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Electric induced dipoles of nanocolloids the size of the Debye length are shown to be one order stronger than
predicted by the classical Maxwell-Wagner theory and its extensions. The difference is attributed to normal ion
migration within the diffuse layer, and adsorption onto the Stern layer at the poles. The characteristic relaxation
frequency �the crossover frequency for dielectrophoresis� is shown to be inversely proportional to the RC time
of the diffuse layer capacitance and resistance, and has an anomalous −1 scaling with respect to the product of
the Debye length and the particle size.
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Dielectrophoresis �DEP� has become an increasingly
popular means of manipulating and identifying immunocol-
loids, bioparticles, and DNA molecules in microfluidic de-
vices �1–3�. The dielectrophoretic force on the particle re-
sults from induced ac particle dipoles, which can develop by
either conductive or dielectric polarization mechanisms ac-
cording to classical Maxwell-Wagner �MW� theory �2�. For
conducting particles with low permittivity, conductive polar-
ization dominates at low frequency and dielectric polariza-
tion at high frequency, with opposite dipole orientations with
respect to the applied field and opposite positive �toward
high field� and negative �toward low field� DEP mobility. As
the length of both the particle capacitor and the resistor is the
particle size a, the dipole orientation and RC relaxation time,
as determined by fc.m.= ��̃P− �̃M� / ��̃P+2�̃M�, the Clausius-
Mossotti factor, is size independent. The complex permittiv-
ity �̃ is related to the real permittivity � and conductivity �
via the ac field frequency � for both particle �P� and medium
�M�. Hence, there exists a crossover frequency �CO, defined
by Re�fc.m.�=0, when the induced dipole vanishes, which the
MW theory predicts to be size independent:

�MW =
1

2�
���P − �M���P + 2�M�

��M − �P���P + 2�M�
. �1�

This MW theory was recently found to be inaccurate for
nanocolloids �3–6�. The �CO data of Green and Morgan �6�
in Fig. 1 for nanosized latex particles clearly show a particle
size dependence. In fact, according to the classical MW
theory Eq. �1�, latex particles with permittivity and conduc-
tivity both lower than the medium are not expected to exhibit
any crossover phenomenon. Ermolina and Morgan �7� have
suggested that, for latex and other particles with negligible
native conductivity, �p should be dominated by Stern and
diffuse layer conduction effects, as described by the classical
theories for electrophoresis, �see the review in �8��. With
negligible native conductivity, the corrected particle conduc-
tivity becomes �p= �2Ks /a�+ �2KD /a�, where Ks is the Stern
layer conductance and KD the diffuse layer conductance,

which includes a dependence on the particle � potential due
to osmotic flow effects. However, that the effective conduc-
tance is the sum of the two conductance contributions from
the Stern and diffuse layers reflects the implicit assumption
in the classical theories that the conduction “surface” cur-
rents are tangential. This is true for the Stern layer, which is
always thin compared to the particle, and hence its internal
field is always tangential to the latex insulator particle. It is,
however, inaccurate for diffuse layers with Debye length �
= ��MD /�M�1/2 �D is the ion diffusivity� comparable to a.
With the normal length scale comparable to the tangential
one in such thick layers, the normal field and current become
important in the diffuse layer, and this effect is not captured
by the classical theories. Moreover, modeling just conduction
�electromigration� in the diffuse layer is inadequate, as the
neglected diffusive flux can counter electromigration to pro-
duce tangential equilibrium or Poisson-Boltzmann distribu-
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FIG. 1. Green and Morgan’s �6� crossover frequency data for
557 �black triangles� and 93 nm �unfilled triangles� latex particles.
The classical MW theory with a conducting Stern layer is shown as
a dotted line. The Stern layer conductance is 1.46 nS for 93 nm
particles and 1.92 nS for 557 nm particles, calculated from the data
asymptote at low medium conductivity. The dashed line is from an
extended theory of �7� that includes tangential conduction in the
diffuse layer �with the same surface conductance as ours and �
potential of 67 mV for 93 nm and 45 mV for 557 nm particles from
Fig. 5 of �7��. The solid line corresponds to the scaling theory of Eq.
�2� with a scaling constant of 2.5 and D=5�10−9 m2/s.
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tions. We hence expect the improved MW theories to be
valid only at lower conductivity when �	a, or for large
particles, a	�.

At the limit of infinitely low medium conductivity, the
Stern layer conduction contribution dominates that from the
diffuse layer even in these theories, and the crossover fre-
quency with negligible native permittivity approaches �


=1/2��Ks /�2a�M�. Using this limiting value for the particle
data of Green and Morgan �6� to estimate Ks for different
particle sizes �see inset of Fig. 2�, the MW theory with Stern
layer conduction �dotted curve� is shown in Figs. 1 and 2 for
various particle sizes. It is shown to accurately capture the
measured crossover frequencies of large particles, but still
fails to describe the data for nanocolloids with smaller di-
mensions, at medium conductivities corresponding to a��,
as shown in Fig. 1. Although this new crossover frequency is
size dependent, it falls monotonically with respect to the me-
dium conductivity, instead of exhibiting the order-of-
magnitude rise for the smaller particle �93 nm�. The dashed
curve in Fig. 1 corresponds to the extended theory, which
includes diffuse layer conduction and electro-osmotic flow
convection. Using � potential estimates from Fig. 5 of �7� for
all latex particles, and our Stern layer conductance values as
shown in the inset in Fig. 2, the crossover now exhibits a
shallow maximum, but is still lower than the actual data by a
factor of 4. Allowing for a conductivity-dependent � poten-
tial produces similar results.

Considerable empirical evidence �9–12�, particularly for
ion-selective conducting particles, suggests that a normal ca-
pacitive current, missing in the classical theories, is respon-
sible for the discrepancy seen in Figs. 1 and 2 at the critical
region of ��a. If the migrating ions are allowed to accumu-
late at the opposite poles, an induced dipole that favors posi-
tive dielectrophoresis increases �CO. If we assume that the
diffuse layer permittivity and conductivity are similar to
those of the bulk medium, the diffuse layer capacitance
would be �M /� and its resistance along the particle a /�M.
Consequently, we expect �CO of this theory to scale as the
inverse RC time of the diffuse layer,

�DL � ���M

a�M
� =

D

a�
. �2�

This simple expression quantitatively captures �CO for
smaller particles, as seen in Figs. 1 and 2. Its ratio to �
, the
low-conductivity limiting frequency from the MW theory, is
�1/2����2�M /�p��� /a�, and this ratio increases monotoni-
cally with medium conductivity �M. As is evident from the
93 nm data in Fig. 1, this scaling can be almost a factor of 10
larger than �MW.

Our theory, which quantitatively confirms the above scal-
ing, uses Stern layer conduction to describe �p, but describes
both tangential and normal �conducting and diffusive� fluxes
in the diffuse layer explicitly. It follows that of Gonzalez et
al. for electrode double-layer polarization �12� with a Debye-
Hückel linearization for a symmetric monovalent electrolyte,
whose dynamic space charge fluctuation and charge density
are small compared to the dc ion concentrations. However,
Gonzalez et al. consider the thin double-layer limit of
�a /��	1, while we include the full Laplacian for the Pois-
son equation and for the charge transport equation for ��a.
After a Fourier transform in time, the dimensionless ac com-
ponents of the charge density � �scaled by 2n0e�, the medium
and particle potential �scaled by kBT /e�, the spatial coordi-
nates scaled by a, and the time scaled by ��M /�M�, the two
potentials and charge density satisfy

�2�M = − � a

�
�2

�, �2�P = 0,

�2� = 	� ia2

D
����M

�M
� + � a

�
�2
� = s2� a

�
�2

� , �3�

where �, the dimensionless frequency, has been scaled by
��M /�M�, and the complex number s is defined by s2=1
+ i�. The Laplacian on the left of the charge density repre-
sents diffusion, while the two terms on the right represent
accumulation and electromigration, respectively.

With a uniform unit dimensionless far field in êZ, the rel-
evant axisymmetric charge density solution to the Bessel
equation �3� can be expressed as a Bessel function of frac-
tional order, and the particle and medium potentials contain
the related spherical harmonics,

� =

BK3/2� a

�
sr�

r1/2 cos , �P = Dr cos  ,

�M = �−

BK3/2� a

�
sr�

s2r1/2 +
A

r2 − r�cos  , �4�

where the first term in the medium potential represents the
polarized space charge distribution in the diffuse layer and
the second term represents the field due to the induced par-
ticle dipole. As the space charge contribution to the potential
decays exponentially as exp�−asr /��, it is clear from Eq. �4�
that the potential seen by any second-order applied field with
a finite gradient is predominantly due to the dipole and not

FIG. 2. Scaled data of Green and Morgan for four different latex
particle dimensions in different KCl and NaCl electrolytes with D
=5�10−9 m2/s to resolve the data points across a wide range of
� /a. The Stern layer conductance using the data asymptote at low
conductivity for different particle sizes is shown as the inset. The
scaling theory of Eq. �2� captures the anomalous rise of the 93 nm
data when ��a.
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the space charge. We hence do not need to be concerned with
the Maxwell force on the space charge, nor the resulting
electro-osmotic convection. The space charge is nevertheless
important, as it screens the external field such that the par-
ticle dipole is different from the unscreened one as for
�� /a�	1. With negligible space charge contribution to the
electric force on the particle, the coefficient A for the com-
plex charge of the induced dipole can be used directly
in the classical expression for the dipole force,

4��M Re�A�a3Ê · ��̂Ê�, to obtain the DEP velocity uDEP

= ��Ma2 /6���Re�A��̂  Ê2, where Ê is the dimensional elec-
tric field.

The specific values of A, however, require determination
of the coefficients in Eq. �4�. The MW theory uses as surface
boundary conditions the potential continuity ���=0 and the
complex displacement continuity in dimensional form,

	�̃
��

�n

 = 0 �5�

where �·� denotes a jump across the particle surface, and the
Stern layer effect is included in the particle conductivity.
Equation �5� is derived by eliminating the surface charge qs
from the surface charge accumulation due to the conductive
flux imbalance, i�qs= ���� /�n�, and the displacement jump
due to the surface charge, −qs= ���� /�n�, where the ac sur-
face charge resides at the diffuse/Stern layer interface. How-
ever, an additional boundary condition on this interface is
needed for the space charge density �. For the normal diffuse
layer current to be a charging current, the space charge must
adsorb onto the surface.

Adsorption of counterions at the Stern layer has been well
documented �13–15�, and a reversible adsorption isotherm is
usually assumed, as the adsorption and desorption kinetic
times across the Stern layer are expected to be on the order
of nanoseconds or shorter. This corresponds to an ion asso-
ciation reaction, as the counterion is condensing onto a sur-
face charge of opposite sign, and available quasielastic neu-
tron scattering �QENS� and NMR studies of association time
scales ��10−9 s� are indeed much shorter than the inverse
crossover frequencies of nanocolloids, except for very large
hydrated ions �16�. We model this Stern layer of thickness �s
to have the same conductivity and permittivity as the me-
dium. The adsorbed Stern layer charge �s is distinct from the
surface charge qs responsible for the complex MW condition
Eq. �5�, where qs is due to smaller charge carriers than the
adsorbed ions and exists at the inside �solid� boundary of the
Stern layer. We hence exchange the potential continuity
equation at the particle surface with the Stern layer condition
of a potential jump across the Stern layer, with adsorbed
Stern layer charge related to the space charge � by an equi-
librium isotherm �s=Keq�,

�P − �M = Keq� ��S

�
�� , �6�

where Keq� =Keq /�. Accumulation of �s in the Stern layer due
to imbalance in particle and medium fluxes yields, using the
same isotherm, the dimensionless condition

� a

�
�� �

�S
�i���M − �P� =

��

�r
+

��M

�r
−

�P

�M

��P

�r
. �7�

As the field is the same in the Stern layer and on the
medium side, we use �the dimensionless version of� Eq. �5�
with Eqs. �6� and �7� on the particle surface to solve for the
three complex coefficients in Eq. �4�. We use a reasonable
value for the equilibrium constant Keq� =Keq /�=1 and the lit-
erature value �17� for the Stern layer capacitance �m /�S
=80 �F cm−2. The Stern layer RC time is simply the capaci-
tance term in Eq. �7� and yields a characteristic frequency
�Stern= �D /a����S /����DL. With Stern layer adsorption, the
diffuse layer also becomes a capacitor. However, since both
Stern and diffuse layer capacitors are in series relative to the
normal charging current, it is the diffuse layer with lower

FIG. 3. �Color online� Real part of the dipole strength A for 93
and 557 nm particles for �M =1 mS m−1, �=37 nm, Ks=1.46 nS for
93 nm particles and Ks=1.92 nS for 557 nm particles, relative per-
mitivities of �M =78.5 and �P=2.25, and D=10−9 m2/s. The Stern
layer parameters are Keq� =1.0, �m /�S=80 �F cm−2. Charge density
contours for representative conditions are shown in the insets.

FIG. 4. Comparison of our present theory to Green and Mor-
gan’s data using the parameters in Fig. 3. The Stern layer conduc-
tance for each particle is given in the inset in Fig. 2. The symbols
are the same as in Fig. 2. Dotted curve, MW theory with conducting
Stern layer; solid curve, current theory.
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capacitance and higher inverse RC time that dominates, such
that �DL of �2� captures the data in Figs. 1 and 2.

The coefficients are determined from a series expansion
of the complex functions. The real part of the charge density
distribution within the diffuse layer is plotted in Fig. 3 for the
two particles of Fig. 1 with � roughly the size of the smaller
one. There is negligible space charge in the diffuse layer of
the larger particle for all frequencies, as in the MW theory.
For the smaller particle, the Stern layer capacitor is saturated
at frequencies much lower than �Stern, and the tangential
conduction in the diffuse layer drains the space charge away.
At higher frequencies, the ac period is too small for charging
current to penetrate the diffuse layer to reach the Stern layer.
These limits, hence, correspond to the conductive and dielec-
tric polarization mechanisms of the MW theory, and there is
again no space charge. At about �Stern�105 Hz, however,
the charge density of the smaller particle becomes dramati-
cally higher due to Stern layer charging. Re�A� is also shown

in Fig. 3 for both nanocolloids. While the larger colloid
shows a small correction to classical MW dipole intensity
that decreases with increasing frequency, a sharp maximum
is observed for the smaller particle at a frequency near �Stern.
As shown in Fig. 4, all the crossover frequency data for
various particle sizes by Green and Morgan can be captured
with this model by using the proper a /� for each experiment
and using the Stern layer conductance obtained from the
asymptotic crossover of the latex particles at low medium
conductivity. Adjusting the equilibrium constant Keq� and the
Stern layer capacitance, the only unknown parameters, over
one order of magnitude does not change the curves signifi-
cantly, provided �Stern��DL.
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