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The disjunctive normal form (dnf) theorem is among the most central facts
of truth-functional logic. Its centrality is two-fold:

1. It is a powerful tool that leads to, among other things, an efficient decision
procedure for truth-functional logic.

2. There are several different approaches, based on the several methods of
truth-functional evaluation, that one can take to proving it.

The purpose of these notes is to present a “constructive” proof of the dnf
theorem, from which one can extract a universal procedure for transforming in
a step-by step manner any truth-functional formula with connectives ∧, ∨, ¬,
⊃, and ≡ into an equivalent formula in dnf.

We begin with the basic definitions:

• A literal is a sentence letter or the negation of a sentence letter.

• A formula is in disjunctive normal form if it is a disjunction of conjunc-
tions of literals. In this definition, we allow for the “dummy cases” of
a conjunction with only one conjunct (thus not including the symbol ∧)
and of a disjunction with only one disjunct (thus not including the sym-
bol ∨.) It is perhaps more natural to think about what cannot occur in a
dnf formula: The connectives ⊃, ≡ cannot occur at all, the connective ¬
cannot occur except in a literal, the connective ∧ can only govern literals.
(The appearance of the connective ∨ is also resticted in that it can only
govern conjunctions of literals, although this restriction is automatically
satisfied whenever the others are.) To properly understand the restriction
on conjunctions (and on disjunctions) recall our convention of dropping
parentheses in sequences of conjunctions, so that the conjunctions in the
formula p ∧ ¬q ∧ r ∧ s each count as governing literals. (One easily sees
that the characterization of dnf formulas as disjunctions of conjunctions
of literals amounts to the same thing as imposing these restrictions on
how connectives can appear.)

• The disjuncts of a dnf formula are called its clauses.
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Our proof uses the fact that every formula is equivalent to a Boolean formula
(i.e., one with only the connectives ∧, ∨, and ¬.) It also uses four other facts of
equivalence: the equivalence of ¬¬S and S, the equivalence of (S1 ∨ S2 ∨ . . . ∨
Sn) ∧ T and (S1 ∧ T ∨ S2 ∧ T ∨ . . . ∨ Sn ∧ T ), the equivalence of ¬(S1 ∨ S2 ∨
. . . ∨ Sn) and ¬S1 ∧ ¬S2 ∧ . . . ∧ ¬Sn, and the equivalence of ¬(S1 ∧ S2 ∧ . . . ∧
Sn) and ¬S1 ∨ ¬S2 ∨ . . . ∧ ∨Sn. All of these are subject to simple inductive
proofs. For the last four facts, we are only interested in “one direction” of
the equivalence, namely the transformation from the left to the right. We call
the first two of these transformation rules “double negation elimination” and
“distribution (of conjunction over disjunction).” We call each of the last two
“DeMorgan’s inward.” Notice that the interchange theorem allows us to perform
these transformations not only to a formula but also within a formula.

The basic idea of our proof is simple. We claim that any formula, once it
is rewritten without the connectives ⊃ and ≡, can be transformed into dnf by
successive applications of these four rules. The constructive nature of the proof
results from the fact that, not only will we be able to see that the theorem
is true and why the theorem is true, and not only will we be able to find an
actual dnf equivalent to any truth-functional formula, but one will be able to
trace the equivalence through a sequence of formulas each of which is obviously
equivalent to its predecessor.

Our claim is not immediately obviously true, though, because a ballistic
application of DeMorgan’s inward and distribution can lead one into horrible
unwieldiness. Consider the following simple formula: ¬((p∨q∨r)∧(q∨¬r∨s)).
Below is the start of a transformation of this formula according to the basic idea
described above.

¬((p ∨ q ∨ r) ∧ (q ∨ ¬r ∨ s))
¬((p ∧ (q ∨ ¬r ∨ s)) ∨ (q ∧ (q ∨ ¬r ∨ s)) ∨ (r ∧ (q ∨ ¬r ∨ s)))

¬((p ∧ q) ∨ (p ∧ ¬r) ∨ (p ∧ s) ∨ (q ∧ q) ∨ (q ∧ ¬r) ∨ (q ∧ s) ∨ (r ∧ q) ∨ (r ∧ ¬r) ∨ (r ∧ s))
¬(p ∧ q) ∧ ¬(p ∧ ¬r) ∧ ¬(p ∧ s) ∧ ¬(q ∧ q) ∧ ¬(q ∧ ¬r) ∧ ¬(q ∧ s) ∧ ¬(r ∧ q) ∧ ¬(r ∧ ¬r) ∧ ¬(r ∧ s)

(¬p ∨ ¬q) ∧ (¬p ∨ ¬¬r) ∧ . . .

This is getting awfully complex, and, what’s worse, at this point the horror is
still mounting: one can see that several more opportunities for distribution are
arising in the last step. A natural feeling at such times is that one is making
no progress and perhaps only making things worse. This intuition can be made
precise by defining a bad connective as a connective that violates one of the
constraints of dnf. Our basic idea, then, is to apply successive transformations
until all the bad connectives vanish. The example above challenges the claim
that this is always possible by showing that bad connectives may actually ac-
cumulate as one proceeds. How does one know how to apply the rules in a
way that steers safe of an endless cycle of distributions? How does one even
know that there aren’t some pathological formulas that admit no safe steering
whatever?

Our solution to this conundrum proceeds by induction on the number of bad
connectives in a formula. Since we know that ⊃ and ≡ are eliminable, let us
consider a formula Φ without these two connectives.
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Suppose, first, that Φ has only one bad connective. One sees immediately
that the connective must be either ∧ or ¬, for the only other connective is
∨ and if Φ were of the form ( dnf ) ∨ ( dnf ) (i.e., a disjunction of two dnf
sub-formulas), then Φ would itself be in dnf and would therefore have no bad
connectives.

There are three cases to consider:

1 Φ is Ψ ∧X where Ψ and X are dnf formulas
2 Φ is ¬Ψ where Ψ is a one-clause dnf formula
3 Φ is ¬Ψ where Ψ is a multi-clause dnf formula

In case 1, if both Ψ and X are one-clause dnf formulas, then Φ already
is in dnf and there is nothing to do. Otherwise, if only one sub-formula is a
multi-clause dnf formula, then one application of distribution results in a dnf
equivalent to Φ, and if both sub-formulas are multi-clause, then distributing
each clause of Ψ over X after distributing X over Ψ results in a dnf equivalent
to Φ.

(As a bonus case 1*, notice that any formula all of whose bad connectives
are conjunction symbols can be transformed by successive applications of dis-
tribution to a dnf equivalent. For any such formula has the form (DNF ) ∧
(DNF ) ∧ . . . ∧ (DNF ). (Just reason inductively as follows: We just proved
that it’s possible if there is only one bad conjunction symbol. Now, suppose
it’s possible when there are n bad conjunction symbols. Then, given a formula
Φ with n + 1 bad conjunction symbols, reduce the sub-formula of Φ containing
the first n bad conjunction symbols to dnf, and apply the interchange theorem
to get an equivalent to Φ whose only bad connective is a single ∧ (the n+ 1st).
Apply distribution rules to this new formula as in case 1 to get a dnf equivalent
to Φ.)

In case 2, a single application of DeMorgan’s inward yields a disjunction
Ψ of sentence letters, negated sentence letters, and doubly negated sentence
letters. Apply double negation elimination to all the doubly negated sentence
letters and interchange the resulting sentence letters back into Ψ. The result is
a dnf equivalent to Φ.

In case 3, Φ has the form ¬(C1∨C2∨. . .∨Cn), where the Ci are conjunctions
of literals. First, apply DeMorgan’s inward to get ¬C1∧¬C2∧ . . .∧¬Cn. Then,
for each Ci that contains a conjunction symbol (i.e., for each one that is not a
single literal), replace ¬Ci with its dnf equivalent attainable as in case 2. The
result is a formula whose only bad connectives are conjunction symbols, which
can be transformed to a dnf equivalent as in case 1*.

Thus we see that every formula with only one bad connective can be trans-
formed to a dnf equivalent. For the induction step, assume that all formulas
with n or fewer bad connectives can be thus transformed, and suppose now that
Φ has n + 1 bad connectives. There are again three possibilities:

1 Φ is Ψ ∨X where Ψ and X each have n or fewer bad connectives
2 Φ is Ψ ∧X where Ψ and X each have n or fewer bad connectives
3 Φ is ¬Ψ where Ψ has n or fewer bad connectives
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In each case, apply the induction hypothesis to find dnf equivalents ΨDNF and
XDNF to Ψ and X, and apply the interchange theorem to create an equivalent
to Φ (either (ΨDNF ) ∨ (XDNF ), (ΨDNF ) ∧ (XDNF ), or ¬(ΨDNF )). The first
possibility is already in dnf. The second and third possibilities each contain
only one bad connective and are thus subject to the treatment in the base step.

From the inductive nature of this proof one can extract a procedure for
actually transforming formulas to their dnf equivalents. One would attack
each formula “from the inside out,” applying transformation rules typically as
close to the level of literals as possible. Let us stress that this is theoretically
advantageous for letting one keep track of one’s progress towards dnf, but it is
not prudent strategy for actual reductions. In fact, the best practical approach
is exactly the opposite: work one’s way in from the main connective.

Consider again the formula: ¬((p ∨ q ∨ r) ∧ (q ∨ ¬r ∨ s)). Below is the full
transformation of this formula according to the best practical approach:

¬((p ∨ q ∨ r) ∧ (q ∨ ¬r ∨ s)
¬(p ∨ q ∨ r) ∨ ¬(q ∨ ¬r ∨ s)

(¬p ∧ ¬q ∧ ¬r) ∨ ¬(q ∨ ¬r ∨ s)
(¬p ∧ ¬q ∧ ¬r) ∨ (¬q ∧ r ∧ ¬s)

This example suggests that it is efficient to apply transformations to the high-
est ranking connectives possible. A little practice should convince you that this
suggestion is accurate, and modest reflection on the above proof of the dnf the-
orem should convince you that the process will eventually terminate. However,
all proofs that I know of the dnf theorem that make perspicuous the “outside
in” advantage are comparably less easy to follow.
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