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We report the first nanofluidic inductor (L) to complement the known nanofluidic capacitors (C),
resistors (R), and diodes for ion currents. Under negative bias, the nanopore behaves like a parallel
RC circuit at low frequencies; however, under positive bias, the asymptotic dynamics is that of a serial
RL circuit. This new ionic circuit element can lead to nanofluidic RLC or diode-inductor oscillator
circuits and new intrapore biosensing/rapid sequencing strategies. A universal theory, with explicit
estimates for the capacitance and inductance at opposite biases, is derived to collapse the rectified
dynamics of all conic nanopores to facilitate design of this new nanofluidic circuit. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4937360]

There are many anticipated applications for nanofluidic
circuits that can mimic semiconductor (and neuron) circuitry
to produce oscillations, hysteresis, and excitability.1 Field
and current focusing into nanochannels lead to natural ionic
resistors.2 Double-layer ionic capacitors have led to super-
capacitor batteries.3 Ionic rectifiers have been constructed
from nanopores with asymmetric charge distributions or
geometry.4 However, an ionic inductor has never been
reported, thus preventing the creation of nanofluidic circuits
like the RLC oscillator and the diode-inductor Chua circuits.5

We report such an ionic inductor here and offer a universal
theory for its inductance based on non-equilibrium nanofluidic
ion transport dynamics within a conic nanopore.

Because the inductor dynamics is caused by intrapore ion
transport, this ionic element also suggests new nanopore
biosensing and rapid sequencing applications. Electrical
Impedance Spectroscopy (EIS),6 probing the Warburg
spectrum in particular, with universal Warburg phase lag
due to external transport limitation of charged molecules,
is a standard biosensing technique.7 Ion current dynamics
due to intrapore charge molecule transport may extend
the technique to the detection of a single molecule in a
nanochannel/nanopore8 and identification of its sequence.9

We construct such a nanofluidic inductor from the
DC conic nanopore diode. The DC rectification is due to
internal ion depletion/enrichment because of discontinuous
ionic fluxes that arise from conductivity gradients imposed
by the converging pore.10 This non-uniform ion concentration
profile can also be generated by the AC voltage. Coupled
with DC field, it can produce an oscillating ion current that
either leads or lags the voltage oscillation, corresponding
to capacitive or inductive dynamics. A universal theory is
developed for all conic pores by an asymptotic expansion.

a)Author to whom correspondence should be addressed. Electronic mail:
hchang@nd.edu

We first experimentally demonstrate the AC impedance
features due to intrapore ion enrichment and depletion in
conic nanopores. The experiments are carried out by Gamry
Reference 600 in a negatively charged silica conic nanopipette
pulled by P-2000 Sutter Instrument.11 Symmetric electrolyte
KCl and Ag/AgCl electrodes are used. A typical Nyquist
plot for the complex impedance function Z(ω) is shown in
Fig. 1. For forward (positive) bias (electric field is applied
from the tip to base), with a lower DC impedance due to
intrapore enrichment, the impedance spectrum spirals towards
the real axis like a RCL circuit at low frequencies, with
a significant portion exhibiting a phase lag. Although the
conic nanopore spectrum will be shown to be universal for all
frequencies, the higher-frequency portion will be camouflaged
by the usual double-layer RC dynamics and only the low-
frequency portion close to the real-line will be collapsed by
the theory. For negative bias, with a larger DC impedance
due to intrapore depletion, the curvature of the low-frequency
impedance spectrum changes sign and converges to the real
line in a semi-circle like a parallel RC circuit. The positive
lead is reminiscent of the classical Randall RC circuit without
the distinct inductance feature with phase lag for positive bias.
Since the AC impedance measures the change in resistance
due to the AC forcing, the zero-frequency asymptotes of both
spectra do not approach the DC impedance value with the
same bias, as shown in Fig. 1, but to a universal asymptote
value for both biases, as will be shown below.

We begin by deriving the dynamic conductance for the
conic nanopore under an AC field with a DC bias. For slender
cones, the radial and angular components are separable for
both the concentration and electric fields. We shall examine
the small Xtip region in the phase diagram (Fig. 5) of Yan
et al.10 where intra-pore concentration polarization occurs
and is responsible for current rectification. In this region, the
tip radius is significantly larger than the Debye length and
the charge spill-over phenomenon described by Sherwood

0021-9606/2015/143(22)/224705/4/$30.00 143, 224705-1 © 2015 AIP Publishing LLC
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FIG. 1. A Nyquist plot showing voltage dependent impedance for a conic
nanopipette at different DC bias. A nanopipette with a DC rectification factor
of 1.9 for 1M KCl solution at +1 V/−1 V is used. The forward bias is from
the tip to base. At low frequency, the forward bias has an inductive response,
while the backward has a capacitive response. Both sets of impedance spectra
do not approach the DC value shown as open symbols in the figure, giving
rise to a finite AC impedance contribution at zero frequency.

et al.12 does not occur. Hence, an electroneutral condition can
be imposed. After cross-sectional averaging in the angular

coordinate, using operator10,13 ⟨⟩ = 1
1−cos θm

θm
0

dθ sin θ (θm is

the half-cone angle), the Poisson equation yields to leading
order the local (longitudinal) electroneutrality condition to
leading order,

zF(⟨C+⟩ − ⟨C−⟩) = 2σs

Rp
, (1)

provided that the Debye length is much smaller than pore
length, where σs is the amount of negative surface charge, Rp

is local radius, C± are the concentration of cation and anion, z
is the valency, and F is Faraday constant. This local neutrality
produces local mobile ion concentrations that are functions of
the local pore radius Rp and a corresponding potential related
to this concentration. A conic nanopore without surface charge
would have an intrapore ion concentration equal to the bulk,
a focused field, and a flux due to pure electro-migration—it
is at equilibrium with the bulk. In contrast, a charged conic
pore with a varying radius would have an excess longitudinal
concentration gradient to produce additional electro-migration
and diffusion fluxes. Any point within the charged conic pore
is not at equilibrium with the bulk but is instead constrained
by the electro-neutrality condition (Eq. (1)).

We demonstrate this mechanism by cross-sectional
averaging the Nernst-Planck equations for the total ion and
current flux in the longitudinal r direction. It produces the
following equations for the ion concentration and electrical
field (see Ref. 10 for details):

∂⟨C⟩
∂t
=

1
r2

∂

∂r
r2(∂⟨C⟩

∂r
+
ε

r
∂φ

∂r
), (2a)

0 =
1
r2

∂

∂r
r2(− ε

r2 + ⟨C⟩∂φ
∂r

), (2b)

where ⟨C⟩ = ⟨C+⟩ + ⟨C−⟩, and the averaged charged density
⟨C+⟩ − ⟨C−⟩ is replaced by the electroneutrality condition
(Eq. (1)). The total concentration is allowed to vary in
time but there is no charge accumulation. The characteristic

scaling properties are the pore length L = (Rbase − Rtip)/θm,
the bulk concentration C0, the diffusion time L2/D, the
current 2πFz(1 − cos θm)DC0L, and the thermal potential
RT/zF. With this scaling, the tip and base are located at
r1 =

Rtip
Rbase−Rtip

and r2 =
Rbase

Rbase−Rtip
, such that r2 = r1 + 1. The

parameter ε = σs sin θm
zFC0L(1−cos θm) represents the dimensionless

surface charge scaled by the bulk concentration. The two
locations that appear in Eqs. (2a) and (2b) represent the
excess respective electromigration and diffusive fluxes due
to the mobile ion concentration variation stipulated by the
electroneutrality condition (Eq. (1)).

The tip and base are in equilibrium with the bulk, hence
the applied voltage (both the DC bias and the AC forcing at
the tip) is added to the Donnan equilibrium potential based
on the tip and base ionic strengths.10 The 4 relevant boundary
conditions are hence the dimensionless potential and total
ion concentration at each boundary, indicated by subscripts
1 and 2: φ1 = V0 + δ sin(w0t) − ln(X1/2 +

(X1/2)2 + 1), φ2

= − ln(X2/2 +
(X2/2)2 + 1), and ⟨C⟩1,2 =


X2

1,2 + 4, where
δ and w0 are the dimensionless AC amplitude and frequency
(ω0 = ωL2/D, ω is dimensional frequency) and X = 2σS

zFC0Rp

(for small cone angle, X = ε
r

) is the effective surface
charge concentration at either Rp = Rtip (r = r1) or Rp = Rbase

(r = r2). There are hence four system parameters for the
problem: ε, δ, ω0, plus the nanopore geometry parameter r1.
However, with proper expansion in the first two parameters, we
will demonstrate a universal scaling that is only a function of
the geometry parameter r1 and the frequency ω0. Another
expansion offers a universal expression with a universal
number for the zero-frequency AC impedance, seen in Fig. 1.

For a weakly selective nanopore (X ∼ ε ≪ 1), two small
parameters are present, ion selectivity ε and perturbation
voltage, δ (assumed small compared to the applied DC bias).
We extract their scaling explicitly with a simple ansatz
expansion for weak charge and small AC forcing, ⟨C⟩
= ⟨C⟩0 + ε⟨C⟩ε + ε2⟨C⟩ε2 + δ⟨C⟩δ + εδ⟨C⟩εδ · · · . The DC
O(1) order solution (without surface charge) and the O(ε) or-
der solution (with surface charge) are the same as our
previous theory:10 ⟨C⟩0 = 2, φ0 =

V0r1(r2−r )
r

with I0 = 2r1r2V0

and ⟨C⟩ε = V0(r2−r )(r−r1)
2r2 with Iε =

V 2
0

12 . The two currents I
represent the symmetric (unrectified) value due to conic
focusing without surface charge and the rectifying correction
due to surface charge. The O(ε) current correction εIε
= εV 2

0 /12 describes enrichment/depletion for forward/
backward bias, the key intrapore rectification mechanism,
and offers a universal scaling that collapses simulated and
experimental DC data.10

The O(ε2) is not a dynamic order and it does not contribute
to the AC impedance. The same is true for O(ε3), O(ε4), and
so on. They are not solved here.

The first non-trivial dynamic order O(δ) is iω0⟨C̃⟩δ
= 1

r2
d
dr

r2( d⟨C̃⟩δ
dr

) and 0 = 1
r2

d
dr

r2(⟨C⟩0
dφ̃δ
dr
+ ⟨C̃⟩δ dφ0

dr
) after

transformation ⟨C⟩δ = Im(⟨C̃⟩δeiω0t) and φδ = Im(φ̃δeiω0t),
where ⟨C̃⟩δ and φ̃δ are complex functions dependent only upon
r1 and w0. This order, however, produces no concentration
correction and simply a quasi-steady current correction
⟨C̃⟩δ = 0 , φ̃δ =

r1(r2−r )
r

, and Ĩδ = 2r1r2.
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The distinct phase lags occur at the cross-order O(εδ),
after the same transformation as before,

iω0⟨C̃⟩εδ = 1
r2

d
dr

r2(d⟨C̃⟩εδ
dr

+
1
r

dφ̃δ
dr

), (3a)

0 =
1
r2

d
dr

r2(⟨C̃⟩εδ dφ0

dr
+ ⟨C⟩0

dφ̃εδ
dr

+⟨C̃⟩δ dφε
dr
+ ⟨C⟩ε dφ̃δ

dr
), (3b)

with trivial boundary conditions. From Eq. (3b), the current Iεδ

satisfies:
r2
r1

− Ĩεδ
r2 dr =

r2
r1

(⟨C̃⟩εδ dφ0
dr
+ ⟨C⟩ε dφ̃δ

dr
)dr after getting

rid of trivial terms. The first term is from the perturbation
concentration due to AC voltage (Eq. (3b)) under DC bias,
while the second is from the concentration due to DC bias
under AC voltage.

Eq. (3a), combined with the O(δ) electric field, yields
iω0⟨C̃⟩εδ = 1

r2
d
dr

r2( d⟨C̃⟩εδ
dr
− r1r2

r3 ), which does not depend on
the DC bias at all. After transformation14 H = r1/2⟨C̃⟩εδ
and x = (−iω0)1/2r , it becomes x2 d2H

dx2 + x dH
dx
+ (x2 − 1/4)H

= − (−iω0)3/4r1r2
x3/2 . This is a Bessel equation of 1/2 order.

A particular solution can be achieved through integra-
tion14 Hp = −(−iω0)3/4r1r2J1/2(x)

 1
J2

1/2(x)x
( x−5/2J1/2(x)

dx)dx. Hence, the coefficient of the solution

H = AJ1/2(x) + BY1/2(x) + Hp(x) (4)

can be evaluated by the two homogeneous concentration
boundary conditions at this order, H(x1) = H(x2) = 0,

A =
Y1/2(x2)Hp(x1) − Hp(x2)Y1/2(x1)

Y1/2(x1)J1/2(x2) − Y1/2(x2)J1/2(x1) ,

B =
Hp(x2)J1/2(x1) − J1/2(x2)Hp(x1)

Y1/2(x1)J1/2(x2) − Y1/2(x2)J1/2(x1) .

The complex functions Hp and ⟨C̃⟩εδ are the only
functions of the geometric parameter r1 and the frequency
ω0. Fig. 2 shows the AC perturbed concentration profile
⟨C⟩εδ = Im(⟨C̃⟩εδeiω0t) along the nanopore for various phase
angles ω0t. In the numerical simulation, the DC steady state

FIG. 2. Comparison of the numerical solution (line) and analytical solution
(symbol) AC-perturbed concentration profiles along the conic nanopore for
various phases (black: π/8, red: 3π/8, green: 5π/8, and blue: 7π/8). The
nanopore parameters are tip radius 50 nm, base radius 300 nm, length 12 µm,
surface charge 0.05 C/m2, and concentration 1M KCl. The dimensionless
DC bias are 40 (∼1 V up triangle) and −40 (∼−1 V down triangle). The AC
frequency and dimensionless amplitude are 25 Hz and 1, respectively.

solution is used as an initial condition for the simulation
(1D average full Poisson-Nernst-Planck equations). All the
curves are taken at a sufficiently long time so that the initial
condition no longer has an effect on the result. The AC
perturbed concentration profile is achieved by subtracting the
DC profile from the simulated AC profile and then dividing by
ϵδ. It is shown in Fig. 2 that the simulation agrees well with
the analytical solution evaluated from Eq. (4). The perturbed
concentration due to the AC voltage is independent of DC
bias and not in phase with the AC signal—the phase at every
location is actually different at the same instant in time.

Although the AC perturbed concentration does not depend
on the polarization of the DC bias, its contribution to
the current, through coupling with DC electrical field, is
opposite for different polarities. Hence, there is a π phase
angle difference for its current contribution. That is why one
direction has a positive phase angle, while the other has a
negative phase angle.

The ansatz allows us to isolate the complex conduc-
tance, i.e., the inverse AC impedance, 1/Z(ω0), of
the conic nanopore G̃ = (δ Ĩδeiω0t + εδ Ĩεδeiω0t)/δeiω0t = Ĩδ

+ ε Ĩεδ = 2r1r2 + εV0/12 + εr2
1r2

2V0

r2
r1

( ⟨C̃⟩εδ
r2 )dr . Here, the last

term is due to the AC perturbed concentration, such that

G̃ − 2r1r2

εV0
− 1/12 = f̃ = r2

1r2
2

r2
r1

( ⟨C̃⟩εδ
r2 )dr (5)

where the universal function f̃ is only a function of r1 (with
r2 = r1 + 1) and the frequency ω0. The AC conductance is
related to this function by εV0 f̃ . In Fig. 3, the complex
function f̃ for a given r1 is shown as a function of frequency
ω0. Two limits of this universal function can be derived
explicitly. At high frequency, the concentration relaxation
cannot keep up with the AC bias, hence ⟨C̃⟩εδ = 0. Thus,
the conductance is the same as the DC conductance. At low
frequency limit, the concentration relaxation is instantaneous
and hence in phase, ⟨C̃⟩εδ = (r2−r )(r−r1)

2r2 (similar to O(ε) order,
since it is completely in phase) and G̃ = Gdiff = 2r1r2 + εV0/6.

FIG. 3. Collapse of 1D numerical simulation data with Eq. (5) for fixed
r1= 0.2 (and r2= 1.2), corresponding to a tip radius of 50 nm and a base
radius of 300 nm. Frequency increases from right to left with the zero
frequency limit at f̃ = 1/12. The dimensionless DC bias is 40/−40 (∼1 V/
−1 V) as indicated and the dimensionless AC amplitude δ is 1. The length,
bulk concentration, and surface charge are 12 µm, 1M, 0.05 C/m2 unless
specified otherwise.
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This conductance, in fact, is the differential conductance at
DC voltage V0.

This universal zero-frequency limit corresponds to the
universal number f̃ = 1/12 in Fig. 3 and corresponds to the
universal non-zero AC contribution to the zero-frequency
impedance seen in Fig. 1.

For frequency approaching to zero frequency, Fig. 3
shows the real part of f̃ remains constant but its imaginary
part grows linearly with increasing frequency. In fact,
another expansion of ⟨C̃⟩εδ (Eq. (3a)), with ω0 as a small
parameter, generates ⟨C̃⟩εδ = (r2−r )(r−r1)

2r2 + iω0((−r2/6 + (r1

+ r2)r/2 − r1r2lnr)/2 + A′ + B′/r) +O(ω2
0), where A′ and

B′ are the constants determined by boundary conditions
⟨C̃⟩εδ���r1,r2

= 0. Combined with Eq. (5), it gives rise to G̃

= Gdiff − iω0εV0h, where h = r2
1r2

2 − (r1 + r2)r2
1r2

2ln(r2/r1)/2
+ r1r2/12 is only a function of r1 (r2 = r1 + 1, r1 > 0)
and always has a positive value. For positive bias and
small ω0, the complex impedance 1/G̃ = 1/(Gdiff − iω0εV0h)
∼ 1/Gdiff + iω0Lp. This is a serial RL circuit with differential
resistance 1/Gdiff at V0 as the resistance and an inductance of
Lp = εV0h/G2

diff . For negative bias, the complex conductance
G̃ = Gdiff + iω0Cp, it is a RC parallel circuit with differential
resistance at V0 as the resistance and a capacitor Cp = ε|V0|h.

This then explains the phase lags in the impedance spectra
of Fig. 1. A change from positive to negative phase angles
with decreasing modulus, as frequency decreases, leads to the
spiral like structure for positive bias. Increase in phase angle
produces a curvature change for negative bias.

The above theory for nanopore conductance neglects
external resistance and capacitance. To quantitatively capture
the full impedance spectra of Fig. 1, we augment it with
a bulk resistor R1, accounting for both field focusing and
bulk resistance, and a Debye double-layer capacitor C1 in
the Randall-like circuit15 of Fig. 4. Both R1 and C1 are fitted
by the high frequency part of the impedance curve and kept
as constants for different bias. From the fitting, R1 = 76 kΩ,
which is very close to the access resistance due to field

FIG. 4. Experimental data for conic nanopore at different DC bias voltage
(0 V black square, 0.5 V red circle, 1 V green up triangle, 1.5 V blue down
triangle, 2 V cyan diamond, −0.5 V magenta left triangle, and −1 V dark
yellow right triangle) in 1M KCl solution. The bottom inset is the analytical
solution (line, same color as symbol) with the following parameters: tip
radius 53 nm, half-cone angle 2.5◦, cutoff length 44.72 µm, surface charge
0.065 C/m2, R1= 76 kΩ, and C1= 9.08 pF. The right inset is the equivalent
circuit of conic nanopore.

focusing into the nanopore Raccess =
RT

8z2F2DC0Rtip
= 62 kΩ.10,16

The bottom inset of Fig. 4 shows the analytical spectra for
the given parameters. The actual nanopore length is about
around 1 cm. Here, we use a cutoff length 44.72 µm
since the rest contributes less than 5% to the resistance
for better numerical convergence of evaluation of Eq. (5).
The experiment spectra are in quantitative agreement with the
simple analytical expression offered by the Randall circuit
with the low frequency complex nanopore conductance given
by Eq. (5) which captures the universal scaling for the
intrapore enrichment and depletion dynamics responsible
for the asymmetric inductance and capacitance behavior at
opposite biases, as well as the universal low-frequency scaling
that includes the zero-frequency AC conductance correction
εV0/12.

The complex impedance model for the conic nanopore,
Z = R1 + 1/[iωC1 +

2πF2z2(1−cosθm)DC0L
RT (2r1r2 + εV0( 1

12 + f̃ ))],
with the low frequency capacitor and inductor asymptote
(Lp = εV0h/G2

diff for positive bias and Cp = ε|V0|h for negative
bias), should allow the deconvolution of EIS signals to
isolate intrapore dynamics relevant to biosensing7,8 and rapid
sequencing.9
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