ½1þ aðg� fÞ�en;

ð33Þ
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where en is the unit vector along the n-axis of the coordi-
nate system. Inserting (33) into (14) and rescaling time with
the diffusive timescale t ¼ sL=Dc, we obtain an equation

oC
os
þ PeU SP

0 ðgÞ
oC
on
� o2C

on2
þ b

o2C
og2

� �
¼ 0; ð34Þ

which describes contaminant transport in linear shear flow.
We look for a solution of the transport Eq. (34) subject

to the initial and boundary conditions (17) in the form of
an infinite series in the powers of Pe

CSP ¼
X1
k¼0

Pek
cC

SP
k : ð35Þ

The leading term in this expansion satisfies

oCSP
0

os
¼ o

2CSP
0

on2
þ b

o
2CSP

0

og2
ð36Þ

subject to initial condition CSP
0 ðn; g; s ¼ 0Þ ¼ 1 and the

boundary conditions (17). The corresponding solution is

CSP
0 ¼ 2

X1
n¼1

1� ð�1Þn

np

� �
sinðnpnÞe�p2n2t: ð37Þ

The first-order term in the expansion (35) satisfies

oCSP
1

os
¼ o2CSP

1

on2
þ b

o2CSP
1

og2
� U SP

0

oCSP
0

on
ð38Þ

subject to the homogeneous initial and boundary condi-
tions. Using the coordinate transformation (27), we obtain
a solution of this equation,

CSP
1 ¼ �

Z s

0

Z 1

0

Z f̂

0

Gðn; ĝ; n1; ĝ1; s� tÞUSP
0 ðĝ1Þ

� oCSP
0 ðn1; ĝ1; sÞ

ox
dĝ1 dn1 dt: ð39Þ

Fig. 4 shows a good agreement between the first-order per-
turbation solution CSP � CSP

0 þ PeCSP
1 and a finite difference

solution of the contaminant transport problem (14) and
(17) with Pe = 0.5, b = 1 and a = 2. A careful examination
of the solution reveals that concentration isolines within
the flow domain are slightly tilted, which is a result of
the shear flow (33). For a = 2 the first-order correction is
small, and so is the influence of the sea boundary.

Fig. 5 demonstrates the effects of the coupling parameter
a on contaminant transport with Pe = 0.5 and b = 1. Sim-
ilar to the intermediate Péclet number regime, we found
that b has a minimal effect as the dominant direction of
transport is in the longitudinal direction. The effects of
the saltwater boundary are quite insignificant, with the dif-
ference between the solutions corresponding to a = 0 and
a = 4 being minute. At a = 20 one can see some tilting of
the isolines, but even so it is not all that significant. The rel-
atively small influence of the sea boundary (as quantified
by the coupling parameter a large) on contaminant trans-
port process can be explained the fact that, for small Péclet
numbers, transport is dominated by diffusion. Since the sea
boundary influences the velocity field and, thus, advective
transport, its overall effects on the small-Péclet-number
transport is insignificant.

5. Point-source contamination of coastal aquifers

Consider the migration of a pollutant introduced into an
initially uncontaminated coastal aquifer by an isolated point
source of unit strength (a delta function) located at a point
ðn0; g0Þ. This problem, which corresponds to a leak from a
storage tank or a pipe, a small spill pool, etc., is described by

oC
os
þU � rC ¼ 1

Pec
r2Cþ dðn� n0Þdðg� g0Þ ð40Þ

subject to the initial and boundary conditions

Cðn; g; 0Þ ¼ 0;
oC
og
ðn; 0; sÞ ¼ oC

og
ðn; f; sÞ ¼ 0;

Cð0; g; sÞ ¼ Cð1; g; sÞ ¼ 0: ð41Þ
Depending on the flow regime, the velocity U is given by
either (21), (22) or (33). Note that due to the linearity of
the transport Eq. (40), the solutions obtained in this section
can be utilized—by means of a superposition—to describe
contaminant migration from multiple point and/or distrib-
uted sources.

5.1. Intermediate Péclet number

We represent a solution of the contaminant transport
problem (40)-(41) as an infinite series in the powers of a
(23). The leading term in this expansion satisfies

oCIP
0

os
þ U IP

0

oCIP
0

on
¼ 1
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o2CIP

0

on2
þ b

o2CIP
0

og2

� �
þ dðn� n0Þdðg� g0Þ

ð42Þ
subject to the initial and boundary conditions (41). The
corresponding solution is

CIP
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2
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ePeðn�n0Þ=2
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: ð43Þ

The first-order term satisfies
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1
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1
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subject to the initial and boundary conditions (41). The
corresponding solution is

CIP
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Z s

0

Z 1

0

Z f̂

0

Gðn; g; n1; ĝ1; s� tÞ/ðn1; ĝ1; tÞdĝdndt;
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Fig. 4. Temporal snapshots of contaminant concentration distributions at two heights (g = 0.1 and g = 0.4 across the width of the aquifer provided by the
perturbation (solid line) and numerical (dots) solutions of the natural attenuation problem with a = 2 and Pe = 0.5.

Fig. 5. Temporal snapshots of contaminant concentration distributions provided by the perturbation (solid line) solution of natural attenuation problem
with Pe = 0.5 and a = 0 (solid lines), a = 4.0 (dots) and a = 20.0 (circles).
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where

/ðn; ĝ; sÞ ¼ � U 1ðn; ĝÞ
oCIP

0

on
ðn; ĝÞ þ V 1ðn; ĝÞb

1
2
oCIP

0

og
ðn; ĝÞ

� �
� e�

Pe
2 ðn�

s
2Þ: ð46Þ

The integrals in (45) were evaluated both analytically and
numerically, with the two approaches leading to the identi-
cal results.

Fig. 6 shows the steady-state contaminant distributions
corresponding to three alternative spill locations, three
values of a and two values of b ¼ DT=DL. (Recall that
a = 0 corresponds to the fully decoupled flow model,
and that the influence of the seawater boundary on flow
and transport patterns increases with the value of a.)
Regardless of the location of the spill, the value of a affects
the contaminant concentration along the seaward (right)
boundary. Its influence diminishes with the distance from
the sea.
An important feature of both the natural attenuation
and point spill problems is that as a increases the contam-
inant concentration decreases in the lower right section of
the aquifer and increases in its upper right section. This
is evident in both the isotropic and anisotropic cases. This
behavior appears to be a universal characteristic of con-
taminant transport in coastal aquifers that reflects the
dominant flow patterns. At the bottom of the seaward
boundary there is an influx of uncontaminated (salty)
water, which causes the decrease in contaminant in that
region of the aquifer. However, this intruding sea water
diverts the freshwater flow inside the aquifer upwards, thus
causing the increase in concentration at the upper seaward
boundary.

This general finding about the influence of the sea
boundary – the elevated concentrations in the upper sea-
ward regions of coastal aquifer – remains valid for aquifer
systems that are more realistic than the one conceptualized



os on og on

Fig. 6. Concentration isolines corresponding to three locations of the spill, three values of the coupling parameter a and two values of the anisotropy ratio
b. The top three rows correspond to b = 1 and the bottom three are for b = 0.1 From top to bottom, the three spill locations (n,g) are at (0.25,0.125),
(0.5,0.5) and (0.25,0.375), respectively.
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by Henry’s problem, including the aquifer system depicted
in Fig. 1. For example, it helps to explain the higher than
expected contaminant concentrations in the surf zone
observed by Boehm et al. [2,3], and crop failures in the
fields that are adjacent to the sea and are irrigated with
(contaminated) water from unconfined aquifers.

5.2. Small Péclet number

A solution of the contaminant transport problem (40)-
(41) can be represented by expansion (35). The leading term
in this expansion satisfies

oCSP
0

os
¼ o2CSP

0

on2
þ b

o2CSP
0

og2

� �
þ dðn� n0Þdðg� g0Þ ð47Þ
subject to the initial and boundary conditions (41). The
corresponding solution is
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The first-order term satisfies
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Fig. 7. Steady-state concentration isolines for a localized spill at low Péclet numbers, four values of the coupling parameter a and two values of the
anisotropy coefficient (Left column is b = 1. Right column is b = 0.1). The dark lines correspond to purely diffusive transport (Pe = 0), and the lighter lines
correspond to diffusion-dominated transport with Pe = 0.5.
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subject to the initial and boundary conditions (41). The
corresponding solution is

CSP
1 ¼ �

Z s

0

Z 1

0

Z f̂

0

Gðn; g; n1; ĝ1; s� tÞUSP
0 ðn1; ĝ1Þ

� oCSP
0 ðn1; ĝ1; sÞ

on
dĝ1 dn1 dt: ð50Þ

Fig. 7 depicts the steady-state limit of the perturbation
solution CSP � CSP

0 þ PeCSP
1 for Pe = 0.5, several values of

a and two values of the anisotropy coefficient b. As in
the natural attenuation problem, the sea boundary does
not have significant influence on the contaminant trans-
port, although the influence is more pronounced. This sug-
gests that, for large times, advection plays a more
prominent role in the spread of contaminant than in its
natural attenuation. However, for this effect to become
noticeable, a has to be made so large as to render its prac-
tical realizability minimal. Additionally, the effects of
advection are more noticeable for the anisotropic case.
This is not surprising since the effect of anisotropy is to
suppress dispersion in the transverse direction, thus
increasing advective influence.

6. Summary and conclusions

We employed the Henry formulation and perturbation
analyses to derive analytical solutions describing contami-
nant migration in coastal aquifers. We showed that flow
and transport in coastal aquifers can be characterized by
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two dimensionless parameters, the Péclet number Pe and a
coupling parameter a. The former compares advective and
dispersive mechanisms of transport, while the latter quan-
tifies the density effects and the influence of the saltwater
boundary on the flow field. The analytical solutions derived
describe natural attenuation of, and contaminant spill in,
coastal aquifers for intermediate and low Péclet numbers.
Our analysis leads to the following major conclusions.

(1) The saltwater boundary significantly affects contami-
nant transport in the intermediate Péclet number
(advection-diffusion) regime. Its influence on trans-
port in the small Péclet number (diffusion dominated)
regime is significantly smaller. This is to be expected,
since the main effect of the saltwater boundary is to
modify the velocity field, i.e., the advective mecha-
nism of transport.

(2) For the sea boundary to affect transport patters in the
low Péclet number regime, the coupling parameter a
must be very large. For real coastal aquifers it is
highly unlikely that this situation will occur.

(3) Although the Henry formulation is a simplified model
of coastal aquifers, it provides a useful physical insight
into transport mechanisms affecting the spread of con-
taminants in such systems. The saltwater intrusion
forces contaminant transport towards the upper sea-
ward boundary, thus causing elevated contaminant
discharge into the surf zone at beach areas.

(4) Our analytical solutions also provide insight for man-
agement decisions that must be made regarding the
use of coastal aquifers for irrigation and drinking
water purposes. In particular, they can provide guide-
lines for the viability of natural attenuation of con-
taminated coastal aquifers after the sources of
contamination have been eliminated.
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