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The inference pattern known as disjunctive syllogism (DS) appears as a derived
rule in Gentzen’s natural deduction calculi NI and NK. This is a paradoxical fea-
ture of Gentzen’s calculi in so far as DS is sometimes thought of as appearing
intuitively more elementary than the rules ∨E, ¬E, and EFQ that figure in its
derivation. For this reason, many contemporary presentations of natural deduc-
tion depart from Gentzen and include DS as a primitive rule. However, such
departures violate the spirit of natural deduction, according to which primitive
rules are meant to relationally define logical connectives via universal properties
(§2). This situation raises the question: Can disjunction be relationally defined
with DS instead of with Gentzen’s ∨I and ∨E rules? We answer this question
in the affirmative and explore the duality between Gentzen’s definition and our
own (§3). We argue further that the two universal characterizations, rather than
provide competing relational definitions of a single disjunction operator, disam-
biguate natural language’s “or” (§4). Finally, this disambiguation is shown to cor-
respond exactly with the additive and multiplicative disjunctions of linear logic
(§5). The hope is that this analysis sheds new light on the latter connective, so
often deemed mysterious in writing about linear logic.

1. Sextus Empiricus attributed to Chrysippus of Soli the claim that hunting dogs exhibit a
particular inference pattern in their observed behavior:

And according to Chrysippus, who shows special interest in irrational animals,
the dog even shares in the far-famed “dialectic.” This person, at any rate, declares
that the dog makes use of the fifth complex indemonstrable syllogism when, on
arriving at a spot where three ways meet, after smelling at the two roads by which
the quarry did not pass, he rushes off at once by the third without stopping to
smell. For, says the old writer, the dog implicitly reasons thus: “The creature
went either by this road, or by that, or by the other: but it did not go by this road
or by that: therefore it went by the other.”1

The modern name of the inference pattern governing the dogs’ alleged implicit reasoning
is “disjunctive syllogism.” It is schematically presented as an inference from the premises

1Sextus Empiricus Outlines of Pyrrhonism I.69, from Bury 1933
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“Either A or B” and “not A” to the conclusion “B.” The anecdote Sextus Empiricus provided
seems to demonstrate not only the basic pattern but also its iterated use: Our “quarry” has
taken one of paths A, B, or C. Ruling out path A leaves the question whether it took path B or
path C. Further ruling out path B allows us to conclude that it took path C. If we denote the
inference figures ¬A A ∨ B

B and ¬B A ∨ B
A by DS, we can represent the alleged

canine reasoning by

¬B
¬A A ∨ (B ∨ C)

DSB ∨ C DSC

Following Bobzien (1996) we suggest that the Stoics would have formalized the hunting
dog example as we have done here, as an iterated application of the rule DS, first to a set of
premises the major one of which has a compound clause, then to a set of premises the major
one of which is that same clause. An alternative conceptualization of disjunctive syllogism
(DSA) would avail itself of the associativity of the disjunction and apply singly to n premises
one of which is a disjunction of n alternatives, the others of which are the negations of all

but one of those alternatives: ¬A1 . . .¬An−1 A1 ∨ . . . ∨ An−1 ∨ B
B

. What is important
is that DS or DSA, whichever they intended, is labeled “indemonstrable”: for Chrysippus and
his followers, the disjunctive syllogism is one of the five or so inference patterns that arbitrary
arguments can be reduced to. It does not stand to be further reduced to other simpler inference
patterns.2

2. The claim that disjunctive syllogism is indemonstrable intrigues. On the one hand, as we
shall see, subsequent developments in propositional logic strongly indicate that its validity can
be reduced to that of other clearly identifiable and more elementary inference patterns. On the
other hand, many people have an intuitive sense that disjunctive syllogism is more evidently
valid than the inferences it is thereby shown to reduce to. One approach to this tension is to
distinguish logical and psychological senses in which an inference pattern can be thought of
as basic. An example of a vindication of the Stoics against the apparent commination from
formal logic along these lines is López-Astorga 2015. In this paper we propose a different
style of vindication drawn from formal logic’s own further details.

First let us consider the way in which disjunctive syllogism appears as a derived infer-
ence, rather than as a basic one, in modern propositional logic. In Gerhard Gentzen’s natural
deduction systematization of logic, introduced in 1934–35, the propositional fragment of the
classical calculus NK consists of rules

2Bobzien 2020 defends one understanding of the Stoic doctrine of the ὰναπόδεικτοί against several alterna-
tives. But all interpretations agree that by calling an inference pattern “indemonstrable,” the Stoics meant that it
does not stand to be further reduced to more elementary inference patterns.
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A ⊃ B A ⊃EB

[A]
B ⊃IA ⊃ B

A ∧ B
A

A ∧ B ∧EB
A B ∧IA ∧ B

A ∨ B
[A]
C

[B]
C ∨EC

A
A ∨ B

B ∨IA ∨ B

¬A A ¬E⊥
[A]
⊥ ¬I¬A

⊥ EFQA
¬¬A DNA

Natural deduction proofs are trees constructed by iterating these rules. Applications of
∨-Elim, ⊃-Intro, and ¬-Intro are labeled with natural numbers 1, 2, . . ., to indicate which,
if any, assumptions (identified in brackets) are discharged, i.e., those assumptions, if any,
bearing the same label as the rule. Discharge of assumptions is inessential to these rules so
that, for example, B ⊃ A is derivable from A by one application of ⊃-Intro with “vacuous
discharge.” When all the assumptions in such a proof are discharged by the application of a
rule, the sentence at the tree’s single root node is said to be proved. Otherwise this sentence
is said to be derived from the set of assumptions that remain open at leaf nodes or, more
succinctly, the inference scheme whose premises are the proof’s open assumptions and whose
conclusion is the sentence at the tree’s root is said to be derived. Gentzen called the result of
deleting the rule DN NI, the natural deduction calculus for intuitionistic propositional logic.
Shortly after Gentzen published his thesis, Ingebrigt Johansson (1937) studied the result of
deleting also the rule EFQ. This system with only the introduction and elimination rules for
each of the canonical propositional connectives is called NM, the natural deduction calculus
for minimal propositional logic. An elementary observation is that the rule EFQ is redundant
in NK although it is not so in NI.

Here is a simple natural deduction derivation of DS:

A ∨ B

1

[A] ¬A
¬E⊥ EFQB

1

[B]
∨E1B

The rule DN is nowhere used in this derivation. On the other hand, Johansson (1937) showed
that the use of EFQ is essential. Thus ¬A,A ∨ B NI B but ¬A,A ∨ B ̸ NM B. On its surface,
this state of affairs draws into question the “indemonstrable” status of DS. Here its validity
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is reduced to that of ¬E, ∨E, and EFQ. Logic instructors are familiar with the irony of the
reduction. DS strikes typical students as far more basic an inference scheme than ∨E, with
its network of subproofs. Especially surprising is the news that EFQ is unavoidable, for this
inference seems very strong to most students and even fallacious to many, whereas very few
students express any reservations about DS. Here is an occasion to say, “If anyone still harbors
misgivings about EFQ, it would appear that they should also give up DS.”

One might wonder if situating DS in natural deduction is therefore misleading in some
way. Maybe Gentzen’s rules are not the right grid to impose on the disjunctive syllogism.
Perhaps in another framework, its indemonstrability can be preserved and its association with
what are often regarded as intuitively more suspicious principles can be avoided. In this spirit,
one even finds textbooks in which classical propositional logic is presented in the style of
natural deduction, but in place of Gentzen’s I/E rules are found an assortment of other basic
inference figures. Stoic “indemonstrables” such as DS and modus tollens are common entries
in such treatments. In fact, Pelletier (1999) surveyed the most prominent 20th century textbook
presentations of natural deduction and observed that “the Gentzen ideal of introduction and
elimination rules for each connective was followed only by Fitch [1952]” (p. 23).

It is true that there is something arbitrary about the choice of basic principles in any for-
mulation of propositional logic. But natural deduction style presentations of logic that depart
from Gentzen’s I/E ideal overlook something else non-arbitrary about the choice of basic prin-
ciples. This something else is the main idea behind natural deduction, an idea that lends added
force to the claim that DS is demonstrable.

The way Gentzen put it is not particularly lucid, but the idea has been refined and clar-
ified into one of the major conceptual developments of 20th century logic, so we can see
retrospectively just what he meant. Gentzen’s original statement was that natural deduction’s
introduction rules “represent the definitions of” the logical constants and that its elimination
rules are “consequences of” these definitions (1934–35, p. 80).

For an illustrative example, consider Gentzen’s introduction rule for ∨, commonly referred
to as “addition”:

A ⊢ A ∨ B and B ⊢ A ∨ B

To say that this rule is not only valid but defining of the ∨ connective is to say that any other
sentence that can legitimately fill in the blanks in A ⊢ and B ⊢ , any sentence,
that is, that stands in the same inferential relationships as A ∨ B, must itself be inferable from
A ∨ B:

For all C, if A ⊢ C and B ⊢ C, then A ∨ B ⊢ C

But notice that this last expression, commonly referred to as “proof-by-cases,” is just Gentzen’s
elimination rule for ∨! Thus one can derive ∨E, not (as Gentzen’s own words suggest) from
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the corresponding ∨I rule, but (as he surely meant) from the conception of that rule as defining
of ∨. When one defines the disjunction of A and B as the thing that can be inferred from both
A and B, ∨I captures the part about it being so inferable, whereas ∨E captures the part about
it being “the thing” that is.

Gentzen’s idea of characterizing ∨ with an I/E rule pair is an example of definition with a
universal property3: specifying a way that a particular sentence is related to other sentences
such that if any other sentence is related to those same sentences in the same way, then that
sentence will bear a further relation to the specified sentence indicating that it is the extreme,
ideal, or archetypical sentence standing in this relation. Here “addition” is said to hold of ∨
definitionally; “proof-by cases” then follows by universality.4

In the same fashion as for ∨, the I/E rules Gentzen specified for each of the proposi-
tional connectives ∧, ¬, ⊃ provide a definition of the connective in the form of a universal
property. Thus natural deduction exemplifies the phenomenon of defining something in terms
of its situation in the network of relations it bears to other things of the same type, just as
truth-functional semantics exemplifies the phenomenon of defining something in terms of the
abstract object it refers to or its internal constitution. You can think of these as the relational
and essential styles of definition.

The idea of relationally defining logical connectives via universal properties will evoke in
many readers’ minds connections with the proof-theoretic semantics program’s idea of “logi-
cal harmony.” The idea of logical harmony is that inference rules can properly be thought of
as specifying a connective’s meaning only when certain conditions are met, conditions such
as invertibility (Schroeder-Heister 2006), normalization (Prawitz 1965), or maximal inferen-
tial strength (Tennant 1978). The proof-theoretic literature on logical harmony is extensive
and arguably tendentious, culminating with Steinberger’s (2013) observation of the inequiv-
alence of its various proposed precisifications, “harmony–as–conservative extension,” “har-
mony–as–leveling procedure,” and “harmony–as–deductive equilibrium.” The conception of
logical connectives as universal properties is meant to adhere to the core of Gentzen’s idea and
to support a coherent notion of relational definition without favoring any particular elaboration
of the harmony concept.

3Formally introduced in Samuel 1948. A modern treatment is Bergman 2015.
4As we stressed above, Gentzen did not present his natural deduction calculi in terms of universal construc-

tions. He could not have. Although latent in many mathematical arenas dating back as far as the ancient Greek
study of a pair of integers’ greatest common factor, the concept of a universal property was only formally in-
troduced in Samuel 1948. The association of universal properties with logical connectives came later still in
Lawvere’s (1963) thesis. Even though the idea is so central today that a textbook on Basic Category Theory can
begin with the declaration that “[t]he most important concept in this book is that of universal property” (Leinster
2014, p. 1), its explicit formulation evaded Gentzen. With hindsight, Lawvere’s observation reveals that the
meet, join, and adjoint objects in the ordered structures that figure in the algebraic semantics of subclassical log-
ics were all along universal characterizations of logical connectives. We submit that similar hindsight provides a
full analysis of the sense in which Gentzen intended natural deduction rules to define logical connectives and the
sense in which Gentzen meant that a connective’s I/E rules relate to one another.
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For an illustration of the sort of simple analysis facilitated by the relational definition
of logical particles in terms of universal properties and of its aptness as an interpretation of
Gentzen’s thought, consider the EFQ inference. Gentzen notoriously labeled this inference
⊥E, suggesting that it—unlike DN—can be accommodated in the relational definition scheme.
But the absence of a ⊥I rule to accompany ⊥E might seem problematic, if the idea of I/E
rules is, as we are suggesting, to pairwise describe a universal property. To see why it is not,
consider EFQ rewritten in turnstile notation:

⊥ ⊢ A, for all A

To say that this rule is not only valid but defining of the ⊥ connective is to say that any other
sentence that can legitimately fill in the blank in “ ⊢ A, for all A,” any sentence, that is,
that stands in the same inferential relationships as ⊥, must itself allow inference to ⊥:

For all C, if C ⊢ A, for all A, then C ⊢ ⊥

The reader might have already noticed why Gentzen would have not have included this ⊥I
rule in his natural deduction calculi, even if the point of natural deduction was to provide
universal characterizations of logical particles with I/E rule pairs: If C ⊢ A, for all A, then in
particular, for any given D, C ⊢ D and C ⊢ ¬D, from which ⊥ follows by Gentzen’s own ¬E
rule. In other words, ⊥E (EFQ) and its universalization ⊥I do indeed relationally define the
⊥ connective, but the ⊥I rule is redundant in NM, NI, and NK and therefore omitted.

On the other hand, when an inference like DN is observed to be underivable in NM, one
can conclude with Gentzen that its alleged validity cannot be accounted for by the relational
meaning of the ¬ connective.5 But of course it is classically valid, so apparently the relational
and essential styles of definition come apart.

Observing how the I/E rules relationally define the logical connectives may well vindicate
the Stoic doctrine of the indemonstrability of modus ponens: Not only is this inference figure
justified by the meaning of the ⊃ connective, it is one clause of the very definition of ⊃ in
the relational style, the elimination rule for ⊃. But the same observation seems to strengthen
the case for the demonstrability of DS. On the relational scheme ∨I and ∨E are defining of ∨,
whereas DS is not. Moreover DS cannot even be accounted for by the relational meanings of
the ∨ and ¬ connectives. One also needs EFQ. The derivation of DS in natural deduction is no
reduction of Stoic reasoning to arbitrarily chosen rules. It makes plain exactly in what ways
DS turns on the meanings of the ∨ and ¬ connectives as well as how it extends them.

5Adhering to his characteristic phraseology, Gentzen wrote in 1934–35 that DN “falls outside the framework
[of introduction and elimination rules], because it represents a new elimination of the negation whose admissi-
bility does not follow at all from our method of introducing the ¬-symbol by ¬I” (p. 81). In 1936 he wrote that
DN “conflicts in fact quite categorically with the remaining forms of inference” (p. 169).
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3. Nevertheless, the intuition that disjunctive syllogism is basic—valid just by virtue of the
meanings of “or” and “not”—is resilient. Can ∨ not be relationally defined in some other way
that captures this intuition?

In fact one can treat DS itself, not just as one among the countless valid inference patterns
licensed by the ∨ connective, but as defining of ∨. To say that

A ∨ B,¬A ⊢ B and A ∨ B,¬B ⊢ A

is universal for ∨ is to say that any other sentence that can legitimately fill in the blanks in
, ¬A ⊢ B and , ¬B ⊢ A must be something that A ∨ B is inferable from:

For all C, if C,¬A ⊢ B and C,¬B ⊢ A, then C ⊢ A ∨ B.

The natural deduction presentation of this last rule is

[¬A]
B

[¬B]
A DS−

A ∨ B

Like DS, DS− is underivable in NM. Unlike DS, it is underivable even in NI: In the two node
Kripke frame

w0

A, B

w1

w0 ⊩ ¬A ⊃ B and w0 ⊩ ¬B ⊃ A but w0 ̸⊩ A ∨ B. It is, of course, derivable in NK (let π1
denote any NK proof of A ∨ ¬A and π2 denote an NK derivation of B from ¬A):

π1
A ∨ ¬A

1

[A] ∨IA ∨ B

1

[¬A] . . .
1

[¬A]

π2
B ∨IA ∨ B ∨E1A ∨ B
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A curiosity of this demonstration of DS− is that only one of its two sub-derivations is used.6

We will return to this point shortly.
Johansson observed that, over the base system NM, EFQ and DS are interderivable. Thus

NM+DS is equivalent to NI. However, if instead of starting with NM one replaces Gentzen’s
rules ∨I and ∨E with DS and DS−, the situation is more interesting. Call the system NR.
Notice first that EFQ is not derivable in NR. This is because in the canonical NM+DS proof of
EFQ,

⊥ ∨I⊥ ∨ A

1

[⊥] ¬I1¬⊥ DSA

the ∨I rule is unavoidable. One might have supposed that ∨I is derivable in NR and therefore
available to feature in an NR derivation of EFQ, but it is not. Here is a simple natural deduction
derivation of the addition rule in NR+EFQ (notice that the application of DS− uses vacuous
discharge of ¬B along the right branch):

A
1

[¬A] ¬E⊥ EFQB A DS−
1A ∨ B

As we will see later, the use of EFQ is unavoidable. From the Chrysippian point of view,
∨E is more complex still, for it is underivable even in NR+EFQ. The following derivation,
witnessing the full classical strength of NR+DN, appears to be the simplest one7 (hereπ1 and
π2 denote derivations of C from A and from B):

6Weir (1986) and Choi (2021) present natural deduction systems of classical propositional logic in which DS
is a primitive rule in place of Gentzen’s ∨E. Weir calls it ∨E*, and Choi calls it ∨E. Neither author seeks to
universalize DS in order to arrive at the appropriate corresponding introduction rule. They are focused instead on
the problem of proving normalization for classical logic in the full ⟨¬,⊃,∨,∧,⊥⟩ signature. It is not surprising,

therefore, that Weir’s ∨I* consists of two templates
[¬B]

A
A ∨ B

and
[¬A]

B
A ∨ B

. This rule suffices for normalization

and in the classical setting is all one ever needs. It is not, however, the universalization of DS and therefore cannot
be said to relationally define ∨ together with DS. Remarkably, Choi’s ∨I is exactly our DS−. Neither author
discusses the relationship between their alternative rules for disjunction and Gentzen’s, absent the principles of
classical logic which obscure the point.

7Weir (1986, p. 470) presents a very different derivation of ∨E based on his system with ∨E* and ∨I*. It
also has only seven inferences, but the uncanny one-line proof of A ∨ ¬A from the discharged assumption ¬A it
contains can obviously not be replicated when using DS− in place of Weir’s stronger ∨I* rule.
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2

[¬C]

A ∨ B
1

[¬A]
DSB

π2
C

2

[¬C] ¬E⊥ ¬I1¬¬A DNA

π1
C ¬E⊥ ¬I2¬¬C DNC

Thus the connective ∨ submits to two different relational definitions. If one takes the “ad-
dition” property of disjunction as definitional of ∨, then by universality the “proof-by-cases”
inference pattern comes along with it. DS, however, does not: its demonstration depends on
a combination of the connectives’ relational meanings and the EFQ inference. If instead one
takes DS as definitional of ∨, then the additional rule DS− is secured by universality. Now
addition stands as something to be demonstrated with the connectives’ relational meanings.
Again, EFQ is needed to complete the demonstration.

One conspicuous asymmetry between the pairs of rules ∨I/∨E and DS/DS− is that the
former are “pure”; they define ∨ without reference to other connectives. Gentzen’s ability
to treat each logical connective individually with such pure definitions is regarded as one
of his emblematic achievements. The absence of this feature from the DS/DS− pair might
therefore seem like a step backwards towards the cumbersome entanglement of connectives
characteristic of Frege-style proof systems. As purity is a hallmark of the proof-theoretic
semantics program Gentzen inaugurated, defining ∨ with the ∨I/∨E pair could appear, for this
reason alone, preferable.

A simple response to this asymmetry is just to point out that the relational definition
scheme depends in no way on purity. To define a logical operator as a universal construction,
all that is needed is to identify a property that the operator not only has but has definitionally,
so that it is the characteristic or extremal example of an object having that property—extremal
in the sense that it stands in a specific relation to every other object with the same property.
This relational approach to meaning does not operate at cross purposes to the idea of proof-
theoretic semantics. When, as in the example of logical operators, the relations in question are
valid inferences, it can be thought of as that idea’s precisification: The meaning of a logical
operator is given by the defining inferential relations it stands in, “defining” in the sense that
any other object that stands in those same inferential relations does so only because part of its
meaning is given by that same logical operator as made evident by the fact that the operator
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can be inferred from the object or vice-versa (according to whether the construction is right-
universal or left-universal, as described by Bergman in 2015, page 71.) Purity does not enter
into this idea.

A more subtle, but equally important, response is that the relational scheme exposes the
appearance of asymmetry as a mirage. Gentzen’s rules for ¬, to take a well worked example,
do not exhibit purity: These rules define the ¬ symbol partially in terms of ⊥. In the name
of purity, this “problem” is eliminated by treating ¬A as an abbreviation of A ⊃ ⊥, revealing
that the natural deduction rules for ¬ are themselves just special cases of those for ⊃. But to
what benefit? The Elim rule for ⊃ (modus ponens) itself states that A ⊃ B together with A
supports an inference to the conclusion B. To say that this rule is defining of the conditional is
to say that any other object (C) that, together with A, supports an inference to the conclusion
B, must be such that it alone supports an inference to the conclusion A ⊃ B: You cannot
pair-up with A to infer B unless you are already in a position to to infer A ⊃ B. This is the
Intro rule for ⊃.

What are the relations that this universal characterization is built of? Plainly, there is
the inference from the arbitrary object C to A ⊃ B. But this is the only relation between
A ⊃ B and another object, and it is guaranteed to attain only when there is a valid inference
from C together with A to B. When is there such an inference? According to the universal
characterization of conjunction, there is no way to have both C and A without begin in a
position to infer C ∧ A, the object that supports an inference to anything that can be inferred
from C together with A. In other words, in addition to the inference from the arbitrary object C
to A ⊃ B, there is an inference from C∧A to B, and the existence of the former depends on the
existence of the latter. Finally, there is the independent inference of B from A ⊃ B together
with A, i.e., an inferential relation from (A ⊃ B)∧A to B. No less than the ⊥ operator figures
in the defining rules for ¬, the ∧ operator figures in the defining rules for ⊃. In the language
of category theory, exponential objects (of which the logical conditional is an example) are
defined in terms of products (such as (additive) conjunctions). Impurity is endemic to the
relational definition scheme, even as natural deduction’s notation occasionally disguises it.

Upon reflection, the situation is just what one should expect. The whole idea of the rela-
tional scheme is to characterize an object in terms of the relations it bears to other objects, as
opposed to its internal constitution. On the essentialist scheme, an object is to be understood
in isolation from everything else. The relations that attain between it and other objects are then
determined by reflecting on its and those other objects’ inherent meanings. Here impurity is
an obstacle to complete definition. But when relations are constitutive of meaning, there is
nothing to understand about an object beyond how it relates to other objects. If the object
to be characterized is a conditional, and among the other objects to which it is definitionally
related is the conjunction, then so be it. By the same token, the role of ¬ in the rules DS/DS−

in no way compromises their effectiveness as meaning constitutive and is in fact perhaps more
typical of the relational definition scheme. Impurity is no fault but rather exactly what one
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would expect to find featured in a typical relational definition.
Faced with a logical particle like “or,” multiple universal characterizations are available,

but each fails to account for some intuitively valid inferential aspect of the word’s meaning.
Without a compelling reason to prefer one characterization over the other, Gentzen’s analysis
of propositional logic no longer appears definitive against the Stoic doctrine of the indemon-
strability of disjunctive syllogism.

4. It might seem tempting to conclude from the inability of any universal characterization of
“or” to account for all the word’s intuitively valid inference patterns that logical disjunction
resists relational definition. The ∨I/∨E pair captures some of its meaning. The DS/DS− pair
captures some more. No single inference rule is defining as the relational style of definition
demands.

One might even have the further thought that part of the meaning of disjunction is not
relational at all. Any specification of its meaning in the relational style has to be supplemented
with principles of reasoning like EFQ or even DN in order to recover some other of its valid
inference patterns. But, as Gentzen first noted, EFQ is independent of the relational definition
of ∨, and DN lies outside the relational scheme of meaning altogether.

Both of these thoughts are natural given the plausible assumption that some one disjunction
operator licenses the two basic inference patterns, addition and disjunctive syllogism. A less
natural thought, but a more straightforward moral from the analysis above, is that this plausible
assumption is false. What the relational style of definition unearths is that

1. the logical operator ⊕ that not only licenses the inferences from “A” to “A⊕B” and from
“B” to “A ⊕ B,” but in fact does so definitionally, does not further license the inference
from “¬A” and “A ⊕ B” to “B”;

2. the logical operator ` that not only licenses the inferences from “¬A” and “A ` B” to
“B” and from “¬B” and “A ` B” to “A,” but does so definitionally, does not further
license the inference from “A” to “A ` B”;

3. “or” is ambiguous between ⊕ and `;

4. only in the presence of EFQ and DN are “A ⊕ B” and “A ` B” interderivable, so that it
makes sense to use a single connective ∨ for both.

A similar point has been pressed by advocates of “relevance logic.” Here are Stephen
Read’s words from 1981:

Now “or” is ambiguous: for “A or B” can mean “if not A then B.” . . . When so
used, the disjunction “A or B” does not follow from A alone—Addition fails.
. . . Yet sometimes we do use “or” in such a way that Addition is valid. . . . But
if “or” is taken in such a way . . . , then the disjunction is not equivalent to a
conditional, it lacks inferential force, and DS is invalid. (p. 68)
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In saying that “or,” taken in such a way that addition is valid, “lacks inferential force,” Read
meant that nothing can be concluded from the knowledge of such an “or” statement, because
logical inference is “intensional” (whereas this sort of disjunction is “extensional.”) We can
agree with this idea only in part: Surely DS is invalid when the disjunction in question is of
the sort “A⊕B”; the inference from “¬A” to “B” is not licensed by “A⊕B” alone. But other
inferences certainly are licensed by “A ⊕ B,” for example the inference to “C” from the fact
that it follows from “A” as well as from “B.”

By the same token, saying that “A or B” has “inferential force” when it is taken to mean
“if not A then B” seems only partially correct: “A ` B” licenses the inference from “¬A” to
“B,” but just as “addition fails” for this connective so too does inference following the “proof
by cases” paradigm.

Read’s own disambiguations of the natural language “or” seem perfectly suited to our
analysis, though. One example involves a conversation. The first speaker says, “So either you
posted the letter or you burned it.” The second speaker replies, “You mean you really think
that if I didn’t post it I burned it?” and the two continue:

—“That’s right.”
—“Why do you think that?”
—“Because you posted it.”

The first speaker inferred “Either A or B” from “A.” Their “or” was the additive ⊕. When the
second speaker rephrased the claim as “If not A, B,” the first speaker’s assent committed them
to `. The second speaker is correct to conclude: “Just because I posted the letter, you cannot
licitly infer that either I posted it or [`] I burned it—nothing follows about what happened if
I didn’t post it” (p. 68).

The second example involves a government benefit: “You qualify for a grant if either
you are over 65 or you earn less than £2000 a year.” Read wrote, “To satisfy a disjunctive
condition” like this one “it suffices to satisfy one disjunct” (Ibid.). He only meant to provide
one example of an unambiguously additive disjunction. One could add: If you can verify
neither your age nor your salary, the receptionist at the grant office will not be impressed with
your proof that if you exceed the income threshold it must be because of your seniority. It not
only suffices but also is necessary to satisfy one disjunct, for even if each of condition A and
condition B qualify one for the grant, A ` B does not.

None of this has anything to do with the intensionality of inference or the relevance of
implication, however compatible those doctrines are with the distinction between ⊕ and `.

What about Chrysippus’s hunt? If upon nearing the fork, you saw the quarry already some
ways down path A, could you claim “It either took A or B?” Only if you aim to deceive, for
the ordinary understanding of those words are just that you have ruled out C—that if it didn’t
take A it took B. The “or” is `. But having witnessed it take path A puts you in no position to
say what follows if it hadn’t. It could just as well have taken C as B. On the other hand, if in
addition to seeing your prey on A you saw a predator on C, you could sensibly say, “So long
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as it took either A or B, there’s still a chance to complete the hunt.” And because it did take
A, the hunt continues. This disjunct is the additive ⊕; it admits proof by cases.

If alternatively you didn’t see any continuation beyond the fork, then upon sniffing A
without picking up the scent you can conclude that the quarry either took B or (= `) C. There
are no other alternatives. But if your employer says at this point, “If you’ve secured our prize
down one of B or (= ⊕) C, your work is done—I can take it from here,” you can’t retire early
by demonstrating that it most certainly is secure in either one or the other. The boss needs to
know which.

5. A different motivation than the ones described above spurred the original disambiguation
of ∨ into the two disjunction-like operators ⊕ and `: the distillation of logical operations
from structural rules of reasoning. The first step in this program was Gentzen’s own (1934–
35) reformulation of classical and intuitionistic propositional logic in the sequent calculi LK

and LI. These calculi present logical inference in the form of sequents: expressions of the
form “Γ ⊢ ∆” in which Greek letters stand for (possibly empty) finite multi-sets of formulas.8

Associated with each propositional connective are a “left” and “right” rule. For example, the
rules for ∨ are:

A,Γ ⊢ ∆ B,Γ ⊢ ∆ ∨(L)
A ∨ B,Γ ⊢ ∆

Γ ⊢ A
Γ ⊢ A ∨ B

Γ ⊢ B ∨(R)
Γ ⊢ A ∨ B

These L/R rules for the propositional connectives function alongside another set of rules of
structural reasoning. The classical calculus LK has five:

Γ ⊢ Θ thinning(L)
D,Γ ⊢ Θ

Γ ⊢ Θ thinning(R)
Γ ⊢ Θ,D

D,D,Γ ⊢ Θ
contraction(L)

D,Γ ⊢ Θ

Γ ⊢ Θ,D,D
contraction(R)

Γ ⊢ Θ,D

Γ ⊢ Θ,D D,∆ ⊢ Λ
cut

Γ,∆ ⊢ Θ,Λ
8In Gentzen’s original formulation, sequents were instead presented as sequences of antecedent and succedent

formulas separated by a sequent arrow →. In order to permute formulas in the antecedent and succedent
positions, additional structural rules of exchange(L) and exchange(R) were included. Using the sequent arrow in
place of the turnstile avoids occasional confusion between the presentation of a sequent and the claim that such
a sequent is provable. However, for reasons that will become clear, we depart from Gentzen in conformity with
standard usage in linear logic research.
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A proof in LK is a finite branching tree built from iterations of these logical and structural
rules, each leaf node of which is a basic sequent of the form A ⊢ A, with A atomic. The
sequent with which the root node is labeled is called the endsequent.

Gentzen observed that if one modifies LK by requiring the righthand side of the turnstile
to have at most one formula, the resulting calculus LI is such that LI A if, and only if, NI A.
(Obviously the rule contraction(R) plays no role in LI and can be omitted.)

We noted earlier that Gentzen was bothered by the presence of the rule DN in classical
natural deduction. As this rule “represents a new elimination of the negation whose admis-
sibility does not follow at all from our method of introducing the ¬-symbol by ¬I” it “falls
outside the framework” of the I/E scheme. Because LK and LI differ only with respect to their
structural rules, the seemingly differential treatment given to ¬ by classical logic is shown to
be an illusion. Gentzen wrote, “The special position of negation, which makes for an annoy-
ing exception in the natural calculus, is [in the sequent calculus] lifted away as if by magic”
(1938, §1.6).

In this way, what appears to be a use of ¬ unlicensed by the meaning invested in it by
the I/E rules of natural deduction is shown in fact to be a residue of purely structural fea-
tures of reasoning characteristic of classical logic. One can press further in this vein. It is
well known that the operational rules of LK can be presented in either “context-sharing” or
“context-independent” styles. For example, a context-sharing (cs) presentation of ∨(L) was
given above. In the context-independent (ci) style, one instead has:

A,Γ ⊢ ∆ B,Θ ⊢ Λ ∨(L)-ci
A ∨ B,Γ,Θ ⊢ ∆,Λ

The equivalence of these presentations is easy to verify:

A,Γ ⊢ ∆ B,Γ ⊢ ∆ ∨(L)-ci
A ∨ B,Γ,Γ ⊢ ∆,∆ }

multiple contractions
A ∨ B,Γ ⊢ ∆

A,Γ ⊢ ∆ }
multiple thinnings

A,Γ,Θ ⊢ Λ,∆

B,Θ ⊢ Λ }
multiple thinnings

B,Γ,Θ ⊢ Λ,∆ ∨(L)-cs
A ∨ B,Γ,Θ ⊢ Λ,∆

but we see that their equivalence depends on the presence of the structural rules of thinning
and contraction.9 If one thinks of L/R rules as defining of a logical operator, then a natural

9In our presentation of LK above we have followed Gentzen in providing context-sharing presentations of
most rules but a context-independent presentation of cut. Franks 2010 presents a possible rationale for this
choice.

14



next thought is that the context-sharing and context-independent rules define two distinct op-
erators. This idea motivates the development of linear logic (Girard 1987), which features
two conjunction-like operators:

A,B,Γ ⊢ ∆ ⊗(L)
A ⊗ B,Γ ⊢ ∆

Γ ⊢ ∆,A Θ ⊢ Λ,B ⊗(R)
Γ,Θ ⊢ ∆,Λ,A ⊗ B

Γ,A ⊢ ∆

A & B,Γ ⊢ ∆
B,Γ ⊢ ∆

&(L)
A & B,Γ ⊢ ∆

Γ ⊢ ∆,A Γ ⊢ ∆,B
&(R)

Γ ⊢ ∆,A & B
and two disjunction-like operators:

A,Γ ⊢ ∆ B,Γ ⊢ ∆ ⊕(L)
A ⊕ B,Γ ⊢ ∆

Γ ⊢ ∆,A
Γ ⊢ ∆,A ⊕ B

Γ ⊢ ∆,B ⊕(R)
Γ ⊢ ∆,A ⊕ B

A,Γ ⊢ ∆ B,Θ ⊢ Λ `(L)
A ` B,Γ,Θ ⊢ ∆,Λ

Γ ⊢ ∆,A,B `(R)
Γ ⊢ ∆,A ` B

The connectives & and ⊕ with context-sharing rules are called “additives”; ⊗ and ` with
context-independent rules are called “multiplicatives.” But linear logic has no structural rules
for thinning and contraction, so the additive rules are not interderivable with their multiplica-
tive counterparts.10

The designations “additive” and “multiplicative” in linear logic seem to originate from an
analogy to the distributive laws of elementary arithmetic: A⊗ (B⊕C) and (A⊗B)⊕ (A⊗C)
are interderivable, as are A`(B&C) and (A`B)&(A`C); but as addition does not distribute
over multiplication, the results of replacing in these linear identities each connective with its
counterpart do not hold. But the label “additive” is apt also in another way: ⊕(R) is just the
familiar inference pattern known as addition.

In fact, the ⊕ of linear logic is the very same operator as the one bearing that label in the
previous section, the operator defined by Gentzen’s original I/E rules of natural deduction.
Not only addition, but also the proof-by-cases inference holds of ⊕, as

A ⊢ C B ⊢ C ⊕(L)
A ⊕ B ⊢ C

is just an instance of the ⊕(L) rule. However, neither law is valid for the multiplicative `,
as one can readily check by applying cut-elimination (hint: first observe that in any MALL

provable sequent containing only the connectives ⊗ and `, the number of occurrences of each
atom must be the same in the antecedent as in the succedent.).

What about linear logic’s `? Again, it corresponds exactly with the operator relationally
defined by DS and DS−. Here is the linear derivation of DS:

10For a complete presentation of the multiplicative/additive fragment of classical propositional linear logic
(MALL)—the fragment of linear logic that interests us here—see Bellin 1990.
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A ⊢ A B ⊢ B `(L)
A ` B ⊢ A,B ¬(L)

A ` B,¬A ⊢ B

For the linear derivation of DS−, let π denote any MALL proof of Γ,¬A ⊢ B and observe:

π
Γ,¬A ⊢ B

A ⊢ A ¬(R)⊢ ¬A,A
cut

Γ ⊢ A,B `(R)
Γ ⊢ A ` B

Again, cut-elimination can be applied to show that neither DS nor DS− is derivable for ⊕
(hint: if A ⊕ B,¬A ⊢ B had a MALL proof, then after one application of ⊕(R) so would
A ⊕ B,¬A ⊢ A ⊕ B).

A remarkable feature of MALL is the fact that, like classical logic, it has an involutive
negation (among its derivable rules is DN in the form ¬¬A ⊢ A). But whereas the analysis
provided by natural deduction suggests that ⊕ and ` are interderivable in the presence of
DN, linear analysis reveals that their distinction depends rather on disentangling these logical
operations from contraction and thinning, rules which are not explicit in the setting of natural
deduction.

One striking parallel to classical natural deduction persists, however. Recall that the rela-
tional definition of ` is:

A ` B,¬A ⊢ B and A ` B,¬B ⊢ A

and

For all C, if C,¬A ⊢ B and C,¬B ⊢ A, then C ⊢ A ` B.

In the MALL derivation of DS−, only one clause of the universality condition from the re-
lational definition of ` is needed: From only the assumption that there is a MALL proof of
Γ,¬A ⊢ B, one is able to construct a MALL proof of Γ ⊢ A ` B. At first glance, the situation
suggests that linear logic’s ` is not quite the same operator as the one defined by the universal
property.

Again, this is too hasty a verdict. The conditions that warrant inference to A ` B are the
availability of inferences both of A from ¬B and of B from ¬A. That is how ` is defined on the
relational scheme. It just happens that in MALL, another one of Chrysippus’s indemonstrable
laws, modus tollens, holds. Thus if π is any MALL proof of Γ,¬A ⊢ B one has:
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A ⊢ A ¬(R)⊢ A,¬A
π

Γ,¬A ⊢ B
cut

Γ ⊢ A,B ¬(R)
Γ,¬B ⊢ A

6. The linear logic literature abounds with declarations that the multiplicative disjunction `
defies intuitive understanding. On the nLab website, it is described as “probably also the
hardest to understand intuitively of any of the linear logic connectives.” In an n-category
cafe post, Michael Shulman wrote: “Linear logic, regarded as a logic, has always been rather
mysterious to me, especially the multiplicative disjunction ` (and I know I’m not alone in
that).” One finds an entry on the Mathematics Stackexchange titled “What is the intuition
behind the ‘par’ operator in linear logic?” followed by a spirited discussion spanning several
years.

Perhaps the multiplicative disjunction does not readily submit to a straightforward reading
in the game semantics or resource tracking interpretations that typically motivate linear logic.
But the connective has a life outside of MALL. It is the disjunction underlying the simple
inference known as disjunctive syllogism. If one’s impression is that this inference pattern
is intuitively obvious, rather than something whose validity awaits demonstration in more
elementary terms, then a plausible analysis of the word “or” appearing in it is just that: “A
or B” is, by definition, the thing that licenses the inferences from “not A” to “B” and from
“not B” to “A.” Is such a stipulation well-defined? On the relational scheme it is. DS captures
the part about “A or B” licensing those inferences. DS− captures the part about it being “the
thing” that does so. In some logical environments, a connective so defined also admits such
inferences as addition and proof-by-cases. In others it does not. In neither situation do those
inferences follow from the way “or” has been defined.

An alternative definition of the word “or” in terms of addition is both possible and more
familiar today. As an analysis of the word’s occurrence in the disjunctive syllogism, this
alternative definition makes that inference appear problematic. For in only some logical en-
vironments will DS appear valid when subjected to this analysis, and in none of them will it
follow simply from the way “or” has been defined. Proceeding in this way, DS appears at best
demonstrably valid, and that demonstration indicates structural aspects of reasoning on which
its validity depends.

What the Stoics must have meant when they said that DS is indemonstrable is that as a
definition, the rules of addition and proof by cases do not capture the logical force of the “or”
that appears in DS. This could be because the Stoics rejected those rules as defining of “or” out
of a preference for DS and DS−, but it does not have to be. Chrysippus and his followers might
have meant just that DS is valid by definition. If so, we now know what definition that is.11

11To be sure, there are other features of Stoic logic unaccounted for by both the additive and multiplicative
“or”; for example, the fourth indemonstrable suggests that their disjunction was “exclusive.”
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Whether addition is true by definition as well is beside to point, so long as one understands
that, if it is, that definition is of a different logical operator we recognize today as ⊕. DS is
valid because the “or” that appears in it is `. It is indemonstrable because A ` B literally
means that it is valid.
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López Astorga, M. 2015, “Chrysippus’ indemonstrables and mental logic,” Croatian Journal
of Philosophy, XV,(43), 1–15.

Pelletier, F. J. 1999. “A brief history of natural deduction,” History and Philosophy of Logic,
20(1), 1–31.

Prawitz, D. 1965. Natural Deduction: a proof-theoretic study, reprinted by Dover, 2006.

Read, S. 1981. “What is wrong with disjunctive syllogism?” Analysis, 41(2), 66–70.

Samuel, P. 1948. “On universal mappings and free topological groups,” Bulletin of the Amer-
ican Mathematical Society 54, 591–598.

Schroeder-Heister, P. 2006. “Validity Concepts in Proof-Theoretic Semantics,” Synthese, 148:
525–571.

Shulman, M. 2018. “Linear logic for constructive mathematics,” the n-Category Café,
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