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A quiet revolution

One often hears of a radical transformation in our conception of logic ushered in by the
work of Gottlob Frege, a transformation away from thinking of logic in terms of the theory
of syllogism and towards the axiomatic propositional and predicate calculi, later pursued by
Russell, Tarksi, Heyting, Łukasiewicz, and others. Under this transformation, the assorted
patterns of syllogistic inference, which for centuries had been thought of as primitive inference
schemes from which the cogency of rational discourse could be evaluated, became objects of
study and analysis from a more fundamental and more fine-grained vantage point.

A roughly simultaneous transformation took place that one hears about less often. Even
if several of the technical results it brought about are familiar individually, this second trans-
formation is not well understood as a whole. What is perhaps most characteristic of this quiet
revolution is that rather than being dislodged from their place as first principles and resitu-
ated as complex patterns of reasoning analyzable from some other more basic starting point,
syllogistic inference was simply cast alongside other patterns of inference. Relieved of the
burden of isolating “the real first principles of reasoning,” a tradition of logicians were able to
identify other questions about the role of syllogistic reasoning in terms of its relationship with
non-syllogistic inference.

The culmination of each transformation can be seen as a sort of exorcism of the syllogism
from formal logic. In the more familiar scheme, the syllogism has disappeared from the
foundations of logic entirely. Its trace is its complex recovery as a derived object from the
what are considered logic’s proper foundations. In the quiet revolution, one finds such cryptic
and dramatic announcements about the fate of the old logic as the following remark of Jacques
Herbrand (1908–31): “the theorem [just presented] permits us to show [. . . ] that the rule of
the syllogism, the basis of Aristotelean logic, is of no use in any mathematical argument.”1

But here again the exorcism leaves behind a trace. In his thesis, just after declaring again that
his work “shows [. . . ] that the rule of implication, whose origin, after all, is in the classical
syllogism, is not necessary in building logic,” Herbrand adds: “The rule remains necessary,
however, in mathematical theories, which contain hypotheses.”2

The eliminability result Herbrand refers to in the passages just cited is familiar and well
understood. So from one point of view, what Herbrand means is uncontroversial. What is
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less familiar and not so well understood is the context of Herbrand’s discovery. What sort
of ideas about the syllogism inspired efforts by Herbrand and Gerhard Gentzen (1909–45) to
demonstrate its “eliminability” and to study the trace it leaves behind in theories containing
hypotheses? In answering this question, we will see that certain classical ideas about the syl-
logism that have been alleged to be irrecoverably lost in the transition to modern mathematical
logic are in fact very much alive, inspiring profound discoveries and informing our modern
conceptions of such central modern notions as logical completeness and deductive validity.

The capsule statement of the view promoted here is that the celebrated theorems of
Gentzen and Herbrand, because of how they are informed by Aristotle’s own analytic/synthetic
distinction as well as his concept of logical completeness, underline the centrality of syllogis-
tic reasoning precisely by “eliminating” it in the now familiar way. Those theorems can and
should be read as completeness results. But as I’ve already suggested, because it depends on
understanding the context of discovery, the full meaning of the view is not easily encapsu-
lated. Therefore we will proceed by establishing the context in which the Göttingen logicians
worked through a sequence of historical moments, beginning with Aristotle himself.

Except as noted in occasional remarks, the picture that emerges will not be of a culmina-
tion of a historical progression of thought. We will not be concerned to establish—nor even
to speculate about—direct lines of influences. We turn to historical moments instead because
they present conceptual frameworks alternative to those that prevail today. These frameworks
then provide the key to understanding the syllogism’s role in the developments in Göttingen
in the early 20th century.

Aristotle’s Prior Analytics

In Prior Analytics I23, Aristotle wrote:

It is clear from what has been said that the deductions in these figures are com-
pleted by means of the universal deductions in the first figure and are reduced to
them.

That every deduction without qualification can be so treated will be clear presently
when it has been proved that every deduction is formed through one or another of
these figures. [. . . ]

But if this is true, every demonstration and every deduction must be formed be
means of the three figures mentioned above.

But when this has been shown it is clear that every deduction is completed by
means of the first figure and is reducible to the universal deductions in this figure.3

The naive reading of this passage certainly suggests that Aristotle is putting forward a
claim of logical completeness, with “these figures” serving as a trunnion: “Every deduction
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without qualification” will be shown to be formed through them, and they will in turn be
“completed” and “reduced” to the universal deductions in the first figure.

But before 1994, Aristotle’s readers resisted this naive reading, and it is interesting to
consider why. Informed by an understanding of how logical completeness has been conceived
as well as how it has been established since Bernays, Gödel, and Henkin, several scholars
noticed that several key features of that conception and style of demonstration were absent
from Aristotle’s account. They concluded that we are misled by Aristotle’s language and our
contemporary interests to think that he was after logical completeness—that instead he was
looking for something more particularly related to the idiosyncratic features of his framework
with no vivid parallel in contemporary logic.

Timothy Smiley explained:

The natural inference from the [passages extracted from I23] is that the interven-
ing material represents a completeness proof. Corcoran made this very point, but
he was deterred from following it up by two objections. One was that the text
did not fit his picture of a completeness proof. The other was that Aristotle was
not “clear enough about his own semantics to understand the problem” of com-
pleteness. Corcoran therefore fell back on seeing the chapter, not as finishing off
a completeness proof for Aristotle’s chosen rules of inference, but as supplying a
proof of the equivalence between them and a second set of rules [. . . ] .4

He ascribed a similar resistance to this natural inference to himself and then added:

Lear made the point that “it would be anachronistic to attribute to Aristotle the
ability to raise the question of completeness” because, unlike a modern logician,
“Aristotle had a unified notion of logical consequence—not the bifurcated notion
of semantics and syntactic consequence.”5

But Smiley concluded that the very thing that informed these scholars also blinded them:
“As to one’s picture of a completeness proof, it is quite true that Aristotle’s proof is unlike
anything one would expect [. . . ] but in emphasizing the difference between Aristotle’s project
and the modern one there is a danger of overlooking their similarity; a similarity that seems to
me to be more significant than their difference” (27). True, Aristotle did not have anything like
clearly demarcated realms of semantics and syntax that a completeness theorem would tether
to one another as we are accustomed to doing. But, Smiley observed, “Aristotle was conscious
of the distinction between what follows and what can be shown to follow”—a distinction that
does not depend on distinctly articulated semantic and syntactic categories—and his proof in
I23 is precisely a demonstration that everything that in fact follows can be shown to do so.

In the later sections I will argue that the “similarity between Aristotle’s project and the
modern one” runs much deeper even than Smiley pointed out. A corollary to this is that
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our being informed by the prevailing conception of logical completeness blinds us even to the
conceptual significance of portions of our modern project. But the first step towards seeing the
ripples of the Aristotelean conception in 20th century Göttingen is just to appreciate Smiley’s
reconstruction of Aristotle’s own proof, which will comprise the remainder of this section.

Aristotle wrote:

If one wants to deduce that A belongs or does not belong to B, one must assume
something of something. If no A should be assumed of B, the proposition origi-
nally in question will have been assumed. But if A should be assumed of C, but
C should not be assumed of anything, nor anything of it, nor anything else of A,
no deduction will be possible. [. . . ]

So we must take a middle term relating to both, which will connect the predica-
tions, if we are to have a deduction relating this to that.

The proof begins by arguing that a certain sort of linkage is a necessary condition for
the validity of arguments in general. Smiley formulates this “chain condition,” as he calls it,
as a stipulation that any valid argument must be of the form “AC, CD, DE, EF, . . . , GH, HB;
therefore AB,” where expressions XY represent propositions of one of the Aristotelean forms
with terms X and Y (either one being in the subject position). So as with modern formulations
of “relevance” constraints on deductive validity, the chain condition serves to ensure relevance
by stipulating that expressions will have common terms.

He continued:

If then we must take something in common in relation to both, and this is possible
in three ways (either by predicating A of C and C of B, or C of both, or both of C),
and these are the figures of which we have spoken, it is clear that every deduction
must be made in one or other of these figures.

The argument is the same if several middle terms should be necessary to establish
the relation to B; for the figure will be the same whether there is one middle term
or many.

The first of these sentences is about the case where there is a single middle term. This,
Smiley discovered, plays the role of a base step in an inductive argument. The next sentence
is Aristotle’s presentation of the general case, where there is an arbitrary number of middle
terms. Although it is compressed, Smiley cited textual clues that led him to interpret it as an
inductive step.

Here is the expansion he suggested: “The argument is the same if several middle terms
should be necessary to establish the relation of A to B. For suppose C is next to another middle
term D. Then C stands as a middle term between A and D, and, as we have just said, this is
possible in three ways. If D is next to another middle term E we apply the same argument to
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A D E, and so on as many times as required, until we have eventually related A and B through
a series of deductions each of which is in one or another of the three figures” (31).

In Smiley’s reconstruction one can see the chain condition at work, allowing a linear
progression through the arbitrary finite number of middle terms C, D, E, etc. separating A
from B in the premises. One can also see, as Smiley himself pointed out, two glaring problems
with the proof:

1. It assumes without justification that AC and CD are a “conclusive pair,” i.e. that some
conclusion of the form AD follows from them. In Smiley’s memorable quip, this is
analogous to an assumption “that each pair of ingredients in a high explosive has to be
explosive” (33).

2. It assumes without justification, using the second step in the inductive argument as an
example of the general problem, that AB follows from AD, DE, EF, . . . , GH, HB. In
general, AD will be a weaker sentence than the combination of AC and CD, so replacing
the latter combination with the former sentence will potentially (and indeed will typi-
cally) weaken the sequence of premises so that not everything (including possibly AB)
that followed from them originally still does so.

Smiley attended to these gaps in Aristotle’s reasoning and suggests various considera-
tions drawn from the broader context of his oeuvre that might excuse them. But as we are
only interested in the style of argument Aristotle provides and not its success, we will not con-
sider these matters. Here, then, is Aristotle’s full, though possibly erroneous, completeness
proof as reconstructed by Smiley:6

Proof. We are to show that a deduction with several premises can always be reduced to a
series of syllogisms in one or other of the four specified figures.

Suppose therefore that AB follows from premises AC, CD, DE, . . . , GH, HB.
First we show that AC and CD are a conclusive pair. Do this by showing that if not, terms

can be chosen so as to make AB false but all the premises true. Simply choose terms to make
AB false and then appropriate terms to make each of HB, GH, . . . , DE true. Having done that,
enumerate all combinations of AC and CD that give rise to an inconclusive pair (64 of these!).
In the 37 inconclusive ones, it is possible to choose a term for C that makes both AC and CD
true.

Now choose some strongest conclusion of AC and CD, AD. An inductive argument shows
that AD and DE are a conclusive pair, and so on until AH and BH. At this last stage, one gets
not only that AH and BH are conclusive, but in fact that AB follows from them (for otherwise
we could make AB false and these two premises true, contradicting the induction hypothesis.)

It follows that the deduction of AB can be effected through a series of syllogisms, AD
following from AC and CD, AE from AD and DE, and so on until finally AB follows from
AH and HB.
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Smiley described Aristotle as recognizing the difference between what follows and what
can be shown to follow. We can now elaborate on that description. Aristotle asked whether
every categorical statement that follows from a finite set of premises, in the sense that no
substitution of categorical terms could simultaneously make those premises all true while
falsifying the candidate conclusion, could be formally deduced from those premises with a
predesignated stock of inference rules. Both his notion of categorical term substitution and his
derivational apparatus were meager: The former had no stock of permitted moves so precisely
designated as to strike us as well-defined. That is, Aristotle had no full fledged semantic
theory. The latter governed such a small number of inferential patterns as to leave untouched
many logical relationships one might hope to formalize. Still, Aristotle showed that the two
were perfectly suited to one another, and we observed that, in fact, the curious features of each
are just what allow one to get away with such rough and ready notions of logical consequence.

So one can ask if there is anything missing from Aristotle’s deduction system and get
some concrete answers. Crucially, if we accept the relevance constraints Aristotle places on
argumentative validity, and if we overlook the two problems we noted in the execution of
the proof procedure, the inductive argument establishes that there are no valid consequence
relationships among categorical statements that his deductive system cannot accommodate in
full. Pried free from concerns of relevance, this is the same conceptualization that we will see
featured in the work of Gentzen and his Göttingen colleague Paul Hertz (1881–1940).

Bolzano’s proto-proof theory

There is no doubt about the influence of Aristotle on Bernard Bolzano’s (1781–1848)
logical investigations, as presented in Beyträge and Wissenschaftslehre.7 Bolzano explicitly
appealed to Aristotle’s distinction between analytic and synthetic reasoning and he applied
this distinction to a theoretical treatment of Aristotle’s doctrine of topical purity according to
which a properly scientific exposition of a topic must not involve any essential use of con-
cepts external to the terms of that topic. According to Bolzano, the culprit in every “impure”
exposition is the use of synthetic inference. A proper exposition is comprised solely of anal-
ysis. Aristotle himself was sensitive to this issue, but hoped to steer away from impurity by
requiring certain conceptual “connections” between the terms in each syllogism:

Because accidents are not necessary one does not necessarily have reasoned knowl-
edge of a conclusion drawn from them (this is so even if the accidental premises
are invariable but not essential, as in proofs through signs; for though the conclu-
sion be actually essential, one will not know it as essential nor know its reason);
but to have reasoned knowledge of a conclusion is to know it through its cause.
We may conclude that the middle must be consequentially connected with the
minor, and the major with the middle. (Posterior Analytics I6)
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Not content with Aristotle’s vague idea about connections among concepts that appear in
them, Bolzano advocated instead for an all out ban on syllogisms.

Bolzano’s development of this line of thought in the context of formal logic was driven
by a metaphysical doctrine: He believed that the distinction between axioms and theorems
was absolute and objective, that there were basic truths for which no proof can be given and
that all other truths are grounded in these. He insisted, as well, that for non-basic truths exactly
one proof exists, one that discloses the objective grounds behind its truth. These convictions
are obviously hard to reconcile with the actual development of mathematics, in which the
framework of inquiry shifts continuously without any evident appeal to absolutism or objective
grounds. And this point was hardly lost on Bolzano, who sustained a radical critique of
mathematics as it was practiced in his day precisely because of its single-minded focus on
solving problems, uncovering relationships, enhancing human understanding, and discovering
truths without attending to questions about proper axiom-hood and objective grounds.8

It is easy to see the connection between the Aristotelean themes that Bolzano sought to
develop and his metaphysical program. Synthetic reasoning abounds in human inquiry and
especially so in mathematical thought. But synthesis is impure in the sense that it courses
through terms and concepts topically isolated from those that figure in the conclusion of a line
of thought. Therefore, though it may serve us well in convincing us of the truth of a claim,
it cannot be expected to uncover the objective reasons behind those truths. As Aristotle had
maintained, the truths of arithmetic cannot rest on those of geometry, nor vice versa.9 Bolzano
agreed, and he saw in the syllogistic forms an inevitable source for such impurity: These forms
are characterized by “middle terms” that appear among the premises but not in the concluding
statement. Because the concepts that appear in a syllogism’s conclusion put no constraints on
what those middle terms can be, the syllogism’s premises cannot be guaranteed to be among
the grounds of its conclusion, and so the syllogism itself cannot be part of a properly scientific
exposition: “I must point out that I believed I could not be satisfied with a completely strict
proof if it were not even derived from concepts which the thesis proved contained, but rather
made use of some fortuitous alien, intermediate concept [Mittelbegriff ], which is always an
erroneous μετάβασις εὶς ἄλλο γένος10” (1810, Preface, par. 4).

Inspired by this network of ideas, Bolzano set out to design a framework of logic that
would lead to the discovery of “real proofs” that uncover a theorem’s objective grounds. Such
proofs had to meet the standard of analyticity, and so syllogistic theory could no longer be
the central component of logic. Accordingly, the first step in Bolzano’s development of logic
was to supplement syllogistic theory with analytic rules: “I believe that there are some sim-
ple kinds of inference apart from the syllogism” (§12). This, however, only provided the
framework. A grid for transcribing mathematical reasoning into explicit formal derivations
that highlight and distinguish synthetic and analytic inferences will only lead to the discov-
ery of “real proofs” if occasional bits of reasoning turn up to be purely analytic under the
transcription. But Bolzano’s critical attitude about mathematics as it was practiced was just a
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skepticism about the chances of this ever happening. He wanted his logic to be an instrument,
not just for detecting real proofs for what they are, but for constructing them.

The second step in Bolzano’s development of logic, then, was a theory of proof trans-
formation. He described ways not just to transcribe mathematical reasoning, but to take such
transcriptions and manipulate them so that their synthetic components could be systematically
removed. Comparing his notion of analytic and synthetic proof, Bolzano wrote in (1810) §31,
“the whole difference between these two kinds of proof is based simply on the order and se-
quence of the propositions in the exposition.” In §27 he elaborated: “If several propositions
appearing in a scientific system have the same subject, then the proposition with the more
compound predicate must follow that with the simpler predicate and not conversely.” It has
been suggested that the origin of the tree representation of formal proofs can be found in the
work of Hertz and Gentzen at Göttingen.11 But a century earlier, in his explication of the
theory of grounding in §220 of (1937), Bolzano described proof trees explicitly, indicating
two distinct presentations: one in which tokens of a single proposition can appear at mul-
tiple nodes, serving as premises for more than one inference, and one which “avoids this”
feature. Dissatisfied with both representational schemes, he wrote: “But it is obvious that in
cases where one and the same truth is repeated several times the representation becomes very
confusing. Let others find a better method.” Unfortunately, Bolzano never described actual
operations on such trees, presumably because his logic was too informal to admit a precise
enough articulation of either structure. But he successfully argued informally for transforma-
tion procedures that could conceivably be translated into such operations, and the ambition
behind this was clear: A technique for rendering logical derivations into a certain normal form
would yield the topically pure, analytic proofs that Bolzano thought would disclose ultimate
grounds. The normalization he sought was syllogism elimination.

Although Bolzano’s strides in the theory of proof transformation were only partial, a few
successes are noteworthy. There was, significantly, some feedback from the second step in
his development back to the first. The shape of the logical framework Bolzano ultimately
settled on was a radical departure from previous systems of logic not only in its inclusion
of analytic rules of inference alongside the syllogistic forms: Bolzano (1810) refined those
forms themselves, concluding because of discoveries made possible by proof transformations
in his hybrid framework that instead of a vast array of syllogistic forms only a single synthetic
inference rule was needed: “It is not without hesitation that I proceed to put forward my
opinion, which is so very different from the usual one. Firstly, concerning the syllogism, I
believe there is only a single, simple form of this, namely Barbara or Γράμματα in the first
figure” (§12). Beginning with Aristotle himself, the systematization of the 24 (or so) valid
syllogistic forms into those that are only conditionally valid and those that are unconditionally
valid, those that are essential and those that are derivative, etc., had been a central component
of the study of logic. The radical departure from traditional investigations of this kind made
possible by Bolzano’s hybrid framework is evident in the fact that in it this entire enterprise
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is obviated by rudimentary proof transformations. The first step towards the elimination of
syllogism was its reduction to a single form.

A second notable success of Bolzano’s is ironic because it is a discovery that he took to
be a failure of his program. Bolzano claimed in §20 that with proper transformations, one
could eliminate syllogism from that portion of a proof that involved sentences with compound
subjects and predicates. But, as modern researchers will have anticipated, he observed that
in doing so one will only push the syllogisms further up in the proof tree, towards its leafs.
If the result of this process left one with some sentences further up in the tree that are not
“axioms” in Bolzano’s strong sense, despite having only simple subjects and predicates, then
their derivation would have to be synthetic. “On the other hand,” he wrote, “how propositions
with simple concepts could be proved other than through a syllogism, I really do not know.”
This eventuality is obviously unsatisfactory for someone like Bolzano, whose whole purpose is
to disclose objective grounds. But from another point of view, one can just be interested in the
conditions under which syllogism is eliminable, and the specific role that it plays in situations
where it cannot be. As we will soon see, the elimination theorems of the Göttingen school
were pursued from just such a point of view, and the lessons to be learned from Bolzano’s
observation, which those theorems ratify and clarify, come into focus there precisely because
of how the Göttingen logicians were unencumbered by Bolzano’s ideology.

Another thread in Bolzano’s thought that will inform our reading of the elimination the-
orems involves a parallel development of two distinct notions of logical consequence. One
notion we have already seen. A purely analytic proof of the sort that Bolzano wanted normal-
ization procedures to uncover would, he contended, display a grounding relationship. This is a
metaphysically substantial sort of logical consequence because, beyond simple modal claims
about which things must be true given the truth of other things, for a sentence to be a con-
sequence in this sense is for those other truths to be the objective reasons for that sentence’s
truth.

But Bolzano also recognized a metaphysically thin consequence relation, under which
a sentence follows from some other sentences simply because the their truth suffices for the
truth of the former. Bolzano’s (1837) specification of this second notion of consequence has
its peculiarities that are foreign from the modern perspective: a fixed universe of discourse
from which terms can be chosen, a “compatibility” condition on the premises that precludes
“vacuous consequence” of the sort that characterizes the familiar classical notion. But the
general bent is familiar: A sentence is a consequence of some other sentences if no systematic
substitition of ideas for terms makes all the premises true and the conclusion false (§155).

It is natural to ask how these two notions relate to one another, and Bolzano did not miss
the chance. What is surprising is that although we see in his analytic proof system an antici-
pation of formal deductive systems, and although we see in his thin concept of consequence
as a precursor of the modern model-theoretic definition, Bolzano had things the other way
around. He labeled the thin notion the “derivability” relation and asked about its adequacey
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to the substantial relation of objective grounding. So whereas we ask, “are our systems ‘com-
plete’ in the sense that every logical consequence can be represented as such with a formal
proof?” in §200, Bolzano asked instead whether to every objective consequence relation, i.e.,
everything for which there is a purely analytic proof, there corresponds a “derivation,” i.e., a
thin consequence relation:

If truths are supposed to be related to each other as ground and consequence, they
must always, one might believe, be derivable from one another as well. The rela-
tion of ground and consequence would then be such as to be considered a partic-
ular species of the relation of derivability; the first concept would be subordinate
to the second.

Bolzano’s “completeness” question was about the adequacy of his thin definition of log-
ical consequence to his metaphysically substantial concept of following analytically. But he
found nothing in his proof transformation techniques or in the details of the specifications of
either notion of consequence that indicated a method for answering it: “Probable as this seems
to me,” he concluded, “I know no proof that would justify me in looking upon it as settled.”

Thus inspired by Aristotle’s account of the role of analytic thinking, Bolzano embarked
on a logical program that led to two impasses. By identifying synthetic reasoning with the syl-
logism, Bolzano was inspired to articulate principles of non-syllogistic inference that should
comprise all properly scientific expositions. This provided the framework for a theory of
proof transformation, with the goal of systematically eliminating syllogisms from proofs—a
goal that he himself concluded was likely unattainable. Meanwhile, with this concept of a
purely analytical proof Bolzano isolated a concept of logical consequence distinct from the
relation he called derivability. This exposed a question at the heart of his program—How are
these two concepts related?—a question that Bolzano realized he did not have the resources
to answer. In section 5 we will see how with the elimination theorems the Göttingen school
surmounted both of these impasses. But first we consider how another Aristotelean thread
recurs in their work.

Structural reasoning in Göttingen

In Gerhard Gentzen’s first paper, he designed a formal calculus of structural reasoning.12

Gentzen’s main results show that his system is an adequate formalization of an informal notion
of logical consequence. This formalization of logical consequence differs conceptually from
semantic formalizations by Tarski and others, because the proof system is the locus of analysis.
The full meaning of these results, we will see in the following section, is that they provide an
interpretation of Gentzen’s later work on cut-elimination: the eliminabilty of the CUT rule
in a logical calculus means that the calculus’s logical rules are complete in the sense that
they suffice to derive all the logical consequences of a set of assumptions. But the results
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themselves and the proof Gentzen presented of them, recounted here, should first be compared
with Aristotle’s completeness proof as reconstructed in section 2.

Gentzen called his system a “formal definition of provability.” It consists of “sentences”
of the form M → v, where v is an “element” and M is a “complex” (a non-empty set of
finitely many elements.) Gentzen represented set-theoretical union by concatenation, so com-
plexes can be denoted with a single uppercase letter, with a string if lowercase letters, or even
with a string that mixes the two. Gentzen referred to the complex at the left of a sentence’s
arrow symbol as its antecedent and to the lone element on the right of the arrow symbol as the
succedent. “Tautologies” are sentences whose antecedent is the singleton set containing the
same element that appears in the sentence’s succedent, and more generally sentences whose
antecedent contains the element in the succedent are “trivial.”

Among the obstacles in the way of a full analysis of the concept of logical consequence
is a convincing demarcation between the logical and non-logical parts of language. For exam-
ple, determining whether propositions stand in Bolzano’s “derivability” relation requires first
knowing how finely one can carve them up into “ideas” and also how the parts of the proposi-
tions that are not “ideas” do their binding. “To be sure,” Bolzano wrote, “this distinction has
its ambiguity, because the domain of concepts belonging to logic is not so sharply demarcated
that no dispute could ever arise over it” (1937: §148). Similar observations famously led
Alfred Tarksi (1901–83) to the conclusion that the distinction was inevitably conventional.13

One of Gentzen’s brilliancies was his decision simply to drop the whole question about
which parts of a sentence are properly “logical” from the analysis of logical consequence.
A fully general account of logical consequence, he reasoned, should not bore so far into the
sub-sentential structure as to capture all possible nuance. It should remain as shallow as pos-
sible, picking up just the general features of sentences that figure into an all-purpose intuitive
concept:

We say that a complex of elements satisfies a given sentence if it either does not
contain all antecedent elements of the sentence, or alternatively, contains all of
them and also the succedent of that sentence. [. . . ] We now look at the complex
K of all (finitely many) elements of p1, . . . , pv and q and call q a consequence of
p1, . . . , pv if (and only if) every subcomplex of K which satisfies the sentences
p1, . . . , pv also satisfies q. (33)

Gentzen remarked: “[o]ur considerations do not depend on any particular kind of informal
interpretation of the ‘sentences,’ since we are concerned only with their formal structure,” and
the modicum of formal structure his “sentences” display suffices (33). Gentzen wanted to
clarify the intuitive concept of logical consequence just enough that it could be formalized.

He specified two inference rules for the system he designed to carry out this formaliza-
tion, which he called “THINNING” and “CUT”:
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L→ v thinning
ML→ v

L→ u Mu→ v cut
LM → v

Then he defined a “proof” of a sentence q from the sentences p1, . . . , pv to be “an ordered suc-
cession of inferences (i.e., THINNINGs and CUTs) arranged in such a way that the conclusion
of the last inference is q and that its premises are either premises of the p’s or tautologies” (31).
Like Bolzano, Gentzen wrote his proofs in tree-form. Here is an example proof of Kf → d
from c→ e, ef → a, and ac→ d, where K = bc:

c→ e thinning
bc→ e ef → a

cut
Kf → a ac→ d

cut
Kf → d

Gentzen’s sentence system is a refinement of that of Hertz. Hertz had referred to the
central rule, not as “cut,” but as “syllogism.”14 The reason to do so is obvious: These rules
share with the classical syllogistic forms an intermediate term that appears in each premise
but is missing from the conclusion. In the terminology of both Aristotle and Bolzano, such
inference is “synthetic” in that it passes from premises to a conclusion in which a new con-
nection is made (between the antecedent of one premise and the succedent of another). The
earlier connections to the middle term are lost. This contrasts with Bolzano’s “analytic” rules
in which all the terms that appear in the premises appear again, at least as sub-terms, in the
conclusion.

In section 4, Gentzen wrote:

Our formal definition of provability, and, more generally, our choice of the forms
of inference will seem appropriate only if it is certain that a sentence q is “prov-
able” from the sentences p1, . . . , pv if and only if it represents informally a conse-
quence of the p’s. (33)

The sense in which Gentzen meant for this proof system to be an adequate formalization of
the intuitive concept of logical completeness is then captured by his two central theorems. The
first states that the proof system is “correct.”15

Theorem 1. If a sentence q is provable from the sentences p1, . . . , pv then it is a consequence
of them.

Proof. Observe first that the conclusion of a thinning of a sentence is a consequence of that
sentence: Suppose the complex K satisfies L→ v. Either it does not contain every element
in L or else it contains v. Either way, K also satisfies ML→ v. Similarly, the conclusion
of a CUT of two sentences is a consequence of those sentences: Any K that does not satisfy
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LM → v must contain all the elements in L and all the elements in M but not v. If K
furthermore contains u, then it fails to satisfy Mu→ v; otherwise it fails to satisfy L→ u.
Observe, now, that every tautology is a consequence of every sentence, and every sentence is
a consequence of itself. From this last observation, it follows that every initial sentence in a
proof from p1, . . . , pv is a consequence of p1, . . . , pv. By the first observation and the evident
transitivity of consequence, if the premises of a THINNING or a CUT are consequences of
p1, . . . , pv, then so too is their conclusion. Therefore, every sentence in a proof from p1, . . . , pv
of q is a consequence of p1, . . . , pv, and in particular q is.

Gentzen then proved the converse: “If a sentence q is a ‘consequence’ of the sentences
p1, . . . , pv, then it is also ‘provable’ from them.” In fact he showed that proofs of a specific
“normal form” suffice. Normal proofs are chains of applications of CUT followed by a single,
terminal application of THINNING.

Theorem 2. If a sentence q is a consequence of the sentences p1, . . . , pv, then there exists a
normal proof of q from p1, . . . , pv.

Proof. Observe first that every trivial sentence obviously has such a normal proof (a proof
with zero CUTs is normal). Suppose, therefore, that q is non-trivial and of the form L→ v.
Let S be the set of all non-trivial sentences with succedent v for which there is a normal
proof from p1, . . . , pv without THINNING. Notice that, because the conclusion of a CUT never
contains an element that did not appear in its premises, S is finite. Clearly if the antecedent of
some s in S is entirely contained in L, there would be a normal proof of q from p1, . . . , pv (to
construct it, just add one THINNING at the bottom of the normal proof of s from p1, . . . , pv).
We will show that this must be the case.

Suppose that no s in S has an antecedent that is contained in L. Define a sequence of
complexes L = M1,M2, . . . ,Mk = N recursively: If every p in p1, . . . , pv is satisfied in Mi,
let Mi be N . Otherwise, choose one p (O→ u) that is not satisfied in Mi. Its succedent u
does not belong to Mi, and we define Mi+1 = uMi. Notice that this sequence is necessarily
finite, because the complex consisting of all the finitely many elements among p1, . . . , pv
necessarily satisfies them all. We will show that N is a counter-example to the claim that q is
a consequence of p1, . . . , pv. N satisfies p1, . . . , pv, and it contains L, so we need only show
that N does not contain v.

An inductive argument shows that in fact each Mi satisfies all the sentences in S and
does not contain v.

Base: M1 = L does not contain v, because of the assumption that q is not trivial. Fur-
thermore, if M1 = L did not satisfy some s in S, then the antecedent of s would be contained
in L, contrary to our current assumption.

Induction: Assume that Mi satisfies all the sentences in S and does not contain v, and
consider Mi+1 = uMi where O→ u is a sentence from among p1, . . . , pv that Mi does not
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satisfy. O belongs to Mi, because Mi does not satisfy O→ u. By hypothesis v does not
occur in Mi, and therefore v does not occur in O. Now, were Mi+1 to contain v, then v would
be u. But in that case, O→ u would be in S despite not being satisfied by Mi, contrary to
the hypothesis. Therefore Mi+1 does not contain v.

Suppose now that there is a sentence in S that Mi+1 does not satisfy. Any such sen-
tence must have the form Pu→ v, with P contained in Mi (again, u is the succedent of
the sentence O→ u that Mi does not satisfy, the element appended toMi to arrive at Mi+1.)
Consider the CUT:

O→ u Pu→ v cut
OP → v

The sentence OP → v belongs to S, because (1) it has the succedent v, (2) both Pu→ v (as
a memeber of S) and O→ u (as a sentence from among p1, . . . , pv) have normal proofs from
p1, . . . , pv without THINNING, (3) v belongs neither to O nor to P . But O and P both belong
to Mi, although v does not, so Mi does not satisfy OP → v, contrary to the hypothesis.

The parallel with Aristotle’s completeness proof in Prior Analytics I23 is vivid. Like
Aristotle, Gentzen was not working with distinct syntactic and semantic realms. The elements
and complexes that satisfy sentences are not different sorts of things than those sentences
themselves. This fact plays out dramatically in the proof itself, where sentences constructed
from elements failing to satisfy certain other sentences are used as premises of a CUT rule to
generate another sentence whose satisfiability by those same elements is considered.

And just as Aristotle had done, Gentzen observed that any sentence that follows, in the
general intuitive sense, from a set of premises can be shown to do so, and that a perspicuously
simple set of formal inference patterns suffices for the demonstration. Following Bolzano,
who announced that a single syllogism could stand in place of them all, Gentzen observed
further that with just one synthetic inference rule, all logical consequence relations can be
formally demonstrated.

These remarkable parallels between Gentzen’s formalization of the consequence relation
and Aristotle’s syllogistic completeness proof point to further significance of Gentzen’s frame-
work. Because he succeeded in formalizing the intuititive concept of logical consequence in
a single, synthetic inference rule, Gentzen was able to rephrase questions about the adequacy
of other inferential procedures in terms of the relationships between them and the syllogism
rather than in terms of their correspondence to abstract notions of another sort. We now turn
to how with the elimination theorems he and Herbrand did just this.

The elimination theorems in context

The way forward from Bolzano’s impasse urged by the prevailing conception of logical
completeness is to drop the metaphysical ideology that led him to consider his proof system
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in absolutist terms and to see his definition of logical consequence as procedural. One readily
sees the thin consequence definition as abstract and the analytic proof system as concrete. The
question of logical completeness is then, as it was for Gödel and Henkin, about the adequacy
of the latter to the former.

Equipped with Gentzen’s analysis of logical consequence in terms of structural inference,
a different way forward from Bolzano is available, one that preserves the centrality of proof
transformation program. In a phrase, Gentzen showed that Bolzano’s two dualities—the one
between the analytic and synthetic portions of his framework for logical inference and the
other between logical inference itself and the modal concept of logical consequence—are
actually the same. For Gentzen’s (1932) results project the modal notion, what he called the
intuitive concept of logical consequence, into the inferential framework itself. By formalizing
logical consequence, Gentzen recast it as an immanent feature of inference rather than as an
abstract relation to which inference could be hoped to correspond. In fact, consequence is
realized precisely as the syllogism rule that Bolzano had tried to eliminate.

Gentzen leaves little evidence of his direct influences. We do not know if he was familiar
with Bolzano’s work from the previous century, although there are interesting textual similari-
ties. Both writers (Bolzano 1810: Preface) referred to the presence of “intermediate concepts”
in rules of syllogism or cut as introducing “detours” [Umwege] in proofs and described the
merit of purely analytic proofs in terms of their avoidance of such detours.16 In a similar
vein, describing the structure of cut-free proofs, Gentzen wrote, “The final result is, as it were,
gradually built up from its constituent elements. The proof represented by the derivation is not
roundabout in that it contains only concepts which recur in the final result,” and beyond the
obvious echoes of Bolzano’s analyticity condition, Gentzen’s image of a theorem being “grad-
ually built up from its constituent elements” is suggestive of Bolzano’s ontological program
(88).

We do know that Gentzen was directly influenced by Hertz, who was explicit about his
indebtedness to Aristotle in (1929). As well, we know that thinking about logic in Göttingen
both in his student years and his post-doctoral years was dominated by the influence of David
Hilbert (1862–1943). Among Hilbert’s own ideological commitments was his eliminitivist
attitude towards abstract semantics. He did not, for example, much appreciate Bernays’s con-
tributions to the question of logical completeness of classical propositional logic, because of
his abiding suspicions about the concepts of truth and content involved. Hilbert thought of in-
terpretations as technical tools and avoided deliberation about which are correct, and so he and
his school customarily referred to the purely syntactic formulation of completeness (so-called
“Post-completeness”), which in the context of classical propositional logic is equivalent to
Bernays’s interpretation-theoretic one, as a “stricter” and more “mathematically precise” than
the other.17

This eliminitivist attitude fed into Gentzen’s work in two important ways. Most obvi-
ously, it supplied the right sort of environment to orient his conception of logic away from
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the substantive metaphysical concerns of about grounding that dominated Bolzano’s thought.
This reorientation proved crucial in Gentzen’s reaction to the role of synthetic reasoning in
axiomatic settings, as described in section 3. It also can be seen reflected in the work of
Herbrand, whose work in Göttingen of 1930 has seemed to many commentators as supplying
all the necessary ingredients to establish the logical completeness for classical quantification
theory except for the proper conceptual terrain.18 In place of models, Herbrand worked with
the idiosyncratic notion of champs finis, which simultaneously blocked the crucial inference
needed to establish completeness and opened up the way to observing the transformations
needed to establish his fundamental theory and corollary “syllogism elimination.”

But beyond this, Hilbert’s suspicions about abstract conceptions of truth and interpreta-
tions led him to seek meaning elsewhere, and he found what he was after in rules of logical
inference. In his lectures from early 1920, one finds the following possibly earliest statement
of what today is known as inferentialist semantics: “Diese Regel kann als die Definition des
Seinszeichens aufgefasst werden.”19 So whereas in his more famous lectures of 1917–1820

Hilbert had been explicitly, if reluctantly, pursuing questions about formal systems and their
interpretations, in just a few years he had so modified his perspective that “questions of com-
pleteness” and “of the relationship between the formalism and its semantics [. . . ] receded
into the background.” In their place, seeking “a more direct representation of mathematical
thought,” Hilbert redesigned his logical calculus for quantification theory so that the rules gov-
erning the calculus, rather than a semantic theory external to that calculus, could be thought of
as directly “defining” or “giving the meaning” of the propositional connectives and quantifiers
(Ewald and Sieg 2013: 298).

Gentzen’s work is illuminated if understood as the realization of this Göttingen attitude.
Pursuing just such a “direct representation of mathematical thought,” Gentzen turned to an
empirical study of the written records of mathematical proofs to isolate and organize the dis-
tinctive inferential moves afforded by various sentential connectives and determiners. These
patterns of inference, he felt, exhibit all that mathematicians mean by the particles they govern.
Further organization and systematization of this empirical data uncovered surprising proper-
ties, such as some inferences being more general than and therefore inclusive of others, a sort
of “interderivability” relation between introduction and elimination rules associated with each
particle, and crucially, in the most mature organizational scheme of the sequent calculus, the
observation that the definitive rules of inference are “analytic” in the same sense that the rules
of Bolzano’s theory of grounding are: Their premises contain no ideas that their conclusion
does not contain. In Gentzen’s modern terminology, the formulas in a premise of such a rule
are all sub-formulas of the formulas in the conclusion.

The sequent calculus just mentioned is the culmination of these several threads in Gentzen’s
thought. The basic framework is just the elementary sentence system of 1932. Because
Gentzen had left the sub-sentential structure of that system’s elements unanalyzed in order
to capture nothing more than the fully general concept of logical consequence, its elements
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can stand for any of a variety of complex sentences. So Gentzen mapped the sentences of
quantification theory onto these elements and supplemented the resulting calculus with the
empirically discovered, meaning-constitutive, analytical rules of inference governing the sen-
tential connectives and quantifiers. Thus like Bolzano before him, Gentzen devised a logical
system of a hybrid nature. For each logical particle of quantification theory there were associ-
ated analytic inference rules, and these operated alongside the synthetic, structural inference
rule CUT.

The sequent calculus, though, is a conceptual advance beyond Bolzano’s hybrid system.
It supplies an extra layer of significance to both its analytic and its synthetic components.
Gentzen’s analytic rules are no longer overburdened with the task of uncovering a truth’s ob-
jective grounds, but for that very reason they are now understood as the site of logical meaning.
One need not look to something external to the logical system for its semantics. Meanwhile,
the CUT rule is distinguished not only by being synthetic but by being the formalization of the
intuitive concept of logical consequence. One need not look to anything external to the logical
system for that relation either.

From Gentzen’s orientation, then, Bolzano’s question about the relationship between an-
alytical consequence and derivability is not, as it seems to most contemporary readers, a con-
fused reversal of the question of logical completeness. It is a natural question preliminary to
a proper formalization. By providing a system whose analytic rules comprise its semantics
and whose synthetic rule captures the independent notion of logical consequence, the ques-
tion of completeness—“Do the rules governing the meanings of the particles of quantification
theory suffice to derive everything that logically follows?”—can be precisely stated as: “Can
everything derivable in fact be derived without CUT, or is the CUT rule an essential ingredient
in some logical derivations?” Gentzen’s “elimination” of syllogism is a demonstration of the
analytical rules’ logical completeness.21

The cut-elimination theorem therefore provides a clear way forward from Bolzano’s co-
nundrum about the relationship between (what he called) consequence and derivability. But as
with Aristotle’s own completeness proof from the Prior Analytics it is hard to see the theorem
for what it is if you expect a completeness theorem to establish a correspondence between
syntax and semantics. According to Gentzen, following Hilbert, semantics is not something
independent of logical syntax. It is something provided by a properly designed syntax. Its
adequacy is established not in terms of its relationship with an abstract consequence relation,
but in terms of whether its inferential scope is at all strengthened by the addition of a syllogism
rule that makes that relation concrete.

At the same time, the theorem sheds light on the frustration Bolzano encountered in de-
veloping his proto-proof theory. In section 3 we saw Bolzano observing that the syllogism
rule disrupts the analyticity of proofs but worried that it is for all we know unavoidable. His
analytical rules are not applicable to multiple “simple sentences,” and it is possible that such
sentences are found both among the groundless, basic truths and also among the grounded,
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consequent truths. If there are simple truths that are not basic, then there are truths that do
not have purely analytical proofs. This must have been a devastating realization for Bolzano,
whose entire motivation was to provide a proof system that would disclose every truth’s objec-
tive grounds. Reflecting on this situation at the very end of (1837), he confessed misgivings
about his entire ontological scheme. Maybe there are no ultimate grounds. Maybe axiom
choice is a mere convention for efficiently organizing facts:

This seems to be the most suitable place to admit that I occasionally doubt whether
the concept of ground and consequence [. . . ] is not complex after all; it may turn
out to be none other than the concept of an ordering of truths which allows us to
deduce from the smallest number of simple premises the largest possible number
of the remaining truths as conclusions. (§221)

The elimination theorems corroborate Bolzano’s observation, by showing that syllogism
is inessential only when reasoning purely logically, establishing logical validities. When one
is reasoning from arbitrary non-logical hypotheses, it is essential. For Gentzen and Herbrand,
however, this situation in no way diminishes the theorem’s significance. Instead, it enhances
it. The Göttingen logicians never expected all truths, even all mathematical truths, to rest
on ultimate simple grounds, much less that an analytical proof system would disclose such
grounds. What an analytical proof system can do, provided that it is complete in the way
that the elimination theorems establish, is highlight exactly what the role of logical analysis is
in a scientific exposition, and where it yields to synthesis. Herbrand’s observation about the
the essential use of syllogistic inference in the presence of non-logical hypotheses is readily
recast in terms of “admissibility”: If one removes the rule modus ponens from Herbrand’s
formulation of classical logic, the result is a system in which modus ponensis admissible
but not derivable. The distinction between admissibility and derivability appears to have not
occurred to such contemporaries of Herbrand as Gödel, who worked successfully with a rough
and ambiguous notion of deductive validity, and did not receive wide attention until 1955, but
the study of syllogism in Göttingen led to it naturally.22 An extension of Gentzen’s work
by Gasai Takeuti (1926–2017) shows further that in sequent calculus proofs with non-logical
hypotheses at the leaf nodes, only “anchored” CUTs (instances of the CUT rule, at least one of
whose premises is a descendent, in the proof-tree, of an axiom) are essential; “free” CUTs are
still eliminable.23

An Aristotelean legacy

The story of the elimination of syllogism in the Göttingen school should make plain
the fact that the fate of Aristotelean logic was not, as many have suggested, to fade away
with the arrival of the predicate calculus. As indicated in section 4, those elimination results
themselves rest atop a proof idea Aristotle introduced. And although it is the syllogism, or
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something essentially like it, that is “eliminated” in the work of Gentzen and Herbrand, this
is hardly to say that it is no longer present in modern logic. After all, the Göttingen logicians
taught us that syllogism-free reasoning is significant because with it one can replicate the
syllogism’s inferential scope. The syllogism is revealed to be, not deadwood or a redundancy
of logistic theory, but the gold-standard of inference against which meaning-constitutive rules
are measured.

This is the reading of the elimination theorems that one is left with when one is able to
shed certain preconceptions about the meaning of logical completeness and the ingredients
that make up its formal verification. Those preconceptions have a rightful place in our modern
conception of logic. They are recommended Gödel’s theorems and nearly a century of research
conducted in their wake. But they are not the sole devices for understanding logic’s central
notions. As much as they inform us, they obscure the fact that Aristotle was able to pose
and settle perfectly legitimate questions about logical completeness phrased in completely
different terms.

Following Smiley’s lead, we saw that the conceptual terrain that Aristotle navigated in the
Prior Analytics recurs in key moments in history and especially so in the work of Göttingen
logicians. Reading Gentzen and Herbrand as navigating that same conceptual terrain uncovers
the nearly forgotten place of syllogism in 20th century logic. But more than that, it points us
to Gentzen’s observation that the syllogism is able to capture, in concrete form, the whole
abstract concept of logical consequence, so that its elimination confers on a logic the label
of completeness. And this, we saw, is just the role that Aristotle saw it playing from the
beginning.
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7Bolzano (1810). Beyträge zu einer begründeteren Dartellung der Mathematik. Translated in Ewald (1996)

From Kant to Hilbert vol. I Oxford: Oxford Univeristy Press, 174–224, Bolzano (1837). Wissenschaftslehre.
Translated in J. Berg (ed.) Theory of Science 1973. Boston: D. Reidel Publishing Company. For a full elabora-
tion, one can consult Mark Siebel’s contribution to this volume.

19



8See for example (1810: §2) and Franks (2014) “Logical completeness, form, and content: an archaeology”
in J. Kennedy (ed.), Interpreting Gödel: Critical Essays. Cambridge University Press. 2014 for elaboration.

9in Posterior Analytics I7: “It follows that we cannot in demonstrating pass from one genus to another. We
cannot, for instance, prove geometrical truths by arithmetic.”

10“crossing over to another kind”
11cf. page 251 of Schroeder-Heister (2002) “Resolution and the origins of structural reasoning: early proof-

theoretic ideas of Hertz and Gentzen,” Bulletin of Symbolic Logic 8: 246–265 and page 314 of van Plato, J.
(2012) “Gentzen’s proof systems: byproducts in a work of genius” Bulletin of Symbolic Logic 18(3): 313–67.
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