Pumps, Turbines, and Pipe Networks

Ch 11 Young

Chapter Topics

- Types of pumps and turbines
- Moment of momentum review
- Pump and turbine theory
- Energy and power
- Pump selection
- Pump-pipe networks
- Use of pipe network analysis program EPAnet2

Introduction

- Pumps and turbines appear many places in hydraulics and other civil and environmental engineering applications
 - Water supply, distribution and treatment
 - Power generation
- Civil and Environmental Engineers need to understand how they work, and how to select appropriate machinery

Course Topics

- 1. Pumps, Turbines and Pipe networks
 - Moment of Momentum Revisited
 - Types of pumps and turbines and uses
 - Pump-pipe systems, networks
- 2. Open Channel Flow
 - Specific Energy and Rapid Transitions
 - Hydraulic Jumps
 - Slowly varying flow
 - Open channel control structures
- 3. Introduction to Surface Water Hydrology
 - Hydrologic Cycle
 - Rainfall, Runoff and Design Events
- 4. Hydraulic Structures
 - Dams, weirs, spillways
 - Culverts
 - Safety and Effects of Hydraulic Structures

Theory of Turbomachines

- General characteristics of turbomachines can be evaluated from moment of momentum (Ch 5.2.3 Fluid Mech)
 - Modified based on measurements of efficiency, etc.
- Three main types
 - Axial flow (along centerline)
 - Radial flow (outwards from center)
 - Mixed flow (combination)

Axial Flow Machines – Low Head, High Flow Rate

- Propeller-type
- Kaplan turbine adjustable blades
- Bulb-type bulge in pipe
- Wind turbine

In

Bonneville Dam Kaplan Turbine

Kaplan turbine schematic

Radial Flow Turbomachines

- Common types
 - Francis Turbine
 - Centrifugal Pump

Three Gorges Francis turbine

Francis turbine cut-away Rear

Car Water Pump

Review - Moment of Momentum

- Rate of change of fluid moment of momentum is work done by machinery
- Geometry very important
- Absolute Velocity = Relative Velocity plus Tangential Rotation Velocity
- Example

Energy Added/Removed

- As in Chapter 5.2 from Fluid Mechanics
- Depends of direction of rotation and direction of flow
- Many pumps or turbines are essentially the same instrument turning in different directions

Pump or Turbine?

Pelton Wheel Turbine

Pump or Turbine?

Centrifugal Pump

Centrifugal Pumps

- One of the most common Civil & Environmental Engineering machines (and many other branches of engineering)
- Water enters more or less axially, travels into inner impeller blades, exits outer impeller blades
- All sorts of Civil & Environmental Eng. water supply and treatment

Pump Theory

- Follows directly from rotating turbomachine theory
- Often written in terms of head rise across pump
- One exception: efficiency is not 100%

Pump Characteristics

Flowrate

Efficiency

- There are always losses in a pump
 - Turbulence, friction
- Efficiency is never 100%
- Pumps have ranges where they operate most efficiently
- Different types of pumps have different operating ranges
 - What are the types of pumps?
 - What ranges do they operate?

General Pump Characteristics

- All manufacturers of pumps for Civil Engineering provide performance curves
- Flow rate vs head increase and efficiency
 - Usually in gallons per minute (GPM), feet
- For Civil Engineering, pick from a range of pumps
- Pick for good efficiency over the desired range of application

Course Topics

- 1. Pumps, Turbines and Pipe networks
 - Moment of Momentum Revisited
 - Types of pumps and turbines and uses
 - Pump-pipe systems, networks
- 2. Open Channel Flow
 - Specific Energy and Rapid Transitions
 - Hydraulic Jumps
 - Slowly varying flow
 - Open channel control structures
- 3. Introduction to Surface Water Hydrology
 - Hydrologic Cycle
 - Rainfall, Runoff and Design Events
- 4. Hydraulic Structures
 - Dams, weirs, spillways
 - Culverts
 - Safety and Effects of Hydraulic Structures

Pump Selection

- Intersection of system characteristics and pump characteristics gives flow rate and head increase
- Example 11.3
 - Often calculate head/flow rate and then go through pump literature
 - Centrifugal pumps often have moderately narrow efficient operational ranges

(a)

Single Pump-Pipe Systems

Increase Pipe Diameter – Lower System Curve H_s 350 New pipe System head curve system curve 300 250 **New Intersection** 225 point 200 Head (ft) 150 100 H_{s} Pump characteristics 50 0 5 10 15 20 25 30 35 0 40 Discharge (cfs)

Decrease Elevation Difference Between Reservoirs_{ER}

Run Pump at Faster Speed

Pumps in Parallel

Pumps in Series

One Pump and Two Pipes

Head available to each pipe is the same after the pump

Pipe System Curves for Two Pipes For given pipe he

For given pipe head, add flow rates

Pump Cavitation

- When absolute pressure drops below vapor pressure, cavitation occurs
 - When occurring in pump, damage to impellers, premature wear, loss of head
- Bernoulii's equation between start of pipe, pump
 - Unknown V in pump represented by net positive suction head (NPSH) on manufacturer's pump curves
- To prevent:
 - 1. Place pump close to intake
 - 2. Seat pump at low elevation
 - 3. Lower losses (major and minor) before pump
 - 4. Run pump at slower speed if possible

Cavitation Examples

- Tends to show wear on impellers
- Severe cavitation can be heard clearly, mild cavitation can be heard with instruments

http://www.youtube.com/watch?v=005W2JrFhc4 http://www.youtube.com/watch?v=Qw97DkOYYrg&NR=1 https://www.youtube.com/watch?v=N3WwQKZ05Uk

