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Conventional complementary metal oxide semiconductor
(CMOS) transistors working in the Boolean paradigm and
guided by Moore’s law constitute the backbone of our current
computational framework. However, certain classes of computa-
tional problems are fundamentally difficult to solve in the
Boolean framework. Constrained optimization problems like ver-
tex coloring of graphs, which is the task of assigning colors to the
vertices of the graph such that no two vertices sharing the same

edge have the same color, belong to the
class of combinatorial optimization prob-
lems.[1] Such compute tasks find extensive
applications in many real-world problems
such as fault diagnosis, scheduling, and
resource allocation. However, these prob-
lems fundamentally exhibit NP-hard (non-
deterministic polynomial time) complexity.
This implies that even the best algorithms
end up searching the vast solution space in
a greedy fashion for certain problem
instances. Consequently, this manifests
itself as an exponential increase in solu-
tion-time and computational resource with
increasing size of the problem, when
solved in the conventional Boolean com-
puting framework. In contrast to the inher-
ently sequential approach of digital CMOS
which takes incremental discrete steps fol-
lowing the algorithm as the computation
proceeds, the computational properties of
the coupled oscillators arise from their
rich spatiotemporal dynamics that enables
the system to search in a highly parallel
fashion, the high-dimensional configura-
tion space that characterizes combinatorial

optimization problems, and the driven by the dynamics synchro-
nization drives the continuous time trajectory to settle at or close
to the global minima.

Biological systems have been inspiring many approaches that
aim to build new computing modules using synthetic biology.[2,3]

Most of the research so far in this area aims to create data storage
or basic logic units that are built by engineering the genetic ele-
ments of single cells, including bacteria and mammalian cells.[4]
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Current rate of data generation and the need for real-time data analytics can
benefit from new computational approaches where computation proceeds in a
massively parallel way while being scalable and energy efficient. Biological
systems arising from interaction of living cells can provide such pathways for
sustainable computing. Current designs for biocomputing leveraging the infor-
mation processing units of the cells, such as DNA, gene, or protein circuitries, are
inherently slow (hours to days speed) and, therefore, are primarily being
considered for archival storage of information. On the contrary, electrically active
cells that can synchronize in milliseconds and can be connected as networks to
perform massively parallel tasks can transform biocomputing and lead to novel
ways of high throughput information processing. Herein, coupled oscillator
networks made of living cardiac muscle cells, or bio-oscillators, is explored as
collective computing components for solving computationally hard problems.
An empirically validated circuit compatible macromodel is developed for the
bio-oscillators and the fibroblast cells acting as coupling elements, to faithfully
reproduce the synchronization dynamics of the network and it is shown that such
bio-oscillator network can be scaled up to hundreds of nodes and be used to solve
computationally hard problems faster than traditional heuristics-based Boolean
algorithms.
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For example, Fan et al. manipulated the nanostructure of single
cells to achieve DNA/RNA logic operations.[5] Willner et al. con-
structed DNA circuits to perform AND, NAND, NOR, and XOR
gates for biocomputing, which theoretically can expand to full
arithmetic logic units to perform digital logic operations.[6]

Fussenegger et al. constructed AND, OR, NOR gates, program-
mable full adder, and analog-to-digital converters using 3D cell
culture.[7] Can et al. used micropatterned heart cells to create a
diode analog.[8] Although through these studies biocomputing
principles/systems have been established for studying the basic
logic operations, the ability to solve hard problems using biocom-
puting is conspicuously missing. To address this, here we pres-
ent a novel tissue-level biological computing system using living
heart cells as oscillatory units for solving computationally hard
problems.

Our research is inspired by the natural ability of physical
systems including biological systems, to minimize their own
energy—a process that finds a natural analog to problems such
as optimization and learning.[9] While such behavior has been
observed in dynamical systems such as coupled oscillators and
Hopfield Networks, this collective paradigm finds many natural
analogs in biological systems such as decision-making mecha-
nisms of neural networks,[10] the swarm intelligence of bacterial
colonies,[11] synthetic genetic oscillators in single cells,[12] deci-
sion-making unicellular amoeboid organism for demanding
problems,[13] and the rhythmic beating of the cardiac muscle
(CM) cells,[14] with the added advantage of ultralow energy
requirements which are difficult to achieve in conventional
solid-state devices and circuits. Therefore, in this work, we aimed
to harness the synchronized beating of living heart cells as a
natural ultralow energy (<nJ/bio-oscillator) biological hardware
platform to implement continuous time dynamical system for
solving computationally hard problems. The coupled relaxation
oscillators exhibit a unique ordering of oscillator phases such that
adjacent nodes (oscillators) belong to an independent set. In
other words, the phase ordering (produced by the oscillators)
is such that independent sets of the graph appear in a cyclic
order. As explained in our prior work that explored such algo-
rithms using vanadium dioxide (VO2) oscillators,[1,15] these
dynamics arise from the equivalence between the eigenvalues
of the adjacency matrix of the graph and the eigenvalues of
the matrix describing the dynamics of the oscillators in state
space.[16] Consequently, this phase ordering can be partitioned
into various independent sets and assigning a color to each
set approximates the near-/optimal solution to the minimum ver-
tex coloring problem.[17] In this study, we explored the potential
of heart muscle cells and their synchronization dynamics to map
a computational problem to a biological system using living heart
cells as the oscillatory units. The coupled network of the oscillat-
ing cardiac cells can be leveraged as a biological computational
fabric wherein the intrinsic energy minimization tendencies of
the system can be exploited for computing problems such as
graph analytics that require a highly parallel computing hard-
ware. In the biological coupled oscillator fabric, the oscillating
cardiac cells can be mapped to the graph nodes, the ionic chan-
nels to the coupling among the oscillators, and the distinct
relative phases among the beating of the cells would represent
the coloring solution to the graph.

CM cells are electrically active components that can initiate
and relay electrical signals without loss. More interestingly, they
spontaneously beat (i.e., oscillate) at a stable pace, and when cou-
pled with each other, they synchronize to a locked, steady fre-
quency. On the contrary, cardiac fibroblast (CF) cells in the
heart are support cells that fill in the space between the CMs
and provide electrical pathways for ionic diffusion in between
adjacent cells through the gap junctions that they make with
the muscle cells. The CF cells are not oscillatory (i.e., not beat-
ing), but they passively couple the beating CM cells.[8] In this
study, we designed two kinds of computational elements, oscil-
lators and coupling elements, to implement a coupled oscillator
network. The beating CM cells function as oscillators, while the
CF bridges in between function as coupling elements (Figure 1).
The CF bridges between the CM clusters enable electrical con-
duction via ion exchange and provide a resistor–capacitor
(RC)-type coupling between the oscillatory elements. The dis-
tance between the CM clusters or the length of the CF bridges
modulates the strength of coupling between the clusters
(Figure 2).

To create the coupled bio-oscillators, as a model cell source, we
used neonatal rat ventricular cardiac cells that were isolated from
2-day-old Sprague-Dawley rat hearts following a previously estab-
lished protocol[18] in compliance with the Institutional Animal
Care and Use Committee (IACUC) guidelines and under an
approved protocol from the University of Notre Dame. The iso-
lated cell mixture of rat CMs and rat CFs was preplated for 2 h in
culture conditions to enrich the CMs in the cell mixture. At the
end of 2 h preplating, the ratio of CM to CF was about 7:3. The
CM-enriched cardiac cell mixture was collected from the culture
flasks, and suspended in the culture medium of Dulbecco’s
Modified Eagle Medium (DMEM) with 10% fetal bovine serum
(FBS) and 1% penicillin, and used as the cell source throughout
the study.

To study the continuous time synchronization dynamics, we
recorded the changes in the membrane potential of CMs, first as
individual clusters and then as connected clusters through CF
bridges, in real time. To create a well-defined network of con-
nected cell clusters and monitor their spatial and temporally
resolved dynamics of oscillation, we start by patterning the
CMs and CFs on glass substrates with an embedded microelec-
trode array (MEA). To control the cell localization, we used poly-
dimethylsiloxane (PDMS) blockers with varying width (150–
400 μm) and fixed height (120 μm) to partially cover a cell adhe-
sive protein micropattern (Figure 1). The PDMS blockers were
fabricated with SU-8 3050 photoresist on silicon prime wafers
using standard photolithography. The blockers were manually
placed on the MEA substrate to block the parts of the substrate
where we want to avoid the CM presence. Then, 10% fibronectin
diluted in phosphate-buffered saline (PBS) was used to treat the
unblocked parts of the MEA substrate in a 37 �C incubator for
30min to enable CM attachment on the MEA substrate as sepa-
rate clusters. The culture medium was refreshed after majority of
the CMs, and CFs (7:3 mixture) were attached to the MEA sub-
strate. The CMs within the CM–CF clusters start to beat after
1.5–2 days of culture. Then, the PDMS blocker was carefully
removed by a sterile tweezer, without interfering with the beating
cell clusters. Once the blocker is removed in between the cell
clusters, CFs in the CM–CF mixture will proliferate and migrate

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 2000253 2000253 (2 of 8) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


to fill in the gap, therefore bridging the beating cell clusters. The
cell membrane potential was continuously measured by MEA-
2100 system (Multichannel Systems) with a sampling rate of
1 kHz up to 72 h. This way, we were able to record the membrane
potential changes in the beating CMs before and after their
coupling through an RC element, namely, the CFs as the bridge
cells, and analyzed this membrane potential data for frequency
and phase lag information for two (Figure 2), three and four
clusters (Figure 3) of bio-oscillators.

To study the impact of the coupling strength (i.e., length of the
CF bridge) on the synchronization dynamics of beating clusters,
we first analyze the case of pairwise coupled clusters (Figure 2).
We consider four different scenarios defined by different fibro-
blast insert lengths: 150, 200, 300, and 400 μm. The first column
of Figure 2a shows the topologies of cell patterns used for each
case. The clusters are shown using colors red and blue, and the
coupling is shown in yellow. To monitor the synchronization of
the clusters we are interested in the action potential (AP) which is
the potential difference across the membrane of the cell; how-
ever, the techniques that would allow us to measure it directly,
such as patch clamp technique, would disturb the cells and
adversely affect the synchronization dynamics.[19] For that rea-
son, wemonitored the cell activity, by measuring the extracellular
electric potential known as field potential (FP) using a commer-
cial MEA that enables noninvasive and long-termmeasurements.
From the measured FP, we can extract the period and phase of
the AP[20] which is the only read out that is needed for using this
system for computing. The second column of Figure 2a shows
the experimental FP for each one of these topologies. To extract
the phase and period of oscillation for the bio-oscillators, we used
two methods: Fourier transform and peak detection. The spec-
trogram for each electrode allows us to identify the regions in
which the cells clusters are beating and synchronized, thereby
enabling us to select the electrodes that will capture the represen-
tative cluster dynamics. The third column of Figure 2a shows an
example of synchronization of the two clusters in frequency
domain as obtained from fast Fourier transform (FFT). The
fourth column of Figure 2a shows the evolution of the frequency
of both clusters, in which the synchronized regions are shown in
green. The clusters can synchronize at different frequencies in a
range of 0.3–4.5 Hz. Finally, using peak detection over the
normalized waveform in the selected electrodes, we extract the
phase difference between the clusters for different frequencies
(cf. pseudocode in supporting information).

We plot the synchronization frequencies for each fibroblast
width in Figure 2b. Although there is a variation in the extracted
phase–frequency points, we can conclude in a statistically signif-
icant fashion that: 1) the phase between the clusters is modulated
by the fibroblast length; and 2) the phase between the clusters is
also modulated by the frequency. We fit the phase–frequency
relation to an exponential equation as given as follows

Ph¼ αeβf (1)

where Ph is the phase, f is the frequency, and α and β are fitting
parameters. The fitting parameters for each fibroblast length are
shown in Table 1.

Figure 1. Illustration of the programmable biocomputing logic using pre-
patterned rCM and rCF.
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Figure 2. Computational Core: a) synchronization dynamics of two clusters of cells (C1 (red) and C2 (blue)) separated by fibroblast (yellow) of different
lengths. The different columns show: i) experimental setup of the two clusters separated by fibroblast, ii) example of temporal waveforms for each one of
the clusters, iii) Fourier transform of the waveforms showed in (ii), iv) evolution of frequency for each one of the clusters during the experiment; the
cluster are considered synchronized when both frequencies are equal; examples of synchronized regions are shown in green. b) Phase dependence on
frequency and fibroblast length for the configurations presented in (a). c) Extraction of fibroblast RC coupling parameters that will be used for the
simulations. d) The simulation of phase dependence on frequencies with fibroblast length of 300 μm for the two-cluster pattern. e) The equivalent circuit
of a two-cluster pattern.
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We measure the impedance of the proliferated CF to model
the electrical nature of coupling between the two oscillator clus-
ters. As shown in Figure 2c, the Nyquist plot reveals that the CF
presents itself as an RC filter between the two beating oscillatory
clusters. The conductance per unit length and the ability to form
gap junctions between the CF and CF, or between the CM and
CF, determine the maximum limit of the CF insert length

between two clusters.[21] Insert sizes longer than 400 μm in
length resulted in unsynchronized clusters (data not shown).

To simulate the oscillations in the AP of the cardiac cell, we
implement the equivalent circuit model of the cardiac cell pro-
posed by Maeda et al.[22] in SPICE. The circuit (Figure 2d) rep-
licates using electronic components the three different currents
arising from the sodium, potassium, and calcium currents across
the membrane. Tuning resistor R1 and C1 (in Figure 2e) helps us
modulate the oscillation frequency of the cell 0.3–3Hz.
Furthermore, the oscillators coupled using a fibroblast layer is
modeled a parallel combination of a resistor and capacitor.
The impedance of this combination is obtained using impedance
spectroscopy (described in detail in the Supporting Information);
the Cole–Cole plots in Figure 2c reveal RCF¼ 200 kΩ and
CCF¼ 120 nF. Using the aforementioned simulation framework,
we generate the phase–frequency characteristics for a pair of cou-
pled oscillators coupled with 300 μm fibroblasts. It can be

Figure 3. Three oscillators synchronization: a) synchronization dynamics of three clusters of cells (C1 (red), C2 (blue), and C3 (green)) separated by
fibroblast (yellow). The different columns show: i) experimental setup of the three clusters separated by fibroblasts, ii) example of temporal waveforms, iii)
Fourier transform of the waveforms showed in (ii), iv) evolution of frequency for each one of the clusters during the experiment. b) Evolution of phase over
time. c) Polar plot of the phase differences shown in (b). d) The simulation results of a three-cluster oscillator and coloring solutions. e) Experimental
setup of the four clusters separated by cardiac fibroblasts. f ) Evolution of frequency for each cluster during the experiment; color coded with red, green,
blue, and purple. g) Polar plot of the phase differences of the four-cluster network.

Table 1. Extracted parameters for data fitting Figure 2b.

Fibroblast length [μm] α β

150 1 1

200 3 0.9

300 18 0.7

400 34 0.6
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observed that simulations in Figure 2e exhibit a good qualitative
match to the experimental trends observed in Figure 2b.

Spontaneous and continuous AP generation (i.e., beating) of
living cardiac cells makes them ideal candidates as biocomputa-
tional analog of oscillators. These bio-oscillators communicate
through ion channels and synchronize to a steady frequency
(i.e., couple). This communication is possible through gap junc-
tions, intracellular pores, which allow ion diffusion. After
formed, the CM clusters initiate beating frequencies indepen-
dently. The CM cells are nondividing cells, which remain
attached to the fibronectin-coated regions of the MEA substrate.
The CF, on the contrary, proliferative cells occupy the regions
previously covered by PDMS blockers. Once the CF cells prolif-
erate and connect the two clusters together, the gap junctions
between the CF and CM electrically couple the two and initiate
ion exchange between the CM clusters. The CM beating fre-
quency starts to shift and both clusters synchronize to another
frequency. This new frequency is not necessarily the frequency
of either initial beating frequency, which arises from the syn-
chronization dynamics rather than a master–slave latch behavior.

Based on the two-cluster oscillator results, we selected 300 μm
of fibroblast length to implement the three clusters network
(Figure 3a–d) and the four clusters network (Figure 3e–g).
The first column of Figure 3a demonstrates the topology of
the three clusters we built on the MEA. The clusters, C1, C2,
and C3, are presented in different colors (red, blue, and green),
respectively. The second column in Figure 3b presents the wave-
form of the FP of each cluster. The third column is the Fourier
transform of a specific temporal snapshot of the three clusters in
which they are synchronized. The fourth column shows the fre-
quency alterations of each cluster during the long-term FP mon-
itoring. We used cluster C1 as the reference cluster to measure
the phase differences. Figure 3b shows the phase evolutions of
C2 and C3 compared with C1 over the entire experiment. The
same data in a polar histogram is shown Figure 3c with a reso-
lution of 1�. The height of the histogram represents the percent-
age of the synchronization time that the phases are at a specific
angle. The dispersion of the phases is narrow over 18 h of the
experiment. In this experiment, the dimensions of the clusters
are asymmetric, which reflects on the synchronization phases.
Figure 3e–g shows the construction of four-cluster network on
MEA. Similar to the three-cluster network, we used cluster C1
(red) as the reference cluster to measure the phase differences
of cluster C2 (green), C3 (blue), and C4 (purple) in the four-
cluster network. The phase differences in Figure 3g indicate
the four clusters are synchronized with a major difference of
phase delay around 45�, 85�, and 230�.

Although in this study we used microelectrode-based FP
recording to precisely study the coupling dynamics, the opti-
mized system can use simple microscopy imaging to extract
the phase and frequency information, such as calcium transient
imaging (Figure S3, Supporting Information), for future applica-
tions where direct interface with traditional electronic devices is
not needed. Using imaging as a read-out strategy could poten-
tially increase the throughput as well as reduce the cost of device
fabrication. On the contrary, ability to directly interphase with
such traditional electronic devices might be an advantage and
desired for applications where such read-outs would be valuable.
In this study, we performed short-term calcium imaging (5min

before and 5min after the synchronization) studies on the
coupled oscillators to show the functional integrity of the cells
in our system and as a proof of concept for an alternative high
throughput read-out strategy in future studies.

Furthermore, using the simulation framework described ear-
lier, we simulate the synchronization dynamics of the fibroblast-
coupled three oscillator system (Figure 3d). The simulation
shows a good qualitative match to the experimental data reveal-
ing nonzero phase differences between each oscillator in the
network. More importantly, the simulation and experiments
show a phase ordering of the oscillators that can be leveraged
for computing as illustrated in the following section.

Figure 4 simulates the application of the CF-coupled cardiac
cell oscillators to solve the minimum vertex coloring problem in a
graph. This problem entails computing the minimum number of
colors required to be assigned to the edges such that no two adja-
cent vertices (i.e., vertices that share an edge) are assigned the
same color. To solve this problem using the bio-oscillators,
the graph is mapped on to the network such that each node
(vertex) of the graph is represented by a CM cluster and every
edge by the CF bridge. The resulting steady-state sequence of
the bio-oscillators represents a unique ordering of phases where
the adjacent nodes belong to an independent set. This ordering
can subsequently be partitioned into independent sets using a
simple polynomial time operation that compares the sequence
to the adjacency matrix of the graph to identify the partition
between two independent sets. Using standard graph theory,
the nodes of a partition (independent set) can be assigned a
unique color. For the representative graph considered in
Figure 4, it can be observed that the bio-oscillators settle to a
steady state where the bio-oscillator phases have the following
cyclic ordering: …1, 9, 2, 6, 4, 8, 5, 3, 7…. Subsequently, this
ordering can be partitioned into three distinct independent sets
{2,9}{6,4,8}{5,3,7,1}. Assigning each such set a color implies that
a minimum of three colors are required to “color” the graph.
Furthermore, we also explore using circuit simulation, the poten-
tial of the system to be scaled to a larger number of nodes. In
such cases, the intrinsic parallelism of coupled oscillator net-
works is expected to yield a significant performance advantage
over traditional heuristic-based Boolean computer hardware.
Using the oscillator and the fibroblast equivalent model
(described in detail in the Supporting Information) simulated
in Xyce,[23] we analyze the ability of the system to color represen-
tative graph instances from the DIMACS data challenge. As
described earlier, the steady-state phase sequence of the oscilla-
tors is used to construct the coloring solution. It can be observed
that in larger graphs the solutions become suboptimal. We there-
fore propose a simple polynomial postprocessing scheme
(described in the Supporting Information) to augment the solu-
tion (Figure S5, Supporting Information). For many NP-hard
graph problems (including graph coloring), the solution to
one problem can be decomposed into the solution of another
hard problem (using polynomial time postprocessing). We there-
fore believe that the hardware substrate demonstrated here will
be able to address a broader spectrum of graph problems.

In summary, we demonstrated the feasibility of coupled oscil-
lator networks made of living CM cells, or bio-oscillators, as a
physical biocomputational substrate for solving constrained opti-
mization problems like vertex coloring of graphs. While current
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approaches in biocomputation have so far been successful in
archival data storage, they still fail to compete with silicon-based
digital electronics in terms of parallel data processing. Data proc-
essing through genetic manipulations requires timescales that
are much longer than those that are required for majority of
computational tasks and input/output strategies are not compat-
ible with conventional silicon-based technologies. Furthermore,
in such systems, processing and communication are mostly
implemented by altering molecules which are irreversible and
not programmable/reconfigurable once built.[24] Therefore, there
is a big gap between current biocomputing approaches and
future high-speed, large-scale data processing and transmission
requirements. Currently, there is no cell-based biocomputing cir-
cuitry that operates as cell-scale networks and process informa-
tion carried by electrical signals. The results of this research
ushers in a new paradigm to the emerging field of biocomputing;
in contrast to the conventional approach of creating biocircuits
using genetic manipulation of the cell as well as introducing
chemicals and biomolecules, this study shows that cell-scale

networks and their natural ability to communicate with each
and synchronize to a state with unique phase pattern can be used
as a computational primitive for efficiently solving computation-
ally hard problems.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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