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By treating DNA as a vibrating nonlinear lattice, an activated kinetic theory for DNA melting is
developed to capture the breakage of the hydrogen bonds and subsequent softening of torsional and
bending vibration modes. With a coarse-grained lattice model, we identify a key bending mode with
GHz frequency that replaces the hydrogen vibration modes as the dominant out-of-phase phonon
vibration at the transition state. By associating its bending modulus to a universal in-phase bending
vibration modulus at equilibrium, we can hence estimate the entropic change in the out-of-phase
vibration from near-equilibrium all-atom simulations. This and estimates of torsional and bending
entropy changes lead to the first predictive and sequence-dependent theory with good quantitative
agreement with experimental data for the activation energy of melting of short DNA molecules without
intermediate hairpin structures. Published by AIP Publishing. https://doi.org/10.1063/1.4996174

I. INTRODUCTION

Biological systems are characterized by their metabolism
and self-replication. In DNA, self-replication initiates with
the local formation of denaturation bubbles by overcoming
energy barriers, making denaturation, and hybridization of
DNA among the most important processes in biology. These
reactions, in response to physical or chemical stimuli, are also
the cornerstones of many laboratory techniques such as poly-
merase chain reaction (PCR) and DNA sequencing, as well
as many oligo-based biosensors where a single-stranded DNA
binds selectively to its complementary strand.1

Thermodynamics and kinetics are two fundamental
aspects of DNA denaturation and hybridization. Through
extensive benchmarking against melting temperature measure-
ments, nearest-neighbor models have proven to accurately
represent the thermodynamics of these reactions, at least for
sequences of up to 24 base pairs (bps).2,3 Kinetic properties
are harder to capture both through simulations and theories, as
the reaction pathway is not well defined4 and the time scales of
these processes are large enough to prevent extensive studies
through all-atom molecular dynamics (MD) simulations.5–7

As most relevant melting and hybridization conditions
occur away from the thermodynamic melting temperature and
are under non-equilibrium external forces like shear and elec-
tric stress,8,9 irreversible kinetic rates are often more important
than thermodynamic equilibrium constants. Irreversible melt-
ing has been shown to produce higher selectivity for base-
pairs with comparable thermodynamic equilibrium dissocia-
tion constants.9 Coarse-grained models have been developed
to meet this need for melting and hybridization rates. They
have the ability to predict trends in the kinetics but typically

a)Authors to whom correspondence should be addressed: hchang@nd.edu and
zpeng3@nd.edu.

produce rates many orders of magnitude faster than experi-
mental values.10–12

Irreversible DNA melting kinetics are known experi-
mentally to obey the Eyring-Polanyi activated rate5–7,13–15

k = kBT
h exp(−∆G‡

kBT ), where k is the melting rate, kB is the Boltz-
mann constant, T is the temperature, h is the Planck constant,
and ∆G‡ is the activation free energy, which can be decom-
posed into its enthalpy and entropy terms∆G‡ = ∆H‡−T∆S‡.
As the separation of the strands during the melting is small
enough such that the rate is, within reasonable values, both
concentration and salt content independent,6,16 the determi-
nation of the free energy of activation is sufficient to provide
good estimates for the kinetic rate of melting. Nevertheless, we
are not aware of any current theory on the activation energy of
melting, even from the coarse-grained models.

One major obstacle is the estimate of the activation
entropy ∆S‡, which is expected to involve cooperative vibra-
tion dynamics with both in-phase and out-of-phase phonon
fluctuations with respect to the hydrogen bonds at the transi-
tion state. Such long-wavelength and slow vibration dynam-
ics are in violation of energy equi-partition as some of the
vibration modes will dominate due to the long-range cou-
pling.17 Dynamic tracking of this coupling and the evolution
of the slow and long-range vibrations are beyond all-atom
simulations except for dedicated efforts with large computing
machines.4,11,18

There are, however, coarse-grained models that may allow
us to capture these cooperative vibrations at the transition state
without directly simulating the dynamics. The most extensive
all-atom molecular dynamics simulations of the DNA melting
process to date present a mechanistic description where the
duplex untwists until reaching a conformation which resem-
bles a planar ladder. Then, the bases fray and peel until both
strands are held together by a single base pair (see Fig. 1).
Finally, this base pair breaks, leading to two fully separated
strands.4,18 The melting process appears to be quite stochastic,
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FIG. 1. Conformations of the DNA duplex CAAAAAG
sampled during an enhanced melting simulation.

sampling different routes with different fluxes and residence
times, and thus making the definition of a simple reaction
coordinate quite elusive.4 For sequences longer than 10 bps,
loops or cruciform secondary structures form during denat-
uration, further complicating the dynamics and the energy
landscape,19 with typically lower activation energies.20–22

Nevertheless, for a transition state theory, only the activation
entropy and enthalpy are needed and the above dissociation
of two linear structures should involve certain universal con-
tinuum vibration modes that can be quantitatively estimated
without dynamic simulation.

In this work, we will model the melting process of short
DNA molecules as a thermally activated escape from a multi-
dimensional metastable state with specific entropy contribu-
tions not present in the usual transition state theory.23 The rate
can be described instead by the Kramers-Langer theory with
a prefactor related to the entropy23–26

k = Γ0exp(−
∆H‡

kBT
). (1)

For an N-dimensional potential, the prefactor Γ0 is given by
the expression

Γ0 =

���ω
(0)
b

���ω
(1)
0 ω(2)

0 . . . ω(Ñ)
0

2πγω(2)
b ω(3)

b . . . ω(Ñ)
b

, (2)

where γ is the damping rate and ω(i)
0 and ω(j)

b characterize the
curvatures of the Hamiltonian at the equilibrium and at the bar-
rier (transition state) through which the system escapes. The
frequency ω(0)

b is the curvature of the potential at the barrier
associated with the negative eigenvalue of an unstable nor-
mal mode corresponding to the theoretical reaction coordinate,
indicating flow away from the barrier towards the stable states.

The consideration of this prefactor leads to an Eyring-
Polanyi equation with an entropy of activation

∆S‡ = kBln(
h

kBT
Γ0), (3)

where assuming the dissociating strands remain linked at the
transition state, the thermodynamic entropy of mixing is not
included within the activation entropy. Instead, we shall assign
these entropies to certain continuum lattice modes with long
wavelengths and low frequencies as in phonon melting theories
for solids.26

II. THEORETICAL MODEL
A. Activation enthalpy

Comparing measured activation enthalpies from Refs. 7
and 13 to thermodynamic enthalpies, we note that the

activation enthalpy is comparable to the change in the ther-
modynamic enthalpy due to all but one base pair,

∆H‡ ≈ (
N − 1

N
)∆H0, (4)

where ∆H0 is the thermodynamic enthalpy from the nearest-
neighbor approach2,3 and N is the number of base pairs of
the molecule. More specifically, for sequences CAAAAAG
and CAGGTCACAG, the measured activation enthalpies are
40.1± 3 kcal/mol and 67.2± 0.4 kcal/mol, respectively, while
the thermodynamic enthalpies ∆H0 are 47.7 kcal/mol and
73.9 kcal/mol, giving rise to estimated values of ∆H‡ of
40.9 kcal/mol and 66.5 kcal/mol from Eq. (4). This agreement
suggests that the transition state involves one remaining hinged
base-pair as in Fig. 1, and Eq. (4) can be used to accurately
estimate ∆H‡.

In the absence of other experimental measurements of
∆H‡, we shall use Eq. (4) in our theory for the activation
enthalpy. We list the thermodynamic enthalpy ∆H0 and the
activation enthalpy ∆H‡ estimated from the nearest-neighbor
theory for 8 specific sequences in Table I. These are sequences
with accurate measured melting rates that will be compared
to our kinetic theory. The key to realizing a kinetic theory
for DNA melting is then the proper accounting of the entropy
change at the barrier.

B. Activation entropy

Estimates of the configurational entropy can be compu-
tationally challenging, owing to the difficulty of selecting a
proper reaction coordinate and sufficiently sampling the phase
space27 because of the long length and time scales of the coop-
erative phonon vibrations at the transition state. We suggest
that, through Kramers-Langers formalism, this entropy can be
associated with the change in vibration frequencies between
the barrier and the double-stranded conformation. Such vibra-
tion frequencies can be extracted from the power spectrum or
velocity density of states (VDOS) from equilibrium molecular
dynamics simulations.17,28–30

Considering a system composed only of harmonic oscil-
lators, the autocorrelation of each oscillator’s elongations is a
superposition of all the oscillations within the different eigen-
frequencies. Therefore, the Fourier transform of the position
autocorrelation functions

∑N
j=1 ∫

+∞
−∞ 〈rj(t), rj(0)〉e−iωtdt, where

rj is the displacement of the jth oscillator and j runs over
all atoms of the system, leads to a spectrum with a peak
at each eigenfrequency.29 The intensities of these peaks are
determined by the corresponding oscillator amplitudes, which
are inversely proportional to the eigenfrequency ω and to the
square root of the reduced mass of each oscillator mj. Hence,
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TABLE I. Average intrinsic bending frequencies and length per bp (with standard deviation) from equilibrium
MD simulations. Thermodynamic enthalpies (∆H0) estimated using the nearest-neighbor approach.2,3 Activation
enthalpies (∆H‡) estimated from Eq. (4). References for measured melting rates of each sequence are listed.

Sequence ωbd /2π (cm�1) l (Å) S.D. (Å) ∆H0 (kcal/mol) ∆H‡ (kcal/mol) Reference

CAAAAAG 11.995 3.19 0.11 47.7 40.9 7
GGTGAAT 12.021 3.32 0.12 45.8 39.25 14
CACAGCAC 11.205 3.56 0.14 59.7 52.2 42
CACGGCTC 11.229 3.37 0.10 61.1 53.5 42
CAGGAGCA 11.865 3.47 0.11 56.2 49.2 43
TACGTGGA 11.186 3.44 0.09 54.7 47.9 14
GGTGAATG 11.841 3.29 0.09 56.5 49.4 14
CAGGTCACAG 11.593 3.63 0.09 73.9 66.5 13
GCATCTGGGC 11.613 3.60 0.08 75.6 . . . . . .

as long as the system is well equilibrated (i.e., the equiparti-
tion theorem is fulfilled), a spectrum with the same intensity
for each eigenfrequency can be obtained through17

F(ω) = ω2
N∑

j=1

mj

∫ +∞

−∞

〈rj(t), rj(0)〉e−iωtdt. (5)

From properties of the Fourier transform, this formula is equiv-
alent to the Fourier transform of the velocity autocorrelation
functions

F(ω) =
N∑

j=1

mj

∫ +∞

−∞

〈ṙj(t), ṙj(0)〉e−iωtdt, (6)

leading to the definition of the power spectrum (or VDOS) of
the system. For phonons in an ideal crystal lattice, the peaks of
the power spectrum are associated with the different branches
of the dispersion relations31 (see Appendix A).

In general, low-frequency acoustic vibration modes
appear as collective motions of large effective masses and
include the motions of many atoms over large distances such
that their wavenumber and frequency can approach zero. This
makes them quite sensitive to the overall structure of the
molecule and thus dominates the entropy change in many DNA
transitions.32–35 As the amplitude of the normal modes and
their consequent importance to the overall motions diminish
at higher frequencies, our estimation of the vibrational entropy
will focus on low-frequency vibrations.

Figure 2 shows the VDOS calculated directly from equi-
librium MD trajectories of a double stranded molecule. Sim-
ulation details are presented in Appendix B. By neglecting
combination bands, four main branches can be identified from
the VDOS of the DNA at equilibrium: the torsional, com-
pressional and longitudinal-bending phonon branches, which
correspond to acoustic, in-phase branches, and the transver-
sal branch that corresponds to an optical, out-of-phase branch
associated with the breathing of the hydrogen bonds.31,36,37

These branches are designated by dispersion relationships
from lattice models with various one-dimensional modes that
reflect the topology of the DNA. The in-phase acoustic modes
represent compressional, torsional, and bending phonons and
do not involve direct separation of the two strands, while
the out-of-phase optical modes represent the actual separa-
tion of the two strands. Nevertheless, both sets of modes will

exhibit large changes in vibration frequencies during the melt-
ing process, and hence big changes in entropy. The dispersion
relationships for the acoustic modes exhibit frequency maxima
with respect to the wavenumber, where the group velocities are
zero. Wave packet vibrations driven by thermal noise would
typically have frequency spectra peaks at values correspond-
ing to zero group velocity.31 We hence assigned the most
pronounced spectral peaks to the maxima of these dispersion
relationships with zero group velocity in Fig. 2. Allocating
these dispersion branches to the different stiffnesses of the
molecule, it is not only more convenient but also physically
reasonable to characterize low-frequency motions through the
use of continuous or coarse-grained lattice models.35

C. Coarse-grained lattice model

In this work, we will model the DNA molecule through
a modified version of the Peyrard-Bishop-Dauxois (PBD)
model. The PBD model was originally motivated by the study

FIG. 2. Velocity density of states (VDOS) of the DNA duplex CAAAAAG at
equilibrium along with theoretical phonon branches. The peaks of the disper-
sion branches correspond, from lower to higher frequency, toωbd /2π,ωt /2π,

ωc/2π, and
√
ω2

H +ω2
bd/2π from Eqs. (11), (16), (17), and (12). The VDOS

is normalized to unity in the output frequency range and multiplied by a factor
of 500.
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of dynamic properties of DNA such as the breathing of the
hydrogen bonds.38–41 The potential energy associated with this
model can be written as H = Hbend + Hhydr , where

Hbend =

N∑
n=2

kb

2
[(un − un−1)2 + (vn − vn−1)2], (7)

Hhydr =

N∑
n=1

∆H0

N
(e−a(un−vn)/

√
2 − 1)2, (8)

correspond, respectively, to the elastic bending energy and
hydrogen-bonding interactions of the molecule.38 The vari-
ables un and vn represent the transversal displacements of
the complementary nucleotides from their equilibrium posi-
tion.41 Hydrogen bonding interactions are modeled by Morse
potentials whose inverse width a can be selected to match
the vibration frequencies of the hydrogen bonds, while kb is
a nonlinear parameter related to the bending stiffness of the
molecule, which varies through different conformations.

The double lattice structure of the PBD model captures the
in-phase and out-of-phase components of the bending dynam-
ics of the two strands. The in-phase “snaking” dynamics do
not contribute to the separation of the two strands (melting)
but correspond to a distinct phonon branch that can be dif-
ferentiated from other phonon modes with near-equilibrium
simulations. The out-of-phase component does contribute to
melting but it is much weaker than the other out-of-phase
dynamics [the hydrogen bond vibrations in Eq. (8)] near equi-
librium. At the transition state, however, the out-of-phase com-
ponent becomes dominant and this transition from hydrogen
bond dominant out-of-phase vibration at equilibrium to bend-
ing dominant out-of-phase vibration at the transition state is a
key contribution to the entropy change.

A transformation to the center-of-mass coordinates that
represent the in-phase and out-of-phase transversal motions of
the two strands (xn =

un+vn√
2

, yn =
un−vn√

2
) yields two decoupled

equations of motion41

mẍn = kb(xn+1 + xn−1 − 2xn), (9)

mÿn = kb(yn+1 + yn−1 − 2yn) + 2a
∆H0

N
(e−ayn − 1)e−ayn , (10)

where m is the average mass of a base pair (650 amu). Lineariz-
ing Eq. (10) around the equilibrium position, the out-of-phase
breathing and in-phase bending branches from the dispersion
relation can be determined explicitly (see Fig. 2) by

ω2
bend(q) = ω2

bd sin2(
ql
2

), (11)

ω2
oop(q) = ω2

H + ω2
bend(q), (12)

where l is the distance between adjacent nucleotides on the
same strand, q is the wavenumber ( πn

(N+1)l with n = 1, . . . , N),
and ωbd is a frequency related to the bending stiffness of the
molecule (

√
kb/m).

From our MD simulations of 9 different sequences, at
equilibrium, the VDOS spectra show a sequence and length
independent parameter kb such thatωbd/2π ≈ 11.5±0.5 cm�1

(see Table I). This frequency will be taken as a universal value
in the simplest version of our theory. Similarly, the separation
between two nucleotides does not seem to vary far from the

universal value of 0.34 nm and this value will be used as a
universal value for l. This gives rise to a sequence-independent
frequency of the first fundamental mode (n = 1) for the double
stranded bending motions at equilibrium,

ωbend = ωbd sin(
π

2(N + 1)
), (13)

that takes values ωbend /2π of 2.24± 0.1, 2.00± 0.1, and
1.64± 0.1 cm�1 for sequences of lengths 7, 8, and 10 bps,
respectively. We also obtained a near sequence and length
independent vibration frequency ωH for the hydrogen bonds
such that ωH/2π ≈ 92 ± 1 cm�1, in consistency with other
experimental and simulation studies.44,45

Despite its success in the description of thermodynamic
properties of the molecule, the usual choices of parameters
of the PBD model have proven to overestimate denaturation
rates by several orders of magnitude.10,19,39 In this article, we
will modify the PBD model by adding two potentials, H tors

and Hcompr , corresponding to the torsional and compressional
energies of the molecule,46,47

Htors =

N∑
n=2

kθ
2

(θn,n−1 − θ0)2, (14)

Hcompr =

N∑
n=2

kc

2
(zn,n−1 − z0)2, (15)

where the variables θn,n�1 are related to the angular displace-
ment of two consecutive hydrogen bond vectors (being θ0 the
angle near the equilibrium position), the variables zn,n�1 are
related to the separation of the centers of mass of two con-
secutive Watson-Crick pairs in the direction of the axis of the
molecule (being z0 the separation at the equilibrium position)
and kθ and kc are nonlinear parameters related to the torsional
and compressional stiffnesses of the molecule (see Fig. 3). The
addition of these potentials to a similar model by Sicard et al.46

FIG. 3. Schematic view of the model considered.
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has proven to be able to reproduce opening and closure times
of DNA denaturation bubbles, suggesting this addition may
lead to an improvement of the PBD model towards properly
describing kinetic properties of the system.

Note that, from these potentials, the torsional and com-
pressional branches can also be determined explicitly through,

ω2
tors = ω

2
t sin2(

ql
2

), (16)

ω2
compr = ω

2
c sin2(

ql
2

), (17)

where ωt and ωc are frequencies related to the torsional
(
√

kθ/IM ) and compressional (
√

kc/m) stiffnesses of the
molecule, with IM being the moment of inertia per bps around
the twisting axis.

Two main phenomena have been suggested to give
rise to the difference in thermodynamic entropy between
the double and single stranded configurations: the drop in
the elastic stiffness due to the decrease of the overlap of
the π-electrons of adjacent bases, which is mostly responsi-
ble of the stacking interactions, and the increment in angular
configurations that the bases may sample upon the unwind-
ing of the helix.38,40,46,48,49 In our kinetic theory with similar
elasticity changes, we will introduce the coupling between
base-stacking and bending elasticity by varying the bending
persistence length, while the change in torsional stiffness will
be coupled to the angular sampling space of the bases. As the
compressional modulus of the molecule does not change sig-
nificantly upon melting,50 we will consider kc as constant. As
a result, compressional frequency change does not occur for
thermal melting of short DNAs and will hence be omitted in
this study. However, for shear or force induced melting, the
change in compressional entropy may become important and
we will include it here for completeness.

D. Change in frequencies at the barrier

From Eqs. (2) and (3), the change in vibrational entropy
can be written as

∆S‡ = kBln(
ω(2)

0 . . . ω(Ñ)
0

ω(2)
b . . . ω(Ñ)

b

) + kBln(
h

kBT

|ω(0)
b |ω

(1)
0

2πγ
)

≈ (∆S‡bend + ∆S‡tors + ∆S‡compr + ∆S‡oop) + ∆S‡rc, (18)

where ∆S‡bend , ∆S‡tors, ∆S‡compr , and ∆S‡oop correspond to the
change in bending, torsional, compressional, and out-of-phase
breathing vibration frequencies, while ∆S‡rc is a correction to
the activation entropy due to the change in curvature along the
reaction coordinate.

Optical Kerr-effect spectroscopies show that the out-of-
phase branch associated with the breathing of the hydrogen
bonds disappears upon melting,44 while MD studies show that
denaturation bubbles have much smaller bending and torsional
moduli than the double helix.46 As the compressional modulus
of the molecule does not change significantly upon melting,
we will neglect the entropy due to the change in the compres-
sional vibrations (∆S‡compr ≈ 0) and will focus on the change
in bending, torsional, and breathing vibrations.

1. Bending entropy

At the barrier, we assume that the molecule is held together
by a single base pair. Hence, it is expected that both strands
undergo independent bending dynamics and the bending per-
sistence length is then comparable to that of a single stranded
DNA. As there are N bending modes, each with a frequency
proportional to the square root of the persistence length,51,52

we obtain an entropy term

∆S‡bend =
N
2

kB ln(
lds
p

lss
p

), (19)

where lds
p is the persistence length associated with the dou-

ble stranded configuration and lss
p is the persistence length

associated with the single stranded one. At these short scales,
the persistence length associated with the double stranded
molecule can be calculated from the VDOS by using the theory
of vibrations of a homogeneous rod,51,52 as

lds
p =

ω2
bendML3

(p1L)4kBT
, (20)

where M = mN is the total mass of the molecule, L = (N � 1)l
is the contour length, ωbend is the frequency of the first funda-
mental mode from Eq. (13), and p1 is an inverse length such
that p1L = 4.73. This treatment of the persistence length yields
average values of 9 ± 2, 13 ± 3, and 25 ± 2 nm for duplexes
of lengths 7, 8, and 10 bps, respectively [see Fig. 4(a)],
which are comparable to previous simulated and experimental
studies.53,54

The same treatment applied to calculate the persistence
length of single stranded molecules yields unreasonably stiff
values, as in reality these molecules form strong non-bonded
interactions which make them more folded or collapsed than
ideal rods. There are many inconsistencies in experimen-
tal and theoretical calculations of the persistence length of
single stranded molecules, which fall within a rather wide
range of values (0.7–7.8 nm).56 Estimates from the end-to-
end distance53 of our molecular dynamics simulations give
rise to results comparable to other simulations that work
in similar length scales,55 yielding persistence lengths of
short single stranded molecules close to 1 ± 0.5 nm [see
Fig. 4(b)].

2. Torsional entropy

The torsional stiffness associated with the double stranded
molecule can also be calculated from the VDOS by using the
theory of vibrations of a homogeneous rod;51,52 however, to
our knowledge, there is no consensual definition of the twist-
ing stiffness of a single stranded molecule. At the barrier, the
torsional modulus can be estimated by measuring the twist
angle between consecutive base pairs in the molecule, which
has been suggested by Sicard et al.46 to follow a power-law
relation kθ ∝ (N − 1)−α, where N � 1 is the number of melted
bases and α = 2.2 ± 0.1. Assuming the change in inertia is
also included in this formula, this estimate yields a torsional
entropy

∆S‡tors =
N
2

kBαln(N − 1). (21)
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FIG. 4. (a) Persistence lengths of the double stranded molecules. The per-
sistence length was calculated using Eq. (20) (circle) and those parameters
from Table I. Experimental persistence lengths (diamond) were calculated
in Ref. 53, where an estimate of the persistence length from simulations for
the duplex GCATCTGGGC is also provided (red square). Dashed lines cor-
respond to persistence lengths calculated from the WLC model (blue from
Ref. 53, green from Ref. 54). (b) Persistence lengths of the single stranded
molecules calculated from molecular dynamics simulations using the end-
to-end (ETE) distance.53 Dashed lines correspond to persistence lengths
calculated in Ref. 55.

3. Out-of-phase entropy

When the DNA molecule is in its double stranded config-
uration, transverse optical phonons associated with the vibra-
tions of the hydrogen bonds are supported, having each optical
phonon a finite frequency at zero wave vector. Upon melting,
these transverse waves are no longer supported and the zero
wave vector frequency of this phonon has to become zero.
Therefore, as seen in Eq. (12), the out-of-phase optical phonon
modes associated with the breathing of the hydrogen bonds
become out-of-phase acoustic phonon modes in a phenomenon
which resembles the soft phonon phase transition observed in
crystal structures.57,58

This physical effect can be observed in the PBD model
[see Eq. (10)]. Once the hydrogen bonds break, out-of-phase
bending effects previously withheld by the much stronger
hydrogen bonds come into play, as the equations of motion
become

mẍn = kb(xn+1 + xn−1 − 2xn), (22)

mÿn = kb(yn+1 + yn−1 − 2yn). (23)

Out-of-phase dynamics and in-phase dynamics share the same
bending stiffness kb; hence, knowledge of the in-phase bending
dynamics can lead to predictions of the out-of-phase vibration
frequencies.

We will designate base pair j to be the single connecting
(hinge) base pair at the transition state, as assumed in our acti-
vation enthalpy estimation [Eq. (4)]. The exact value of j does
not affect our estimate of the out-of-phase bending vibration
frequency. The vibration frequencies of the out-of-phase nor-
mal modes obey the equation Aω′bd

2v = ωv, where A is the
N × N matrix

A =



1 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1



, (24)

whose jth column is zero, ω′bd is the average intrinsic bending
frequency at the barrier (

√
kb/m evaluated at the barrier), and

the eigenvector v corresponds to the normal mode ω. As is
true for the bending frequencies of Eq. (19), we correct for the
change in the bending modulus kb when the DNA has trans-
formed from the double-stranded configuration at equilibrium
to the configuration at the transition state. This is achieved by
approximating the value of kb at the barrier through the prod-
uct of kb at the equilibrium position and lss

p /l
ds
p . The frequency

ω′bd can hence be estimated from the double stranded bending
frequency at equilibrium through

ω′bd = ωbd

√
lss
p /l

ds
p , (25)

leading to values ω′bd/2π of 3.32± 2, 2.76± 1.7, and 2.13
± 1.0 cm�1 for sequences of lengths 7, 8, and 10 bps,
respectively.

The matrix A is singular because of the zero eigenvalue
associated with the zero jth column, corresponding to the hinge
base pair. However, this zero eigenvalue can be factored out
from the determinant of A such that the product of all the
non-zero eigenvalues, corresponding to the product of the fre-
quencies of the out-of-phase mode, can be estimated explicitly
to be ω′N−1

bd , independent of the position of the hinge. We
note that the geometric average of these out-of-phase vibra-
tion frequenciesω′bd/2π (about 50–100 GHz) is lower than the
hydrogen bond vibration frequencies at equilibriumωH /2π (at
about 2.75 THz) by almost two orders of magnitude.

The breakage of the hydrogen bond oscillators followed
by the manifestation of these out-of-phase bending modes
leads to an entropy term

∆S‡oop ≈ (N − 1)kB ln(
ωH

ω′bd

), (26)
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where the out-of-phase branch at the equilibrium position is
approximated by a constantωH asωH � ωbd . This represents
the entropy change due to the softening of the out-of-phase
mode in Eq. (10), as the hydrogen bonds at equilibrium melt
(except for those at the hinge base pair) and yield to the out-
of-phase bending modes.

4. Correction due to curvature effects

Out-of-phase dynamics involve the breathing of the two
strands, dominating the melting process. Therefore, by work-
ing near the barrier where all except the jth base pairs have
melted, the curvature along the reaction coordinate can be
associated with the curvature along a one-dimensional reaction
coordinate which involves the out-of-phase dynamics of this
last base pair. Approximating the frequency of the hydrogen
bond breathing modes to the average vibration frequency of
each hydrogen bond oscillator ωH and making a selection of
the location of the transition state and its negative curvature,
the correction factor can be estimated as

∆S‡rc = kB ln(
h

kBT

ωH |ω
(0)
b |

2πγ
), (27)

where the frequency at the equilibrium position along this reac-
tion coordinate is taken to be ωH and at the barrier will be
assumed to take the most negative frequency of the Morse
potential, ω0

b = −ωH/
√

2. The damping coefficient will be
chosen as γ/2π = 0.5 ps�1 in concordance with experimen-
tal results.44 This rather arbitrary designation of the posi-
tion of the transition state along the reaction coordinate does
not introduce much error, as this curvature effect will be
shown later to contribute to less than 2% of the activation
entropy.

In summary, our theory yields the following formula for
the activation entropy:

∆S‡ = ∆S‡oop + ∆S‡tors + ∆S‡bend + ∆S‡rc

' (N − 1)kB ln(η
ωH

ωbd
) + 1.1NkB ln(N − 1)

+ NkB ln(η) + kB ln(
h

kBT

ω2
H

2
√

2πγ
), (28)

where near-equilibrium all-atom simulations have provided
universal values for the hydrogen bond vibration frequen-
cies ωH/2π ≈ 92± 1 cm�1 and the characteristic bending fre-
quency ωbd/2π ≈ 11.5± 0.5 cm�1. The damping factor is
roughly γ/2π = 0.5 ps�1, leading to a correction term T∆S±rc
of barely 0.5 kBT. For our sequences, the persistence length
ratio between double stranded and single-stranded DNA is
estimated by

η2 =
lds
p

lss
p
= (

mω2
bd l3

lss
p × kBT

)(
N4

500.5
)sin2(

π

2(N + 1)
), (29)

where the average base pair mass m = 650 amu and nucleotide
separation l = 0.34 nm from near-equilibrium simulations in
Table I are used. The values of the persistence length ratios
obtained are lds

p /l
ss
p = 12.7 ± 7, 17.3 ± 10.0, and 33.3 ± 17

for sequences of lengths 7, 8, and 10, respectively. The soft-
ening of the bending modulus increases the entropy change
of both the out-of-phase breathing vibration and the bend-
ing mode. However, the former is further affected by the
change in frequency due to the breakdown of the hydro-
gen bonds to give rise to the bending out-of-phase modes.
The entropy is hence only a function of the base number N.
With the sequence dependent activation enthalpy of Eq. (4),
we can hence estimate the activated melting rate of short
DNAs.

III. COMPARISON TO MEASURED RATE DATA
AND DISCUSSION

Figure 5(a) shows the comparison of experimentally mea-
sured free energies of melting for eight different sequences to
our theoretical estimates (see Appendix C for details on the
extraction of the enthalpies and entropies from measured rates
and the estimate of their error bars). Our theoretical estimates
were calculated by taking the average persistence length ratios.
An analysis of how the choice of different parameters changes
these results is presented in Appendix D. By using the esti-
mated thermodynamic enthalpy of each of these sequences and

FIG. 5. (a) Comparison of activation free energies in kcal/mol from exper-
iments and theory for different DNA sequences at different temperatures.
Equation (29) was used to estimate the ratio between the persistence lengths.
The numbers next to each data point mark the temperature of each measure-
ment in K. The black dashed diagonal marks the ideal collapse of experiments
and theory. Red dashed lines mark the cutoff of 2 kcal/mol from the center line.
(b) Contribution of each entropy term from Eq. (18) to the activation entropy
of the DNA duplex CAAAAAG. From left to right, out-of-phase entropy
(black), torsional entropy (green), bending entropy (blue), and correction due
to curvature effects (red). (1 kBT ≈ 0.5922 kcal/mol at 298.15 K.)
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using our previous estimates for the entropy, we were able to
predict the experimental free energies of activation of the eight
sequences at different temperatures within 10% (2 kcal/mol)
without fitting, which is comparable to the experimental error
of the measurements7,14,42 [see Fig. 5(a)]. The experimental
kinetic rates vary over 4 orders of magnitude, as seen in the
supplementary material.

Figure 5(b) shows the contribution of each entropy term
from Eq. (18) to the activation entropy. We find that the tor-
sional entropy change from Eq. (21), usually neglected in
the PBD model, is just as important as the bending entropy
change from Eq. (19). We also find that, using changes in
stiffness comparable to those suggested by Sicard et al.,46

our theoretical calculations yield free energy barriers of simi-
lar orders to those obtained for denaturation bubbles through
metadynamics calculations.

For the sequences analyzed, our approach introduces the
sequence dependence through the nearest-neighbor enthalpy
terms. For example, CAGGAGCA and CACAGCAC possess
equal percentage of GC base pairs and activation entropies,
but very different activation free energies. Further analysis
should be performed to guarantee the sequence independence
of the entropy; however, each entropy term can be estimated
explicitly from equilibrium simulations.

This approach represents the first kinetic theory for the
activation free energy of DNA melting, which captures the
important elastic torsional, bending, and acoustic vibration
entropies. We are currently extending this theory to longer
molecules with secondary intermediated structures, whose
dynamics can also be captured by a local version of the cur-
rent theory. Other than such topological changes, which will
obviously affect the all-important vibration spectra and the
activation entropy, we expect protein and intercalator interac-
tion will also likewise affect the vibration spectra and signif-
icantly change the melting kinetics and thermodynamics. For
longer DNAs under shear stress, the change in compressional
entropy may become important. However, the compression
modulus kc may be a strong function of the secondary structure
and we shall include nonlinear corrections to our Hamilto-
nian Hcompr , as was done for the hydrogen bond Hamiltonian
Hhydr .

SUPPLEMENTARY MATERIAL

See supplementary material for information about how the
experimental activation energies are obtained from the kinetic
measurements and how their error bars estimated.
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APPENDIX A: RELATION BETWEEN POWER
SPECTRUM AND DISPERSION BRANCHES

From the Wiener-Khintchine theorem,59,60 the power
spectrum from Eq. (6) can be written as

F(ω) =
N∑

j=1

mj |aj(ω)|2, (A1)

where aj(ω) = ∫
+∞
−∞ ṙj(t)eiωtdt. The displacement of the kth

coordinate of the atom j can be decomposed by means of the
normal modes λ through

rkj (t) =
∑
λ

Aλkje
iωλt , (A2)

where ωλ is the eigenfrequency of the mode λ and Aλkj cor-
responds to the coordinates in the base of the eigenvectors
defined by these modes. Considering the derivative of the pre-
vious equation and using the definition of the delta function,
we may write

F(ω) =
∑
λ

3N∑
n=1

|Aλm |
2ω2
λ
δ(ω + ωλ), (A3)

where n runs over all atoms (and coordinates) of the system and
the masses have been incorporated into the amplitudes along
the normal modes. If the equipartition theorem holds, then
all normal modes have the same kinetic energy and |Aλm |ω2

λ

= kBT . Hence, as the density of states is given by Ref. 61
ρ(ω) =

∑
λ δ(ω + ωλ), the power spectrum can be written as

F(ω) = 3NkBTρ(ω).
For phonons in a crystal lattice, the density of states

presents singularities where the group velocity is zero62 (i.e.,
at the maximum of each dispersion branch). Hence, the max-
ima of the dispersion branches are expected to correlate with
the highest peaks of the power spectrum.

APPENDIX B: SIMULATION DETAILS

DNA structures were generated using the NAB module of
Amber 14.63 Each structure was solvated in a rectangular box
with explicit TIP3P water molecules64 (a minimum distance of
10 Å between box border and any atom of the solute), neutral-
ized with sodium ions by means of the Amber 14 leap module,
and modeled using the ff99+parmbsc0 force field for DNA.65

Long range electrostatic interactions were calculated with the
Particle Mesh Ewald (PME) method66 and a real space cutoff
radius of 9 Å.

Simulations were performed using the SANDER module
of Amber 14. For minimization, we ran 500 steps of steepest
descent followed by 500 steps of conjugate gradient minimiza-
tion, with a 500 kcal/mol restraint force on the DNA molecule,
and 1000 steps of steepest descent followed by 1500 steps of
conjugate gradient minimization with no restraints.

During 20 ps, the system was heated up at a constant
volume from 0 K to a temperature of 275 K while the DNA
molecule was weakly restrained with 25 kcal/mol. Langevin
temperature controls, SHAKE constraints on hydrogen atoms,
and a 2 fs time step were applied. Subsequently, positional
restraints were gradually removed during 150 ps at 275 K and

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010738
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-010738
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constant pressure (1 bar). The system was then equilibrated
for 50 ps at NVT and later for 1 ns at NVE.

During the rest of the simulation, temperature was kept
constant using the Langevin thermostat with a damping fac-
tor of 0.5 ps�1. Pressure was maintained at 1 bar using the
Nose-Hoover Langevin piston. A distance cutoff of 11.0 Å was
applied to short-range, non-bonded interactions, and 9.0 Å for
the smothering functions.

In order to obtain more accurate results for the contour
length of the molecules, 100 ns of equilibration was performed
followed by 10 ns of production. The output of the produc-
tion stage was generated every 100 fs. The cpptraj module of
AMBER 14 was used for basic analysis67 (centering and imag-
ing of the trajectories, computations of distances and angles,
etc.). The specden plugin of the VMD Signal Processing Plu-
gin Package was used to calculate the VDOS of the DNA
molecule.68 Convergence was tested by comparing the VDOS
at 5 and 10 ns.

Properties of the DNA molecule were determined after
removing the solvent molecules and center of mass motions
from the trajectory. The contour length was obtained by calcu-
lating the distance between consecutive centers of mass of the
base pairs (excluding the bases to avoid overestimations due
to potentially flipped out ones). VMD was used for visualiza-
tion of different conformations and trajectories.68 Figure 1 was
obtained by using an enhanced melting simulation method that
will be published elsewhere.

APPENDIX C: EXPERIMENTAL ACTIVATION
ENERGIES

All experimental data considered have been previously
published (see Table I for references) and the activation
enthalpies and entropies for the dissociation of the DNA
duplex were derived from the temperature dependence of
the denaturation rates k by using the Eyring-Polanyi equa-
tion k = kBT

h exp(−∆G‡

kBT ), where ∆G‡ = ∆H‡ − T∆S‡. The
logarithmic form of this equation yields

ln(k) = ln(
kBT

h
) +
∆S‡

kB
−
∆H‡

kBT
. (C1)

Given the minimal temperature dependence of ln( kBT
h ), a plot

of ln(k) versus 1/T yields ∆H‡ and ∆S‡ from the slope and
intercept, respectively.14

The experimental methods reported can be classified in
three categories depending on the implemented technique:
stopped flow analysis,42,43 temperature jump analysis,7,13 and
single-channel current analysis on a protein nanopore.14 The
two last techniques provide the denaturation rates explicitly
while the stopped flow technique only provides the hybridiza-
tion rate and estimates the denaturation rate by assuming
detailed balance,

k = konKD, (C2)

where kon is the hybridization rate and KD is the equilib-
rium dissociation constant, which is experimentally derived by
using a van’t Hoff method on the basis of the dependence of the
melting temperature on the concentration of DNA strands.14,42

In supplementary material, we present the Eyring-Polanyi
plots of various reported kinetic data with error bars. When

errors on the activation parameters or rates were not given
explicitly, these errors led to the error bars in Fig. 5(a).

APPENDIX D: ROBUSTNESS OF THE THEORETICAL
PREDICTIONS

Although our theory provides good estimates to the free
energies of denaturation through using the suggested values,
it is pertinent to give an idea of how the choice of these
parameters could change the results. This will be studied
by altering the parameters ωH , ωbd , and η within the sug-
gested domains where these values are physically reasonable
(ωH/2π ∈ [91, 93] cm�1, ωbd/2π ∈ [11.0, 12.0] cm�1, and
η2 ∈ [5, 19], [7.3, 27.3], and [16.3, 50.3] for sequences of
lengths 7, 8, and 10 bps, respectively). These parameters are
only related to the activation entropy, and hence we will focus
on this term.

Defining ∆S‡0 as the activation entropy evaluated with our

suggested set of parameters and ∆S‡1 as the activation entropy
evaluated with a different set, from Eq. (28) we may write

∆S‡1 − ∆S‡0 ≈ (2N − 1)kB ln(
η1

η0
) + (N + 1)kB ln(

ωH1

ωH0

)

− (N − 1)kB ln(
ωbd1

ωbd0

), (D1)

where the numeric subindexes identify the set of parame-
ters. To simplify the discussion, let us define a function ∆S‡diff

= 1
N (∆S‡1 − ∆S‡0), which can be approximated by

∆S‡diff ≈ kB ln(
η2

1

η2
0

) + kB ln(
ωH1

ωH0

) − kB ln(
ωbd1

ωbd0

). (D2)

Multiplying these terms by the temperature T, we can see that
the second and third terms add up to less than 0.055 kBT (lead-
ing to net differences of less than 0.55 kBT for sequences of
10 bps) and the biggest differences arise from the quotient of
the persistence lengths.

Defining the parameter µ = η2
1/η

2
0, this parameter varies

within [0.4, 1.5] for N = 7, [0.4, 2.2] for N = 8, and [0.5, 1.5]
for N = 10, what leads to changes in activation entropies of
up to 0.9 kBT per base pair (net differences of up to 9 kBT for
sequences of 10 bps). This number is quite large mostly due to
the error bars of the persistence length of the single stranded
molecule (1± 0.5 nm). If we only allow up to a 20% deviation
on this persistence length,55 then the difference in entropy is
close to 0.45 kBT per base pair, leading to net deviations from
our suggested free energies close to 3.15 kBT, 3.6 kBT, and
4.5 kBT for sequences of lengths 7, 8, and 10 bps, respectively.
These variations are all comparable to the 2 kcal/mol error
we estimated for the experimental error and for our theory in
Fig. 5(a) (1 kBT ≈ 0.5922 kcal/mol at 298.15 K).
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