
www.vadosezonejournal.org · Vol. 7, No. 4, November 2008 1

Heterogeneity and lack of sufficient site characteriza-
tion render accurate and reliable predictions of subsurface 

flow and transport in the vadose zone notoriously elusive. It is 
now widely recognized that for quantitative descriptions of sub-
surface phenomena to be scientifically defensible, they have to 
be accompanied by some measure of predictive uncertainty. In 
other words, a major goal of subsurface modeling is to translate 
uncertainty about soil properties (e.g., hydraulic conductiv-
ity and dispersivity) and driving forces (e.g., infiltration rates 
and the location and amount of a spill) into uncertainty about 
system states (e.g., soil moisture and contaminant concentration) 
(Tartakovsky and Winter, 2008). This task can be accomplished 
by treating soil properties and other input parameters as random 
fields whose statistics are inferred from available data; the result-
ing flow and transport equations become stochastic (e.g., Rubin, 
2003, and references therein).

In general, solving these equations either analytically or 
numerically requires a closure approximation, which limits the 
applicability of such solutions. For example, perturbation closures 
of stochastic unsaturated flow equations (e.g., Tartakovsky and 
Guadagnini, 2001; Tartakovsky et al., 2003), which are often 
used in stochastic hydrology, are based on the assumption that 
the subsurface environment is only mildly heterogeneous. Two-
point closures, also known as Corrsin’s conjecture, (e.g., Neuman, 
1993) and four-point closures (Dentz and Tartakovsky, 2008) 
of stochastic transport impose distributional assumptions (e.g., 
stationarity and Gaussianity) on the advective velocity, which 
might or might not hold true. The random domain decomposi-
tion (Winter and Tartakovsky, 2000, 2002; Winter et al., 2002) 
provides a general framework that allows these limitations to be 
overcome by explicitly accounting for both the geologic structure 
of a subsurface environment and the uncertainty associated with 
its delineation.

The approach relies on a tacit assumption that available data 
allow reconstruction (albeit probabilistically) of major geologic 
units, e.g., layers comprising the vadose zone. This task can be 
accomplished by geostatistical (e.g., Ritzi et al., 1994; Guadagnini 
et al., 2004) or other (e.g., Wohlberg et al., 2006; Tartakovsky et 
al., 2007) analyses of material properties data, including hydrau-
lic conductivity and soil texture, etc.—the so-called forward 
facies delineation problem. Such data are hard to come by and 
expensive to collect. They often have to be supplemented with 
measurements of hydraulic system states (e.g., soil moisture and 
pressure head) or their geophysical counterparts (e.g., electrical 
resistivity or permittivity), giving rise to the so-called inverse 
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The electric resistivity survey and borehole collection of resistivity data is one of the oldest geophysical tools for char-
acterization of the vadose zone. The current trend is to conduct such surveys in a tomographic manner, which requires 
significant computational resources. We present a simple, semianalytical approach to delineate multiple layers in 
partially saturated soils from resistivity and saturation measurements taken at several depths along a borehole. The 
number of layers and their hydraulic properties are assumed to be known. The proposed inversion algorithm is com-
putationally efficient and can serve either as a stand-alone tool for layer delineation or as an autonomous module in a 
more comprehensive geophysical survey. It is most robust when each layer is sampled at least once. When one or more 
layers have not been sampled, the algorithm’s robustness (convergence) is dependent on the accuracy of an initial guess 
(e.g., expert knowledge and other hard or soft data). We provide a detailed analysis of the algorithm’s convergence and 
identify potential pitfalls.
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facies delineation problem. Recent advances in the use of geo-
physics for subsurface imaging, such as ground penetrating radars, 
time domain reflectometry, microwave radiometry, and downhole 
electromagnetic induction, were the subjects of the November 
2004 special issue of the Vadose Zone Journal on hydrogeophysics 
(Vereecken et al., 2004).

Electric resistivity surveys, one of the oldest geophysical 
tools for subsurface characterization, have been regaining popu-
larity in recent years for a variety of reasons, some of which were 
discussed by Dahlin (1996) and Cornacchiulo and Bagtzoglou 
(2004). Chief among them are advances in inverse model-
ing of geophysical data (e.g., Hubbard and Rubin, 2000; Yeh 
et al., 2002; Michalak and Kitanidis, 2003; Cornacchiulo and 
Bagtzoglou, 2004; Furman et al., 2004) that are accompanied and 
facilitated by advances in computing power. The latter is essential 
since these and other inversion approaches are computationally 
demanding. This is especially so for electrical resistivity surveys 
of the multilayered vadose zone, where electrical resistivity varies 
with saturation. Despite the significant advances in inverse mod-
eling and data fusion (see Liu and Yeh, 2004, and the references 
therein), the absence of analytical or semianalytical solutions to 
inverse modeling translates into the absence of benchmark prob-
lems on which the accuracy and robustness of numerical inversion 
and data assimilation codes can be tested.

We have developed a semianalytical inversion procedure 
that allows interpretations of electrical resistivity data to be con-
ditioned on a solution of the Richards equation. The inverse 
approach can be used—either as a stand-alone tool or as a com-
ponent of a tomographic procedure (e.g., Griffiths and Barker, 
1993; Storz et al., 2000)—to delineate boundaries between soil 
layers from electric resistivity and hydraulic data. The former can 
be collected at various depths with borehole measurements (e.g., 
Spies, 1996; Binley et al., 2002), while the latter can be obtained 
by analyzing soil samples assumed to represent homogeneous 
soil layers. This goal is distinct from previous studies of borehole 
electric surveys. For example, a lot of attention has been paid to 
the analysis of electrical fields in layered, fully saturated subsur-
face environments (e.g., Mundry and Zschau, 1983; Sato and 
Sampaio, 1980; Sato, 2000) or to monitoring of moisture redis-
tribution (e.g., Binley et al., 2002) and contaminant transport 
(e.g., Kemna et al., 2002) in layered soils whose spatial extent 
and hydraulic properties are known.

Theory
Consider a set of M resistivity measurements m̂r  = r(zm) that 

are collected in a borehole at depths zm (m = 1, …, M) in the 
layered vadose zone. Let us assume that the number, N, of layers 
and their hydraulic properties (but not their location) are either 
known from a core analysis or can be ascertained by other means, 
including expert knowledge. No restrictions are placed on the 
measurement locations; they might or might not sample all the 
layers. Our goal is to identify the locations of N − 1 interfaces 
between these N layers.

Since no tomographic procedure is implied, and since resis-
tivity r is strongly influenced by variable saturation q, such data 
alone are not sufficient to accomplish this task. Additional infor-
mation can be gained by using a phenomenological model to 
relate r and q. We used Archie’s law:
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where ri is the electrical resistivity of the ith layer, rw is the 
electrical resistivity of water, and fi, mi, and ni are the poros-
ity, cementation exponent, and saturation exponent of the ith 
layer, respectively. We assume that these parameters are known 
for each layer.

The final piece of information is provided by specifying an 
equation describing the distribution of saturation in a layered 
soil, supplemented with boundary (and, if necessary, initial) 
conditions. To simplify the presentation, we assume steady-state 
flow that can be adequately described by the one-dimensional 
Richards equation:
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where L is the column length and in which the unsaturated 
hydraulic conductivity, K(z,y), and the pressure head, y, are 
related to each other and to q via the Gardner–Russo exponen-
tial model:
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The saturated hydraulic conductivity, Ks, complete saturation, qs, 
and the Gardner parameter a (the reciprocal of the macroscopic 
capillary length scale) vary from one layer to the next. We assume 
that these parameters are known and constant within each layer.

This problem formulation is clearly a simplification and 
serves as a starting point for future generalizations, in which one 
or more of the assumptions made above will be relaxed. Some of 
the approaches to achieve this are discussed below.

Moisture Profile

Consider the saturation-based form of the Richards equa-
tion (Eq. [2]):
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subject to the boundary conditions
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where q is the infiltration rate and Q0 is the saturation at z = 0. 
For the constitutive relationships of Eq. [3], a solution of Eq. 
[4–5] in a uniform medium can be written as
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This solution can be used to determine a moisture distribution 
in the layered soil depicted in Fig. 1 as follows. In each layer Wi 
= [zi−1,zi], i =  1, …, N, the saturation is given by
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where Qi
b is the (yet unknown) saturation at the bottom of each 

layer (i.e., at z = zi−1).
To determine the values of Qi

b (i = 1, …, N), we note that 
y is continuous across the interfaces between any two adjacent 
layers, while q undergoes a corresponding jump whose magnitude 
depends on the constitutive relation used. For the Gardner–Russo 
relationships (Eq. [3]), the continuity of pressure yields
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where Qi
t is the saturation at the top of the ith layer and, without 

the loss of generality, we set qs = 1 in all layers.

Inverse Procedure

For a given set of hydraulic and electric properties {Ksi,ai}
i=1

N and {ni,mi}i=1
N, the saturation and resistivity profiles are 

uniquely defined by Eq. [7–8] and [1], respectively. The unknown 
locations of the interfaces between the layers {zi}i=1

N can now 
be found by minimizing the objective function J, which is the 
difference between the computed rm = r(zm) and measured m̂r  
resistivity values at depths zm (m = 1, …, M):
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where rm = r(zm) is the computed resistivity and m̂r  is the 
measured resistivity at depths zm (m = 1, …, M). Solving this 
N-dimensional optimization problem is not trivial. We found that 
popular gradient-based optimization methods failed to converge 
to a global minimum in all but a few special cases. This is prob-
ably due to the fact that the solution for saturation in a layered 
medium is discontinuous at the interfaces. Such discontinuous 
solutions are known to cause problems for gradient-based opti-
mization schemes.

This finding caused us to settle on the Nelder–Mead algo-
rithm (Nelder and Mead, 1965). This gradient-free optimization 
method is based on a simplex. In N dimensions, a simplex is a 
polytope with N + 1 vertices (e.g., a line, a triangle, and a tet-
rahedron in one, two, and three dimensions, respectively). The 
algorithm consists of the following steps:

1.	 Generate a simplex using an initial guess.
2.	 Calculate the values of the objective function at each vertex.
3.	 Replace the vertex corresponding to the largest value of the objec-

tive function with a new point whose selection involves four basic 
stages: reflect, expand, contract, and shrink (see below).

4.	 Repeat Steps 2 and 3 until a convergence criterion is satisfied.
During the reflect stage, the worst point is reflected through 

the centroid of the line connecting the two best vertices. If the 
new point provides a better estimate of the objective function 
than any of the previous points, we expand the search along the 
line connecting the worst point and this new point, looking for 
lower values of the objective function. If the new vertex provides 
a better estimate than the reflected point but not better than the 
other vertices, we contract the search along the line connecting 
the worst point and this new point. If neither the expansion nor 
the contraction stage provides a better point, we shrink the sim-
plex toward the minimum vertex by projecting all other vertices 
linearly toward this point with some prespecified multiplier. The 
algorithm is said to converge once the size of the simplex falls 
below some prespecified tolerance. For further details on this 
algorithm, see Nelder and Mead (1965), Lagarias et al. (1998), 
and the references therein.

The fminsearch function in the optimization toolbox in 
Matlab (The MathWorks, Natick, MA) provides the implemen-
tation of the Nelder–Mead algorithm used in the subsequent 
simulations. One of the downfalls of the Nelder–Mead algorithm 
is that it can get stuck at small local minima and the original 
search conditions in fminsearch were sufficiently restrictive for this 
to occur regularly. To avoid this any time convergence to a mini-
mum occurred that did not provide a sufficiently small objective 
function (subject to a specified tolerance), we modified fminsearch 
to reset the search by initially dramatically expanding the size of 
the simplex to search for lower points. If this expanded search 
did not work, a new search with a modified initial condition was 
initiated. Additionally, since for all the problems presented here 
the convergence was generally rapid (on the order of seconds), we 
also wrote a code that searched for minima starting from multiple 
initial conditions scattered uniformly across our search space so 
as to identify multiple local as well as global minima. We discuss 
the details of this below.

The ability of the Nelder–Mead algorithm (and other opti-
mization strategies) to converge to a global minimum depends 
on the accuracy of an initial guess. In our context, an initial guess 
can be obtained from soft data and expert knowledge (e.g., from 
a geologic site characterization).

Computational Examples
The following computational examples demonstrate the abil-

ity of the proposed inverse procedure to delineate boundaries 
between layers, its robustness, and potential pitfalls. We start by 
considering various hydraulic conditions in a two-layer system, 
and then proceed by exploring several examples in a multilay-
ered system.

Two-Layer System

In the examples below, we consider a soil column of length 
L = 10 m, consisting of two layers, and set the infiltration rate to 
q = 2 × 10−3 m d−1.

Fig. 1. Layered medium consisting of N homogeneous layers W; q is 
the infiltration rate, L is the column length, z is depth, and q = Q0 is 
saturation at z = 0.
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Case 1: Saturation in each layer decreases 
monotonically with height 

This means that within each layer there 
are no two points that have the same 
saturation. This regime is achieved by 
choosing the following parameters: 
Layer 1: Ks1 = 1 m d−1, a1 = 2 m−1, r1 = 
12 W m, and n1 = 1.2; Layer 2: Ks2 = 10 
m d−1, a2 = 1 m−1, r2 = 9 W m, and n2 = 
1.7; by setting the interface between the 
two layers at z1 = 6 m; and by fixing the 
saturation at the column’s bottom at Q0 
= 1. The resulting saturation and resistiv-
ity profiles are shown in Fig. 2.

In this case, at least one mea-
surement point in the upper layer is 
needed to recover the interface z1 = 6 
m. This is because, given the particu-
lar properties of each layer, a unique 
value for saturation in the upper layer 
is guaranteed. On the other hand, if all 
measurement points are in the lower 
layer, the convergence to the correct 
solution cannot be guaranteed. This is 
because the bottom-layer profiles are 
the same (up to the initial guess of the 
interface) regardless of the height of the 
interface, being governed by both the 
constant boundary condition at z = 0 
and the properties of the bottom layer. 
The upper layer saturation, however, is 
sensitive to the interface location, as it 
determines the interfacial saturation.

Table 1 illustrates this effect by 
presenting the interface reconstructed 
from two measurement points for 
various initial guesses. The inverse 
procedure correctly reconstructs the 
interface if the two measurements are 
taken either in both layers (Case 1a) 
or only in the upper layer (Case 1c); 
it fails to converge (i.e., to identify the 
interface correctly) if both measure-
ments are in the bottom layer (Case 
1b). The algorithm’s convergence for 
Case 1a is faster than that for Case 1c. 
To ensure the convergence in Case 1c, 
the search parameters for the Nelder–
Mead algorithm have to be sufficiently 
large and the solution bounds have to 
be enforced. The latter is required to 
eliminate possible unphysical solutions that predict the interface’s 
position at z1 < 0 or z1 > 0.

Case 2: Saturation is uniform throughout most of the upper layer

Saturation is equal to its asymptotic value of q = q/Ks2. (This 
complicates determination of the interface position, as the value 
of saturation for each measurement point is not unique.) This 
regime is achieved by setting a2 = 4 m−1 and placing the interface 

at z1 = 5 m while keeping the rest of the parameters the same 
as in Case 1. The resulting saturation and resistivity profiles are 
shown in Fig. 3.

While Table 2 contains many cases of the correct identifica-
tion of the interface position, it also provides examples where the 
inverse algorithm failed to locate the interface. Similar to Case 
1, this is particularly true for the case where both measurement 
points are in the bottom layer (Case 2b). In all cases, if the initial 

Fig. 2. Saturation (left) and resistivity (right) profiles for Case 1 in the two-layer system.

Table 1. Reconstruction of the interface position z1 = 6 m for initial guesses of  1, 2, 3, …, 8, and 
9 m. The two data points used in these reconstructions were located at 2 and 7 m (Case 1a), 2 
and 4 m (Case 1b), or 7 and 8 m (Case 1c).

Prediction case
Interface position z1 = 6 m

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m

———————————————————————— m ————————————————————————
1a 6 6 6 6 6 6 6 6 6
1b uc† uc uc 4.02 5 6 7 8 9
1c 6 6 6 6 6 6 6 6 6

† uc = unconvergent.

Fig. 3. Saturation (left) and resistivity (right) profiles for Case 2 in the two-layer system.

Table 2. Reconstruction of the interface position z1 = 5 m for initial guesses of 1, 2, 3, …, 8, and 9 
m. The two data points used in these reconstructions were located at 2 and 8 m (Case 2a), or 2 
and 4 m (Case 2b), or 6 and 8 m (Case 2c).

Prediction case

Interface position z1 = 5 m

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m

———————————————————————— m ————————————————————————
2a 5 5 5 5 5 5 5 8.8 9
2b 6–10 6–10 6–10 5 5 6 7 8 9
2c 5 5 5 5 5 5 5 8.7 9
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guess is deep within the upper layer, 
the solution does not converge to the 
correct value. This is because, in this 
case, the saturation in the upper layer 
quickly reaches it asymptotic value, 
which makes it virtually impossible 
to identify the upper layer. In Case 2c, 
when the initial guess falls within the 
bottom layer, the predicted interface 
height varies depending on the specific 
search parameters used by the optimi-
zation algorithm. As long as the initial 
guess is good (i.e., close to the actual 
value), however, the result always con-
verges to the correct value.

Case 3: Saturation is uniform 
throughout most of the bottom layer

Saturation is equal to its asymp-
totic value of q = q/Ks1. (This 
complicates determination of the 
interfacial location, as the value of sat-
uration for each measurement point is 
not unique.) This regime is achieved 
by choosing the following parameters: 
Layer 1: Ks1 = 5 m d−1, a1 = 5 m−1, r1 
= 8 W m, and n1 = −1.3; Layer 2: Ks2 
= 0.2 m d−1, a2 = 1 m−1, r2 = 11 W m, 
and n2 = −1.5; by setting the interface 
between the two layers at z1 = 5.5 m; 
and by fixing the saturation at the col-
umn’s bottom at Q0 = 1 × 10−3. The 
resulting saturation and resistivity pro-
files are shown in Fig. 4.

Table 3 summarizes the results of 
successful and failed identification of 
the interface position depending on 
the measurement locations. Similar 
to the previous cases, if both measure-
ment points are in the lower layer (Case 3b), then it is impossible 
to guarantee convergence to a single correct value. If an initial 
guess falls within the bottom part of the lower layer, multiple 
solutions are obtained depending on the parameters of the opti-
mization algorithm. In the two remaining cases, however, where 
at least one measurement is taken in the upper layer (Cases 3a 
and 3c), the interface location is predicted perfectly. Once again, 
this is because the saturation in the upper layer is very sensitive 
to saturations at the interface and interface height, and incor-
rect interfacial heights lead to vertically shifted saturation curves, 
which does not agree with the experimental values.

Multiple-Layer System

We next apply the proposed algorithm for inversion of elec-
trical resistivity data to soils comprised of multiple homogeneous 
layers. To be concrete, we present results for a soil column con-
sisting of four layers (Fig. 1 with N = 4) and briefly describe 
reconstruction results for soils consisting of up to eight layers.

In the examples considered below, the length of a soil column 
is set to L = 20 m, with the interfaces between the four layers 

located at z1 = 6 m, z2 = 11 m, and z3 = 14 m. The hydraulic 
and resistivity properties of the four layers are a = 1, 2, 1.5, and 
1 m−1, Ks = 1, 3, 10, and 15 m d−1, r = 12, 9, 11, and 10 W m, 
and n = −1.2, −1.7, −1.4, and −1.5, respectively. The infiltration 
rate is set to q = 2 × 10−3 m d−1 and the saturation at z = 0 is 
set to Q0 = 1. The resulting saturation and resistivity profiles are 
shown in Fig. 5.

Case a: Measurements within each layer

As in the two-layer cases, the availability of measurements 
from each of the four layers renders the accurate interface recon-
struction feasible. It requires a reasonable initial guess, however, 
especially if a rapid convergence of the optimization algorithm is 
desired. Otherwise, the optimization algorithm might converge 
to a local, rather than global, minimum. This is illustrated in 
Table 4 for the case where our initial guess is 1, 5, and 10 m. If 
a good initial guess is not available, an iterative algorithm can 
be written that finds an objective function less than a specified 
tolerance by expanding the search area of the algorithm. If the 
initial guess does not converge to a sufficiently small value for the 

Fig. 4. Saturation (left) and resistivity (right) profiles for Case 3 in the two-layer system.

Table 3. Reconstruction of the interface position z1 = 5.5 m for initial guesses of 1, 2, 3, …, 8, and 
9 m. The two data points used in these reconstructions were located at 2 and 8 m (Case 3a), 2 
and 4 m (Case 3b), or 6 and 8 m (Case 3c).

Prediction case

Interface position z1 = 5.5 m

1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m

———————————————————————— m ————————————————————————
3a 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5
3b 1–10 1–10 1–10 4 5 6 7 8 9
3c 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5

Fig. 5. Saturation (left) and resistivity (right) profiles for the four-layer system.
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objective function (in this case it should converge to a 
value very close to 0), an expanded search begins until 
the solution converges to the desired value.

Case b: Measurements in several but not all layers

As in the two-layer case, the absence of measure-
ments in every layer leads to decreased fidelity of the 
reconstruction procedure. The first example in Table 
5 shows that even a reasonable initial guess does not 
guarantee an accurate reconstruction. In this example, 
four measurements are taken at heights 6.5, 9, 18, and 
19 m, i.e., two measurements are in Layer 2 and two 
in Layer 4. The predicted interface positions are not 
correct, despite the fact that the objective function is 
minimized to a value of 0. This indicates the existence 
of multiple global minima for the objective function. 
An improved initial guess (the second example in Table 
5) leads to convergence to the correct reconstruction. 
This demonstrates the need to either refine the search 
algorithm or collect more data or both.

Figure 6 illustrates a range of global minima for 
which the objective function is zero or close to zero 
(<10−5). This suggests that each of these predicted inter-
face locations would yield the saturations and electrical 
resistivities that are close to the obtained measurements, 
thus making it very difficult to tell which of the predic-
tions is actually correct. One can see that the interface 
between the first two layers is always predicted correctly 
at 6 m. This is because this interface location is neces-
sary to reproduce the measurements at 6.5 and 9 m. 
The upper two interfaces, however, are not always accu-
rately captured (although the predictions do appear to 
fluctuate around the correct values). The interface at 11 
m has quite a large range of predicted values (ranging 
from 9–12 m), while the 14-m interface has a smaller 
prediction range (13–14.13 m).

The saturation–resistivity profiles corresponding 
to different interface reconstructions may allow one to 
distinguish between them. Figure 7 compares the two 
predictions in Table 5. One can see that the resistivity 
values at the measurement locations are the same for 
both cases (in fact they are the same across a large range 
of the space). There is a large variety of other locations 
(ranging from 9–14 m), however, where this is not the 
case. This allows a sampling strategy to be guided by 
identifying locations where taking measurements would 
have the highest impact on the reconstruction of the 
vadose zone. Additional measurements, taken after the 
initial reconstruction effort, can be used to refine predictions in 
a manner consistent with Bayesian updating.

Discussion and Conclusions
The electrical resistivity of porous media is a complex func-

tion of a medium’s properties and water saturation. We have 
presented a semianalytical inverse approach that allows interpre-
tations of electrical resistivity data to be conditioned on a solution 
of the Richards equation. The inverse approach was used to delin-
eate interfaces between homogeneous layers in partially saturated 

soils from moisture profiles and borehole electrical resistivity data. 
Our analysis leads to the following major conclusions:

1.	 The proposed algorithm for inversion of electrical resistiv-
ity data is computationally efficient and can serve either as 
a stand-alone tool for layer delineation or as an autonomous 
module in a more comprehensive geophysical survey.

2.	 The inversion algorithm is most robust when each layer is 
sampled at least once. When one or more layers have not been 
sampled, the algorithm’s robustness (convergence) is depen-
dent on the accuracy of an initial guess (e.g., expert knowledge 
and other hard or soft data).

Table 4. Reconstruction of the interface positions z1 = 6, 11, and 14 m for 
accurate and inaccurate initial guesses. The four data points used in these 
reconstructions were located at 4, 10, 12, and 17 m.

Initial guess Predicted values Objective 
functionz1 = 6 m z1 = 11 m z1 = 14 m z1 = 6 m z1 = 11 m z1 = 14 m

——————————————————— m ———————————————————
4 8 16 6 11 14 0

Without expanded search
1 5 10 1.89 2.6 14.13 2.62 × 1012

With expanded search
1 5 10 6 11 14 0

Table 5. Reconstruction of the interface positions z1 = 6, 11, and 14 m for 
accurate and inaccurate initial guesses. The four data points used in these 
reconstructions were located in the second (z = 6.5 and 9 m) and fourth (z = 18 
and 19 m) layers.

Initial guess Predicted values Objective 
functionz1 = 6 m z1 = 11 m z1 = 14 m z1 = 6 m z1 = 11 m z1 = 14 m

——————————————————— m ———————————————————
4 8 16 6 9.02 14.13 0
5.8 10.6 14.4 6 11 14 0

Fig. 6. (a) Predicted interface locations corresponding to the values of objective 
functions <10−5, and (b) the value of the associated objective function.

Fig. 7. Saturation (left) and resistivity (right) profiles corresponding to the two 
interface reconstructions shown in Table 5. The solid line is the correctly pre-
dicted value; the dashed line is the incorrect one.
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3.	 The presence of multiple layers can give rise to an objective 
function with multiple local and global minima. This neces-
sitates the use of expanded searches.

4. Identification of regions with steep saturation gradients and 
multiple local minima can be used to design an efficient, cost-
effective sampling strategy.

The present analysis is based on the following assumptions:

1.	 Archie’s law and Gardner’s model provide an adequate 
representation of the resistivity–saturation and conductivity–
saturation relationships, respectively.

2.	 The number of layers comprising the vadose zone is known 
from geologic surveys, expert knowledge, or other soft data.

3.	 Each layer is macroscopically homogeneous.
4.	 The hydraulic and resistivity properties of each layer are known.

This problem formulation is clearly a simplification and serves as 
a starting point for future generalizations, in which one or more 
of the assumptions made above will be relaxed. While Archie’s law 
(Eq. [1]) has a solid theoretical underpinning provided by perco-
lation and effective-media theories (e.g., Hilfer, 1991; Ewing and 
Hunt, 2006), its applicability to many subsurface environments is 
questionable (e.g., Glover et al., 2000, and the references therein). 
Likewise, while the exponential model (Eq. [3]) often fails to 
provide the best fit to the data, it has been used extensively (see 
the literature review and the corresponding discussion in Lu et al., 
2002). In future investigations, our approach will be extended to 
arbitrary constitutive laws by applying the analytical algorithm 
of Rockhold et al. (1997).

The assumptions that layers are homogeneous and that their 
parameters are known deterministically can be relaxed within a 
stochastic framework. One can either replace the spatially varying 
hydraulic parameters with their stochastically derived effective 
counterparts (e.g., Tartakovsky et al., 1999, 2003b, 2004; Lu et 
al., 2002) or provide a statistical description of soil properties 
by adopting the probabilistic approach of Neuman et al. (2007). 
Both approaches would use the solution developed in the present 
analysis as a leading-order approximation.

Acknowledgments
This research was supported in part by the DOE’s Office of Ad-

vanced Scientific Computing Research.

References
Binley, A., P. Winship, L.J. West, M. Pokar, and R. Middleton. 2002. Seasonal 

variation of moisture content in unsaturated sandstone inferred from bore-
hole radar and resistivity profiles. J. Hydrol. 267:160–172.

Cornacchiulo, D., and A.C. Bagtzoglou. 2004. Geostatistical reconstruction 
of gaps in near-surface electrical resistivity data. Vadose Zone J. 3:1215–
1229.

Dahlin, T. 1996. 2D resistivity surveying for environmental and engineering 
applications. First Break 14:275–283.

Dentz, M., and D.M. Tartakovsky. 2008. Self-consistent four-point closure for 
transport in steady random flows. Phys. Rev. E 77:066307, doi:10.1103/
PhysRevE.77.066307.

Ewing, R.P., and A.G. Hunt. 2006. Dependence of the electrical conductivity on 
saturation in real porous media. Vadose Zone J. 5:731–741.

Furman, A., T.P.A. Ferré, and A.W. Warrick. 2004. Optimization of ERT surveys 
for monitoring transient hydrological events using perturbation sensitivity 
and genetic algorithms. Vadose Zone J. 3:1230–1239.

Glover, P.W.J., M.J. Hole, and J. Pous. 2000. A modified Archie’s law for two 
conducting phases. Earth Planet. Sci. Lett. 180:369–383.

Griffiths, D.H., and R.D. Barker. 1993. Two-dimensional resistivity imaging and 

modeling in areas of complex geology. J. Appl. Geophys. 29:211–226.
Guadagnini, L., A. Guadagnini, and D.M. Tartakovsky. 2004. Probabilistic re-

construction of geologic facies. J. Hydrol. 294:57–67.
Hilfer, R. 1991. Geometric and dielectric characterization of porous media. Phys. 

Rev. B 44:60–75.
Hubbard, S.S., and Y. Rubin. 2000. Hydrogeological parameter estimation us-

ing geophysical data: A review of selected techniques. J. Contam. Hydrol. 
45:3–34.

Kemna, A., B. Kulessa, and H. Vereecken. 2002. Imaging and characterisation 
of subsurface solute transport using electrical resistivity tomography (ERT) 
and equivalent transport models. J. Hydrol. 267:125–146.

Lagarias, J.C., J.A. Reeds, M.H. Wright, and P.E. Wright. 1998. Convergence 
properties of the Nelder–Mead simplex method in low dimensions. SIAM 
J. Optim. 9:112–147.

Liu, S., and T.-C.J. Yeh. 2004. An integrative approach for monitoring water 
movement in the vadose zone. Vadose Zone J. 3:681–692.

Lu, Z., S.P. Neuman, A. Guadagnini, and D.M. Tartakovsky. 2002. Con-
ditional moment analysis of steady state unsaturated flow in bound-
ed, randomly heterogeneous soils. Water Resour. Res. 38(4):1038, 
doi:10.1029/2001WR000278.

Michalak, A.M., and P.K. Kitanidis. 2003. A method for enforcing param-
eter nonnegativity in Bayesian inverse problems with an application 
to contaminant source identification. Water Resour. Res. 39(2):1033, 
doi:10.1029/2002WR001480.

Mundry, E., and H.-J. Zschau. 1983. Geoelectrical models involving layers with 
a linear change in resistivity and their use in the investigation of clay de-
posits. Geophys. Prospect. 31:810–828.

Nelder, J.A., and R. Mead. 1965. A simplex method for function minimization. 
Comput. J. 7:308–313.

Neuman, S.P. 1993. Eulerian–Lagrangian theory of transport in space–time 
nonstationary velocity fields: Exact nonlocal formalism by conditional mo-
ments and weak approximation. Water Resour. Res. 29:633–645.

Neuman, S.P., A. Blattstein, M. Riva, D.M. Tartakovsky, A. Guadagnini, and 
T. Ptak. 2007. Type curve interpretation of late-time pumping test data 
in randomly heterogeneous aquifers. Water Resour. Res. 43:W10421, 
doi:10.1029/2007WR005871.

Ritzi, R.W., D.F. Jayne, A.J. Zahradnik, A.A. Field, and G.E. Fogg. 1994. Geo-
statistical modeling of heterogeneity in glaciofluvial, buried-valley aquifers. 
Ground Water 32:666–674.

Rockhold, M.L., C.S. Simmons, and M.J. Fayer. 1997. An analytical solution 
technique for one-dimensional, steady vertical water flow in layered soils. 
Water Resour. Res. 33:897–902.

Rubin, Y. 2003. Applied stochastic hydrogeology. Oxford Univ. Press, New 
York.

Sato, H.K. 2000. Potential field from a dc current source arbitrarily located in a 
nonuniform layered medium. Geophysics 65:1726–1732.

Sato, H.K., and E.S. Sampaio. 1980. Electrical sounding of a half-space with 
a monotonic continuous variation of the resistivity with depth. Geophys. 
Prospect. 28:967–976.

Spies, B.R. 1996. Electrical and electromagnetic borehole measurements: A re-
view. Surv. Geophys. 17:517–556.

Storz, H., W. Storz, and F. Jacobs. 2000. Electrical resistivity tomography to in-
vestigate geological structure of the earth’s upper crust. Geophys. Prospect. 
48:455–471.

Tartakovsky, A.M., L. Garcia-Naranjo, and D.M. Tartakovsky. 2004. Transient 
flow in a heterogeneous vadose zone with uncertain parameters. Vadose 
Zone J. 3:154–163.

Tartakovsky, D.M., and A. Guadagnini. 2001. Prior mapping for nonlinear 
flows in random environments. Phys. Rev. E 64:5302(R)–5305(R).

Tartakovsky, D.M., A. Guadagnini, and M. Riva. 2003. Stochastic averaging of 
nonlinear flows in heterogeneous porous media. J. Fluid Mech. 492:47–
62.

Tartakovsky, D.M., Z. Lu, A. Guadagnini, and A.M. Tartakovsky. 2003b. Un-
saturated flow in heterogeneous soils with spatially distributed uncertain 
hydraulic parameters. J. Hydrol. 275:182–193.

Tartakovsky, D.M., S.P. Neuman, and Z. Lu. 1999. Conditional stochastic aver-
aging of steady state unsaturated flow by means of Kirchhoff transforma-
tion. Water Resour. Res. 35:731–745.

Tartakovsky, D.M., and C.L. Winter. 2008. Uncertain future of hydrogeology. J. 
Hydrol. Eng. 13:37–39.



www.vadosezonejournal.org · Vol. 7, No. 4, November 2008 8

Tartakovsky, D.M., B.E. Wohlberg, and A. Guadagnini. 2007. Nearest neigh-
bor classification for facies delineation. Water Resour. Res. 43:W07201, 
doi:10.1029/2007WR005968.

Vereecken, H., S. Hubbard, A. Binley, and T. Ferré. 2004. Hydrogeophysics: An 
introduction by the guest editors. Vadose Zone J.  3:1060–1062.

Winter, C.L., and D.M. Tartakovsky. 2000. Mean flow in composite porous 
media. Geophys. Res. Lett. 27:1759–1762.

Winter, C.L., and D.M. Tartakovsky. 2002. Groundwater flow in het-
erogeneous composite aquifers. Water Resour. Res. 38(8):1148, 
doi:10.1029/2001WR000450.

Winter, C.L., D.M. Tartakovsky, and A. Guadagnini. 2002. Numerical solutions 
of moment equations for flow in heterogeneous composite aquifers. Water 
Resour. Res. 38(5):1055, doi:10.1029/2001WR000222.

Wohlberg, B.E., D.M. Tartakovsky, and A. Guadagnini. 2006. Subsurface char-
acterization with support vector machines. IEEE Trans. Geosci. Remote 
Sens. 44:47–57.

Yeh, T.-C.J., S. Liu, R.J. Glass, K. Baker, J.R. Brainard, D.L. Alumbaugh, and D. 
LaBrecque. 2002. A geostatistically based inverse model for electrical resis-
tivity surveys and its applications to vadose zone hydrology. Water Resour. 
Res. 38(12):1278, doi:10.1029/2001WR001204.

Executive Summary
We present a simple, semianalytical approach to delineate multi-
ple layers in partially saturated soils from resistivity and saturation 
measurements taken at several depths along a borehole. The pro-
posed inversion algorithm is computationally efficient and can 
serve either as a stand-alone tool for layer delineation or as an 
autonomous module in a more comprehensive geophysical survey. 
We provide a detailed analysis of the algorithm’s convergence and 
identify potential pitfalls.


