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9 Abstract The performance of managed artificial recharge

10 (MAR) facilities by means of surface ponds (SP) is con-

11 trolled by the temporal evolution of the global infiltration

12 capacity Ic of topsoils. Cost-effective maintenance opera-

13 tions that aim to maintain controlled infiltration values

14 during the activity of the SP require the full knowledge of

15 the spatio-temporal variability of Ic. This task is deemed

16 uncertain. The natural reduction in time of Ic depends on

17 complex physical, biological and chemical reactions that

18 clog the soil pores and has been observed to decay expo-

19 nentially to an asymptotic non-zero value. Moreover, the

20 relative influence of single clogging processes depend on

21 some initial parameters of the soil, such as the initial

22 infiltration capacity (Ic,0). This property is also uncertain,

23 as aquifers are typically heterogeneous and scarcely char-

24 acterized in practical situations. We suggest a method to

25 obtain maps of Ic using a geostatistical approach, which is

26 suitable to be extended to engineering risk assessment

27 concerning management of SP facilities. We propose to

28 combine geostatistical inference and a temporally-lumped

29 physical model to reproduce non-uniform clogging in

30topsoils of a SP, using field campaigns of local and large

31scale tests and additionally by means of satellite images as

32secondary information. We then postulate a power-law

33relationship between the parameter of the exponential law,

34k, and Ic,0. It is found that calibrating the two parameters of

35the power law model it is possible to fit the temporal

36evolution of total infiltration rate at the pond scale in a

37MAR test facility. The results can be used to design

38appropriate measures to selectively limit clogging during

39operation, extending the life of the infiltration pond.
40
41Keywords Managed artificial recharge ! Surface ponds !
42Infiltration capacity ! Clogging ! Collocated cokriging !
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441 Introduction

45Managed artificial recharge (MAR) practices include sev-

46eral methods that aim to recover and enhance groundwater

47quality and productivity of depleted aquifers (Bouwer

482002). Among them, the use of excavated artificial ponds,

49or surface ponds (SP) are widely common (e.g. Manage-

50ment of aquifer and subsurface (2003), Scanlon et al.

51(2006)).

52In an artificial SP facility, recharge is induced by

53flooding the excavation with water coming from any

54available source (e.g. reclaimed water, stormwater, river

55water), which percolates towards the subsurface by infil-

56tration. In a properly designed facility, evaporation and

57other losses are typically negligible (Bouwer 1999) com-

58pared with the infiltration rates. The maximum rate at

59which water can infiltrate in the subsurface is known as the

60infiltration capacity (Ic). It regulates both the total amount

61of infiltration towards the aquifer and some characteristic
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62 times (such as the water residence time within an SP)

63 which are needed to make appropriate management of the

64 facilities (Bouwer 2002; Pedretti et al. under review;

65 Perez-Paricio and Carrera 1999).

66 Prediction of Ic can be done at two characteristic spatial

67 scales. At the pond scale, from a purely managerial per-

68 spective, the spatial average infiltration in the SP, IcðtÞ;
69 provides quantitative information about the total amount of

70 actual infiltration in an integrated way (Barahona-Palomo

71 et al. 2010). Monitoring the SP facility during operation

72 allows the evaluation of the integrated infiltration capacity

73 with time. However, this does not provide any information

74 about the spatio-temporal distribution of the local scale

75 infiltration capacity ðIcðx; tÞÞ; which is crucial for the

76 optimal operation, management, and maintenance (O& M)

77 of the artificial SP facility (Pedretti et al. under review).

78 Assessing the full spatio-temporal distribution of Icðx; tÞ
79 during operation is not realistically feasible. During

80 recharge processes, Ic reduces in time because of a variety

81 of processes that tend to modify the pore size distribution

82 (PSD) of the ground, namely reducing the porosity of the

83 top soil (e.g. Bouwer 2002). The topsoil hydraulic con-

84 ductivity Ks(x,t) depends on the PSD, which in turn con-

85 trols Ic(x,t). To complicate matters even further, natural

86 ‘‘pore clogging’’ also depends on some initial properties of

87 the soil (e.g. Guin 1972). In typical situations, the impos-

88 sibility of complete characterization of geological hetero-

89 geneities make these variables random parameters for

90 modelling purposes (Tartakovsky and Winter 2008). In this

91 sense, a probabilistic approach is advisable (Krzysztofo-

92 wicz 2001), since it could then be integrated into a larger

93 scale probabilistic risk assessment studies (Tartakovsky

94 2007; Bolster et al. 2009; de Barros and Rubin 2008;

95 Masetti et al. 2009).

96 In this work we explicitly exclude accidental extreme

97 events (with very low frequency/probability) that suddenly

98 reduce global infiltration (e.g. Bedford and Cook 2001, pp.

99 103–104). Natural reactions, on the other hand, are more

100 frequent and are related to a variety of physical, biological

101 and chemical mechanisms (e.g. Baveye et al. 1998; Van-

102 devivere et al. 1995; Greskowiak et al. 2005) that together

103 reduce Ic during artificial recharge. As a consequence, the

104 rate of natural clogging mechanisms at small scales is

105 highly uncertain. Several approaches have been suggested

106 in the past to assess the effect of independent individual

107 mechanisms. For instance, the soil can be conceptualized

108 as a natural filter in which suspended particles circulate in

109 the soil while percolating; they are attracted and collapse

110 into the pore spaces. At some macroscopic scale, this effect

111 is called ‘‘physical clogging’’ and has been modeled using

112 ‘‘depth filter’’ theories (see Zamani and Maini 2009; Ped-

113 retti et al. under review; Guin 1972 for details). A signif-

114 icant point is that the capacity of the soil to retain the

115particles (i.e. the potential of the soil to be clogged)

116depends on whether surface forces or volumetric forces

117dominate. Bioclogging can also be modeled using a mac-

118roscopic approach considering the expansion of microbial

119colonies to create a biomass that get trapped because of

120similar forces that affect non-organic particles (Baveye

121et al. 1998; Vandevivere et al. 1995; Clement et al. 1996).

122The big question, however, remains how to evaluate the

123effect on pore clogging that encompasses the mutual

124dependence of all clogging mechanisms. Although several

125published field and laboratory experiments exist that aim to

126understand and quantify their mutual interaction depending

127on soil type (Perez-Paricio and Carrera 1999; Kim et al.

1282010; Hoffmann and Gunkel 2010), predicting the clogging

129rates via cumulation of individual mechanisms remains, in

130the practice, challenging. The reasons are that : (i) reac-

131tions leading to a (macroscale) clogging effect take place at

132microscales (e.g. Baveye et al. 1998) that cannot be easily

133measured, or that cannot be easily upscaled to the field

134pond scale and (ii) the rate at which clogging mechanisms

135jointly develop depends on a variety of site-specific con-

136ditions and factors, such as textural heterogeneities of the

137soil (e.g. pore or grain size distributions—PSD/GSD)

138(Zamani and Maini 2009; Tien and Payatakes 1979; Guin

1391972), soil density heterogeneities (Clement et al. 1996),

140chemical heterogeneity (Greskowiak et al. 2005), and

141fluctuations of the water temperature (Civan 2007, 2010).

142The quality of most of the information depends on the

143quality of geological characterizations, which is almost

144always poor in practice since direct investigations are

145costly, affected by serious errors and sometimes simply not

146feasible. Some models have been proposed in the past to

147correlate initial hydraulic conductivity profiles with the

148intensity of clogging. Unfortunately, most of them are

149based on assumptions of homogeneities that over- or under-

150estimate the rate of clogging. For instance, assuming the

151soil pore sizes or the grain sizes to be uniformly (e.g.

152Kozeny 1927; Carman 1938; Hazen 1882) and non-uni-

153formly (e.g. Guin 1972) distributed is essential to correctly

154estimate the development of clogging. Indeed, the use of

155uniform formulations implicitly include average macro-

156characteristic features of PSD and GSD, such as the total

157soil porosity / or some characteristic grain size dg, from
158which the seepage velocity is calculated. However, bio-

159clogging does not grow uniformly but rather starts by

160developing local microcolonies within smaller pores, and

161grows to occupy the larger pores. On the other hand,

162physical mechanisms act differently. According to the filter

163theory (see Zamani and Maini 2009; Pedretti et al. under

164review; Guin 1972 for details) the clogging rates are

165inversely proportional with dg but this relationship depends

166strongly on other factors such as the suspended solid size

167(ds) and Ic(t = 0). Guin (1972) adopted a macroscopic
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168 Kozeny-like model where the porous medium is decom-

169 posed into a bundle of channels with different hydraulic

170 radii R (ratio between porosity and the specific surface area

171 of the soil, Sa). In the case of rapid particle deposition, the

172 clogging rate of individual pores is proportional to the

173 square of its specific surface area ð$dSa
dt / S2aÞ. Thus, this

174 implies that the area of larger pores (i.e. larger initial

175 infiltration capacities) is decreased preferentially. In the

176 case of slow particle deposition, $dSa
dt / S1=2a : Experiments

177 on bioclogging (Cunningham et al. 1991; Vandevivere and

178 Baveye 1992) showed that the relative change of perme-

179 ability (Ks/Ks0) depends, among other parameters, on the

180 GSD.

181 It has been observed that all clogging mechanisms do

182 not go on indefinitely, but rather end up providing an

183 asymptotic infiltration value, which varies in space (e.g.

184 Baveye et al. 1998). The reasons that lead to an asymptotic

185 clogging effect are controversial and depend on local

186 conditions. For instance, bioclogging mechanisms roughly

187 follow a Monod behavior (Monod et al. 1965; Matsumoto

188 1979; Baveye et al. 1998), which reproduce a microbial

189 growth with a maximum asymptotic value of development.

190 Physical clogging, on the other hand, varies in time since

191 the governing forces change from volumetric to surface

192 and vice-versa depending on flow velocity, available

193 reactive surface areas, etc. (see Zamani and Maini 2009 for

194 a complete description of whole physical processes). While

195 physical clogging could theoretically result in zero infil-

196 tration, bioclogging may help preventing additional phys-

197 ical clogging, so that the combination of both processes

198 may still present a finite non-zero asymptotic value.

199 While assessment of initial and final permeabilities can

200 certainly be done with the use of empirical or theoretical

201 formulations, the question still remains about how to eval-

202 uate the actual evolution of infiltration with time. This is

203 required for a proper risk assessment (Pedretti et al. under

204 review). Lumped solutions such as exponential decay for-

205 mulations are often adopted at the field scale (Iwasaki 1937;

206 Perez-Paricio and Carrera 1999; Kim et al. 2010; Hoffmann

207 and Gunkel 2010). The use of such models is appealing

208 since only a few parameters are required for estimation

209 purposes, but so far there is no widely accepted work on the

210 relationship between the upscaled and the local infiltration

211 models. While lumped (upscaled) models are routinely used

212 as a way to assess when maintenance operations should take

213 place at the full pond (usually drying the pond and clean-

214 ing), we contend that a detailed clogging model could be

215 used to derive an ad-hoc remediation operation that targets

216 only specific portions of the pond (similar to the concept of

217 precise agriculture).

218 A major limitation of mapping infiltration variations

219 locally in space and time is that primary information is

220limited and plagued by errors. A viable option to enhance

221the mapping of characteristic soil properties is to combine

222direct (primary) with secondary data (related to the primary

223ones). An example is to combine measurements from sur-

224face infiltrometers with satellite-images-based secondary

225information (Pedretti et al. 2010). Normally, secondary

226information is suitable for spatial assessment as it typically

227contains a denser dataset (e.g. Gooverts 1997), but the

228robustness of the method relies in the strength of the cor-

229relation existing between the two types of information.

230In this paper, we develop a geostatistical approach to

231map soil clogging parameters integrating a limited dataset

232of direct information with secondary information based on

233satellite images. A physically-based model is used to

234evaluate the spatial-temporal decreasing of the local infil-

235tration capacities throughout the SP.

236The paper is structured as follows. In Sect. 2 we propose

237a local infiltration model with an exponential decay to an

238asymptotic value. Initial, asymptotic infiltration, and decay

239coefficients are considered to be correlated. In Sect. 3 we

240further develop the model by applying it directly to an

241artificial infiltration pond where local infiltration data is

242available at a few points and can be further obtained from a

243full mapping of a secondary variable. An external valida-

244tion of the model from the evolution of the spatially

245averaged infiltration with time is also included. This is

246followed by the main conclusions of the work.

2472 Methodology

2482.1 Problem statement

249Let us consider a given artificial SP recharge site in which

250direct measurements of the local infiltration rate, Icðx; tÞ;
251are known at sparse locations and at a few discrete times,

252i.e., Icðxi; tjÞfi ¼ 1; . . .;mg; fj ¼ 1; . . .; ng: This is often the

253case in most practical applications as the operation of an

254artificial recharge pond is typically done under flooding

255conditions and thereby any exhaustive characterization of

256the infiltration capacity is too costly and time-consuming.

257The support scale of the measurement is local and given,

258for example, by the size of an infiltrometer test.

259We assume that an extensively sampled secondary

260variable is available at some support scale. An example

261would be data coming from the colour intensity of a

262satellite image, which can provide valuable information

263related to the soil hydraulic properties such as the moisture

264content of the soil, the vegetative canopy density on the

265ground (Chica-Olmo and Abarca-Hernandez 2000; Gran-

266ger 2000; Milewskia et al. 2009) or the infiltration capacity
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267 at a specific time (Pedretti et al. 2010). Evidently, a limi-

268 tation of satellite images is that image-based methods are

269 restricted to non-flooded times, with at most two measuring

270 times, i.e., before and after flooding.

271 Under these conditions, we attempt to map the temporal

272 evolution of the infiltration capacity at the site so that better

273 management of the artificial recharge pond can be

274 undertaken.

275 2.2 Clogging model

276 We assume that the temporal reduction of the infiltration

277 capacity at every point x in the domain due to clogging

278 processes follows a decaying exponential law. The model

279 assumes that clogging takes place on the order of tens of

280 days. Temperature can therefore be neglected as it

281 fluctuates on two temporal scales, seasonally and daily,

282 that do not affect clogging occurrence. Seasonality

283 occurs at temporal scales much longer than clogging

284 time, and night-day fluctuations are too short to affect

285 clogging development permanently. The clogging model

286 can be formulated in different ways. One possible for-

287 mulation is

Icðx; tÞ ¼ RIcðx; t ¼ 0Þ expð$kðx; tÞtÞ
¼ Ic;0ðxÞ expð$kðx; tÞtÞ; ð1Þ

289289 where Icðx; t ¼ 0Þ is the infiltration capacity at some initial

290 operation stage, k(x, t) is the lumped clogging coefficient

291 and R is a generic, instantaneous reduction function of

292 infiltration caused by gas production and other mechanisms

293 (Olsthoorn 1982; Bouwer 2002), which in general is close

294 to 1. We can remove the impact of R by using Ic,0(x) = R
295 Ic(x, t = 0) as the initial infiltration value. It is worth

296 noting that in (1), k changes over space and time, tending to

297 zero as time increases. Consequently, Icðx; tÞ values tend to

298 an (spatially dependent) asymptotic value, Ic,f.
299 Therefore, an alternative model to (1) that implicitly

300 includes this asymptotic value Ic,f can be formulated as

Icðx; tÞ ¼ Ic;f ðxÞ þ ðIc;0ðxÞ $ Ic;f ðxÞÞ expð$kðxÞtÞ; ð2Þ

302302 where k(x) is now constant in time. This clogging model

303 constitutes the basis of our approach to map the temporal

304 evolution of the infiltration capacity. The fundamental

305 advantage of this model is that parameterizes the temporal

306 evolution of the infiltration capacity Ic by means of three

307 constant-in-time variables/parameters: Ic,f(x), Ic,0(x), and
308 k(x), all three variable in space, and are therefore suscep-

309 tible to simple geostatistical analysis.

310 Total infiltration capacity can be obtained by spatial

311 averaging of either (1) or (2); i.e.

IcðtÞ ¼
1

V

Z

V

Icðx; tÞdx: ð3Þ

313313In most cases Icðt ! 1Þ ' Ic;f will be too small to be

314acceptable; that is, it will be below a pre-specified

315threshold value, It. Such small could be unacceptable in

316practical situations. Thus, the need for a model that can

317provide information about the spatial evolution of

318infiltration with time. It turns out that whenever Ic,f(x)
319and Ic,0(x) are fully known, the temporal evolution of the

320local infiltration depend exclusively on k (x). We postulate

321that this non-time dependent clogging factor is directly

322correlated with some initial property of the soil, so that k
323(x) = f (Ic,0(x)). This is feasible since clogging develops at

324different rates according with the local distribution of PSD

325or GSD, both highly uncertain.

3262.3 Mapping the soil infiltration capacity

327If experimental measurements of Ic are limited to a few

328locations, secondary information can be incorporated to

329estimate the spatial distribution of the primary variable. For

330this purpose, several geostatistical techniques can be used,

331such as the collocated cokriging model. Yet, in this case, its

332direct application is cumbersome as one needs to estimate

333the evolution of the variogram matrix with time as clogging

334progresses. To overcome this problem, we propose a new

335approach.

336We start by noting that Pedretti et al. (2010) observed

337that Ic,0 = f1(Pv) and Ic,f = f2(Pv), where Pv are the color

338pixel values of a satellite image. By extension, and

339invoking a phenomenological approach, it is to be expected

340that there could exist a relationship between soil parame-

341ters and Pv, and thus also between k and Pv.

342This relationship should be constructed via theoretical or

343empirical methods. The theory suggests that some clogging

344mechanisms, such as physical clogging, can be modeled

345using a filter approach (e.g. Zamani and Maini 2009;

346Pedretti et al. under review); thus, the clogging rate should

347be negatively correlated with some grain size representa-

348tive diameter, dg. Other mechanisms however do not nec-

349essarily rely on this assumption: biological clogging can be

350modeled using Monod-based growing models (e.g. Clem-

351ent et al. 1996), for which the rate of bioclogging is line-

352arly proportional to the soil density q which is positively

353correlated with dg (Pedretti et al. under review). Therefore,
354in a real site, it is important to assess the relative impor-

355tance of the two mechanisms, since this will control the

356relationship existing between k and the soil properties. In

357the field though, the use of (2) gives lumped clogging

358factors, in which the single effects of each mechanism is

359somehow hidden. As such, any relationship existing

360between Pv and experimentally-based k does not give any

361indication of the relationship existing between Pv and all

362the parameters characterizing the soil, including dg, but
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363 also density, fraction of organic matter, etc. Thus, it is not

364 a priori clear whether k and Pv should be positively or

365 negatively correlated. In the application example later we

366 will use both possibilities.

367 Our approach starts from having a perfect knowledge of

368 some secondary variable (obtained for example from satellite

369 images), while there is little to no information on the three

370 primary variables controlling infiltration: Ic,0, Ic,f, and k.
371 Thus, it is possible to use some geostatistical approach

372 involving either cokriging (to get a smooth estimate in amean

373 sense) or cosimulation (to be included in a Monte Carlo

374 approach). Since data from the primary variables are always

375 expected to be less than exhaustive, we chose a collocated

376 cokriging approach under the Markov model I. Such a model

377 limits the secondary variable to the data available at the esti-

378 mation location, and further estimates the cross-variogramsby

379 employing an underlying regression model. The advantage is

380 that matrix instabilities caused by densely sampled secondary

381 data (such as high-resolution satellite rasters of pixel values)

382 are avoided and reduce the burdenofmodelling all variograms

383 and cross-variograms in a cokriging system (Almeida and

384 Journel 1996; Journel 1999). In this case, the cokriging model

385 only requires the knowledge of the variogram of the primary

386 variable, the correlation coefficient, and the variance of the

387 secondary variable. Thus, the modelling effort is almost the

388 same as for kriging one variable. For simplicity, the cokriging

389 of each variable is conducted independently.

390 Unfortunately, in most practical situations, the vario-

391 gram of these primary variables cannot be directly esti-

392 mated as too little information is available at a given SP

393 site. To circumvent this problem, we suggest to completely

394 rely on the variogram of the secondary variable (satellite

395 image) that is always well characterized. For each primary

396 variable, {Ic,0, Ic,f, k}, the auto-variogram can be estimated

397 using regression models. Pedretti and others (Pedretti et al.

398 2010) found that a linear regression satisfactorily correlates

399 the natural logarithm of infiltration capacities (both Y0 ¼
400 lnðIc;0Þ and Yf ¼ lnðIc;f Þ) with the color pixel values of an

401 image (Pv). The model has the form

Y0 ¼ a0ðPvÞ þ b0 þ eY ;0; ð4Þ

403403 Yf ¼ af ðPvÞ þ bf þ eY ;f ; ð5Þ

405405 where a and b are the regression coefficients, and eY
406 represents regression model errors. To complete the picture

407 we must specify a model for k. Parsimony leads us to

408 postulate a similar linear model in terms of Yk = ln k,

Yk ¼ akðPvÞ þ bk þ eY ;k: ð6Þ

410410 From these simple models we can write the variogram

411 functions as

cYiðhÞ ¼ a2i cPv
ðhÞ þ ceY ;iðhÞ; i ¼ 0; f ; k ð7Þ

413413where h is the lag distance between data values. We can

414further assume that the regression model errors are

415uncorrelated both with errors at different locations or

416with the secondary variable (pure nugget).

417Once the spatial distributions of the three variables have

418been obtained, it is possible to use (2) to obtain the spatio-

419temporal distribution of the local infiltration rate, and

420consequently the temporally variable global infiltration.

421We now illustrate the method and highlight the limitations

422in a real site.

4233 Application example

424A pilot SP is located in Sant Vicenç dels Horts, close to the

425city of Barcelona (Spain). The geological background is a

426sequence of deltaic deposits of the river Llobregat. A high

427resolution image was captured in November 15, 2007

428(Fig. 1), representing the ground conditions at the site

429before a flooding experiment was conducted. We will

430consider this as the initial state of our system, from which

431we wish to obtain a map of Ic,0 values. The resolution of the
432image is around 0.5 m2 per pixel. The infiltration area is

433approximately 100 m x 46 m. The unconfined and highly

434transmissive aquifer below the artificial pond is between 12

435and 15 m in thickness, and has suffered from overexploi-

436tation and pollution in recent years due to an increasing

437population and industrial density in the Barcelona area

438(Carrera et al. 2005; Custodio 2002).

4393.1 Observations and modelling at the pond scale

440(global scale)

441A flooding test was performed between March and June

4422009 in order to test the performance of the site for MAR

443operations. The following variables were recorded on a

444continuous basis: headwater at the pond, h(t); discharge
445rate towards the aquifer, QINðtÞ (recorded from water mass

446balance within the pond, disregarding evaporation); infil-

447tration area, A(t) (usually a direct function of h(t) to include
448the basin slopes); and distance from the surface to the water

449table, L(t). Infiltration at the full pond scale is then obtained
450as

IcðtÞ (
QINðtÞLðtÞ

AhðtÞ

! "
ð8Þ

452452The recorded infiltration values can be matched by a

453simple exponential model

IcðtÞ ¼ Ic;f þ ðIc;0 $ Ic;f Þ exp ð$ketÞ ð9Þ

455455Figure 2 shows that a good match between data and the

456best-fit approximation of the large-scale infiltration model
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457 (9) can be obtained. ke is an equivalent clogging parameter

458 for the entire pond. Note that the asymptotic value is used

459 to evaluate the minimum infiltration value of the pond,

460 which is reached when clogging no longer develops. The

461 solid line represents observations using (8), while the

462 dotted line is the best fit model solution using (9) with the

463 following parameters: Ic;0 ¼ 5:35m=d; Ic;f ¼ 1:98 m/d, and

464 ke = 0.17 day-1.

465 Note that according to the calibration process using (9),

466 we have a global model of the reduction of infiltration with

467 time, that could now be used for management or risk

468 evaluations. For example, it is found that reduction of

469 infiltration to 50% of the initial value is reached after just

470 roughly 7 days, but it will for example take 14 days to

471 reduce to 40% of the original value. It is possible to obtain

472 a compromise between allowing the system to work for

473 larger periods without maintenance by just allowing less

474 water to infiltrate.

475In Fig. 2 the infiltration curve displays some daily

476oscillations. This is due to unaccounted causes, such as the

477impact of water temperature or atmospheric pressure with

478time. A detailed analysis of these causes could lead to a

479smoothing of the oscillations, leading to a better fit of the

480simple exponential model. However, this is not deemed

481essential here and the impact of these additional processes

482is not pursued in our work.

4833.2 Observations at the local scale

484Double-ring infiltrometers (Smith 1972) were used to

485measure the local infiltration capacities at sparse locations

486in the SP, before and after the flooding test was performed.

487A double-ring infiltrometer reproduces the local soil tran-

488sition from unsaturated to saturated conditions that would

489take place under flooding conditions, and evaluates the

490infiltration capacity. In short, two metal rings are buried a

491few centimeters deep into the soil and filled with water (at

492constant or variable height). After a standard time of two

493hours, the infiltration rate approaches a steady state value,

494identified as Icðx; tÞ at that location x and time t.
495During the flooding experiments it is possible to obtain

496infiltration values at the local scale by using other devices.

497For consistency we did not use other methods and rely on

498two double-ring campaigns, This implies that the only

499available measurements are those of Ic,0 and Ic,f. Only a few
500points are available for each one of these two variables.

501The former was obtained at 6 spatial points and the latter at

502those same 6 points plus three additional ones (a total of 9).

503It is worthwhile noting that double-ring tests provide a

504direct estimate of infiltration capacity at the scale of the

Fig. 1 Satellite image of the
Sant Vicenç dels Horts EAP,
close to Barcelona (property of
Google and ICC, 2007). S-tags
refer to the locations of
infiltrometer tests; C-tags are
excavated pits to observe the
local geological stratigraphy
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505 device. In this case, they were representative of a small sup-

506 port scale (&0.12 m2). This may have a significant influence

507 in the geostatistical analysis, since it is important to use a

508 method that accounts if necessary for the difference in support

509 between the different variables involved. In Fig. 1 the ‘‘S’’

510 letters denote the locations where the double-ring infiltration

511 tests were performed. The ‘‘C’’ letters refer to excavated pits

512 where geology was directly observed and described.

513 Results from the analysis of the infiltration tests (using

514 the modified Kostyakov method) are compiled in Table 1).

515 It is clear that all points analyzed show a reduction in

516 infiltration between the initial and the final stage. This

517 reduction is larger (both in absolute and in relative terms)

518 for the points displaying higher Ic,0 values.

519 3.3 Local scale modelling

520 The results of the correlation between the red band of the

521 image presented in Fig. 1 and the logarithm of the infil-

522 tration values at t = t0 and at t = tf are found to be linear

523 (Fig. 3) according to Eqs. 4 and 5. A good linear correla-

524 tion is obtained for both states of the artificial pond, with a

525 Pearson’s coefficient of r2 = 0.87 for the February cam-

526 paign (t = t0) and r
2 = 0.89 for the June campaign (t = tf).

527 3.4 Experimental variograms and cross-variograms

528 Field experiments are usually difficult to conduct and costly.

529 Thus, one can typically always expect a very low number of

530 data points, which in most cases (certainly in ours), prevents

531 the direct estimation of the variogram of the infiltration

532 capacity. Instead, a well behaving sampled variogram may

533 be available for some secondary variable, Pv in our case.

534 Figure 4 shows the resulting two directional variograms

535 obtained for Pv in the principal directions. The direction of

536maximum correlation is oriented along the y axis. The

537model variograms show three different structures, whose

538combined formulation in terms of principal directions is

cPv
ðhxÞ ¼ 297

#
0:32 ! Gauss hx

7

! "
þ 0:44 ! Sph hx

92

! "

þ 0:24 ! Exp hx
400

! "$
ð10Þ

540540cPv
ðhyÞ ¼ 297 0:32 ! Gauss hy

7

! "
þ 0:44 ! Sph hy

68

! "# $

ð11Þ

542542where Gauss(.), Exp(.) and Sph(.) are the standard unitary

543variogram models (Deutsch and Journel 1998).

Table 1 Experimental double ring test results performed in February
2009 (associated to Ic,0) and June 2009 (associated to Ic,f)

Location Ic,0 Ic,f Ratio

S1 0.19 0.18 0.94

S2 2.6 2.1 0.80

S3 2.9 2.5 0.86

S4 3.3 1.1 0.33

S5 12.9 1.2 0.09

S6 12.6 6.3 0.5

S7 0.17

S8 3.04

S9 0.75

Mean 5.74 2.07

Variance 30.6 3.98

All values are expressed in m/d
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coefficient for the dotted line (February dataset) is r2 = 0.87; for the
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544 3.5 Mapping the clogging factor

545 Finally, the clogging factor k should also be estimated. In

546 our case, no direct field estimates about this parameter

547 were measured. To overcome this problem, we assumed a

548 perfect correlation between this parameter and the initial

549 infiltration capacity Y0,

Yk ¼ aðY0Þ þ b: ð12Þ

551551 The coefficients a and b were estimated from the temporal

552 evolution of the integrated infiltration capacity observed

553 during the flooding test. The theory is unclear as to whether

554 these two parameters should be positively or negatively

555 correlated. Thus, we explore in our site the potential range

556 of parameters in the power law formula (12) that can lead

557 to a fit of the observed global infiltration behavior. In

558 particular, we analyze the sign of the coefficient a. We will

559 see how this may have a strong effect in devising potential

560 remediation strategies.

561 Starting from given values a and b, the map of the k
562 values is obtained with (12), and then the local infiltration

563 in space-time is obtained from (2). Finally, the integrated

564 infiltration is obtained with (3). The method is repeated by

565 changing the values of a and b until the curve matches that

566 of Fig. 2.

567 Several potential combinations of the two parameters

568 might lead to reasonable fits. In Fig. 5 we fix two different

569 b values and explore the sensitivity of the global infiltration
570 curves to a. It is found that we are able to obtain two sets of

571 parameters (a, b), (-0.4, -0.3) and (0.3, -3.0) that lead to

572 a similar fit. It can be observed that the curves are quite

573 sensitive to the two parameters, providing a way to cali-

574 brate them. Calibration cannot be fully completed in our

575 site since no data for intermediate times could be recorded.

576 As a consequence we believe that there is a need to perform

577 short flooding tests in real sites in order to obtain real

578 values of k that could be used to design an optimal man-

579 agement operation. This can only be obtained by per-

580 forming test during the flooding period. The problem is that

581 infiltration measurements are quite sensitive to the method

582 used, and so it is difficult to be able to combine data

583 coming from double-ring or seepage meters, for example.

584 While one can find different sets of (a, b) values, the key
585 is the sign of the a parameter. Depending on this sign we

586 will have enhanced clogging in regions of initially high

587 infiltration capacities, or alternatively, clogging enhanced

588 in points displaying initially small infiltration capacities.

589 This can be seen in Fig. 6, which includes the maps cor-

590 responding to the two sets of (a, b) already presented

591 before. By construction, the maps are visually highly cor-

592 related with those of initial or final infiltration, included

593 also in the same figure.

594One of the main factors controlled by a is the actual

595shape of the pdf of k. Thus, while the two sets of param-

596eters lead to a very similar fit of the global infiltration

597curve, t actual values of k are very different (see Fig. 7). A

598direct implication is that it is not possible to derive an

599equivalent k value from the local ones capable of repro-

600ducing the full behavior. This can be observed in Fig. 8,

601where the evolution of infiltration with time using the

602harmonic, geometric and arithmetic means of the point

603values presented in Fig. 7 are computed. It is clear that

604upscaling from local values would be an error in general,

605and that some conditioning on real values is needed to

606produce a proper reproduction of the global behavior.

607The evolution of the pdf of infiltration capacity with

608time is also dependent on the map of k values. This can be

609observed in Fig. 9, where a positive a value implies a

610slower reduction in the infiltration values with time than a

611negative a value. This is caused by the former leading to

612very small k values in Fig. 7. These small values cause

613infiltration to be reducing slowly with time. The picture

614completely changes for the alternative set of parameters

615(-0.4, -0.3) where the local k values are high, and thus

616infiltration reduces very fast with time.
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617 These results will be significant when devising a reme-

618 diation method. Notice how in Fig. 9 it is observed that for

619 the set (0.3, -3.0) all values of infiltration decrease more

620 or less equally in time. Thus, the best alternative for

621 remediation would be to empty the full pond and restore

622 the initial capacity if possible. On the other hand, for the

623 (-0.4, -0.3) we observe how the reduction of infiltration is

624mostly produced by the fast reduction in the more perme-

625able areas. Thus, we could devise a method that targets the

626initially high infiltration areas. If clogging in these points is

627prevented, the global infiltration will remain high for a long

628period of time.

6294 Conclusions

630Assessing spatio-temporal variability of soil hydraulic

631variables is often needed to make optimal, effective and

632efficient decisions in many branches of the groundwater

633hydrology. In systems with complex processes and in a

634heterogeneous geological context, such as in the case of

635artificial recharge practices using surface ponds (SP), the

636estimation of such parameters is highly uncertain. This is

637mainly due to scarce primary information, due to the high

638costs of direct field observation, due to limited accessi-

639bility to the sites or even due to partial knowledge of the

640physical processes involved. Lumped models are often

641preferable to work with due to their simplicity and ver-

642satility, and secondary information could provide reliable

643supporting data to be used for mapping purposes of pri-

644mary variables.

645In this paper, we describe a methodology to map the

646spatio-temproal distribution of the characteristic lumped

647temporal factors of clogging (k) in a SP, with the aid of

648satellite images and a few experimental datasets based on

649local sparse measurements. This allows us to estimate the

650spatio-temporal variability of the infiltration capacities of

651the topsoil. This potentially allows managers to find opti-

652mal strategies for clean-up operations that can minimize

653the effect of clogging without having to operate the full

654facility and to make educated decisions that might mitigate

655the failure in O&M operations in an SP.

656As a case study, we applied this method to a pilot site in

657Spain. Although the developed model introduces some

658simple hypotheses and simplifications in this illustrative

659example, we showed that we were able to map the evolu-

660tion of local infiltration with time. To validate the method,

661we compared the measured total infiltration capacities at

662the SP scale with the ones calculated by integration of

663calculated local values using a geostatistical-physically-

664mixed approach. Numerical results satisfactorily agree with

665the observations, accounting for the multiple necessary

666approximations we assumed.

667It is found that arguably the most significant parameter

668is the sign of the a parameter in the power law model

669relating k and the initial infiltration. Depending on this sign

670it is possible to see the practical relevance of designing a

671remediation method that targets only parts of the domain

672(acting on the high infiltrating areas during operation), or

673else it is better to use the classical approach of treatment
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674 after emptying the facility. This alternative might have

675 significant impact in managing an SP site.
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798Fernàndez-Garcia D, Tartakovsky D (under review) Probabilistic
799analysis of maintenance and operation of artificial recharge
800ponds. Adv Water Resour
801Perez-Paricio A, Carrera J (1999) Clogging handbook. Tech. rep.,
802Final report, EU project on Artificial Recharge of Groundwater
803Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye GB, Edmunds WM,
804Simmers I (2006) Global synthesis of groundwater recharge in
805semiarid and arid regions. Hydrol Process 20:3335–3370
806Smith R (1972) The infiltration envelope: results from a theoretical
807infiltrometer. J Hydrol 17:1–21
808Tartakovsky DM (2007) Probabilistic risk analysis in subsurface
809hydrology. Geophys Res Lett 34:L05,404. doi:10.1029/2007G
810L029.245
811Tartakovsky DM, Winter CL (2008) Uncertain future of hydrogeol-
812ogy. ASCE J Hydrol Eng 13(1):37–39
813Tien C, Payatakes AC (1979) Advances in deep bed filtration. AIChE
814J 25(5):737–759
815Vandevivere P, Baveye P (1992) Relationship between transport of
816bacteria and their clogging efficiency in sand columns. Appl
817Environ Microbiol 58(8):2523–2530
818Vandevivere P, Baveye P, de Lozada DS, DeLeo P (1995) Microbial
819clogging of saturated soils and aquifer materials: evaluation of
820mathematical models. Water Resour Res 31(9):2173–2180
821Zamani A, Maini B (2009) Flow of dispersed particles through porous
822media—deep bed filtration. J Pet Sci Eng 69:71–88

823

Stoch Environ Res Risk Assess

123
Journal : Large 477 Dispatch : 28-4-2011 Pages : 11

Article No. : 486 h LE h TYPESET

MS Code : h CP h DISK4 4

http://dx.doi.org/10.1029/2007WR006081
http://dx.doi.org/10.1029/2007WR006081
http://dx.doi.org/10.1021/i160043a010
http://dx.doi.org/10.1016/j.limno.2009.12.003
http://www.sciencedirect.com/science/article/B7GX1-4YK88XC-1/2/5b4d8b5a1ed550ecf8d24cc17b40d993
http://www.sciencedirect.com/science/article/B7GX1-4YK88XC-1/2/5b4d8b5a1ed550ecf8d24cc17b40d993
http://www.sciencedirect.com/science/article/B7GX1-4YK88XC-1/2/5b4d8b5a1ed550ecf8d24cc17b40d993
http://dx.doi.org/10.1016/j.watres.2009.05.049
http://www.sciencedirect.com/science/article/B6V73-4WNGW5F-1/2/0a7f4de465f62adf795d4bbbc3ea3dab
http://www.sciencedirect.com/science/article/B6V73-4WNGW5F-1/2/0a7f4de465f62adf795d4bbbc3ea3dab
http://www.sciencedirect.com/science/article/B6V73-4WNGW5F-1/2/0a7f4de465f62adf795d4bbbc3ea3dab
http://dx.doi.org/0.1016/j.scitotenv.2009.01.055
http://www.sciencedirect.com/science/article/B6V78-4W0R3BY-1/2/80d0bac534dd772455927723f038fd98
http://www.sciencedirect.com/science/article/B6V78-4W0R3BY-1/2/80d0bac534dd772455927723f038fd98
http://www.sciencedirect.com/science/article/B6V78-4W0R3BY-1/2/80d0bac534dd772455927723f038fd98
http://dx.doi.org/10.1029/WR015i006p01536
http://dx.doi.org/10.1029/WR015i006p01536
http://dx.doi.org/10.1029/2007GL029.245
http://dx.doi.org/10.1029/2007GL029.245

	Combining physical-based models and satellite images for the spatio-temporal assessment of soil infiltration capacity
	Abstract
	Introduction
	Methodology
	Problem statement
	Clogging model
	Mapping the soil infiltration capacity

	Application example
	Observations and modelling at the pond scale (global scale)
	Observations at the local scale
	Local scale modelling
	Experimental variograms and cross-variograms
	Mapping the clogging factor

	Conclusions
	Acknowledgments
	References


