PATHS, TREES, AND THE COMPUTATIONAL STRENGTH
OF SOME RAMSEY-TYPE THEOREMS

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

by

Stephen Flood

Peter Cholak, Director

Graduate Program in Mathematics
Notre Dame, Indiana
May 2012
Chapter 3 is © ASL, 2012

Everything else is

© Copyright by

Stephen Flood

2012

All Rights Reserved
PATHS, TREES, AND THE COMPUTATIONAL STRENGTH
OF SOME RAMSEY-TYPE THEOREMS

Abstract

by

Stephen Flood

An industry has arisen dedicated to the study of the interplay between combinatorial principles and computational strength. In particular, much work has been done on theorems similar to Ramsey’s Theorem and to Weak König’s Lemma. We study two related principles, which are interesting both for their combinatorial form and for their computational content.

We begin by studying the computational strength of a version of Ramsey’s Theorem that combines features of finite and infinite Ramsey theory. Paul Erdős and Fred Galvin proved that for each coloring \(f \), there is an infinite set that is “packed together” which is given “a small number” of colors by \(f \). We show that this theorem is close in computational strength to standard Ramsey’s Theorem, giving arithmetical bounds for solutions to computable instances. In reverse mathematics, we show that this Packed Ramsey’s Theorem is equivalent to Ramsey’s Theorem for exponents \(n \neq 2 \). When \(n = 2 \), we show that it implies Ramsey’s Theorem, and that it does not imply ACA₀.

We next introduce a new combinatorial principle, called RKL, which combines features of Weak König’s Lemma and Ramsey’s Theorem. We show that this principle is strictly weaker than both WKL₀ and RT²₂, and that it is strictly stronger
than RCA_0. We also consider two generalizations of this principle. We obtain the surprising result that these stronger principles are closer in strength to RT^2_2 than they are to WKL_0.
CONTENTS

FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>iv</th>
</tr>
</thead>
</table>

ACKNOWLEDGMENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGMENTS</th>
<th>v</th>
</tr>
</thead>
</table>

CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Introduction ... 1

1.2 Reverse mathematics 2
 1.2.1 Second order arithmetic 2
 1.2.2 The base system \(\text{RCA}_0 \) 4
 1.2.3 Proofs over \(\text{RCA}_0 \) 6
 1.2.4 Subsystems of second order arithmetic 7
 1.2.5 First-order subsystems of second order arithmetic .. 9

1.3 Computability theory 10
 1.3.1 Computability theory and trees 10
 1.3.2 Computability theory and Ramsey’s Theorem 13

CHAPTER 2: A PACKED RAMSEY’S THEOREM AND COMPUTABILITY THEORY

2.1 Introduction ... 17
 2.1.1 Summary of results 21
 2.1.2 Outline ... 22
 2.1.3 A proof of \(\text{PRT}^1_k \) 23

2.2 A tree proof of \(\text{PRT}^2_k \) 25
 2.2.1 Outline ... 26
 2.2.2 Largeness for exponent 2 26
 2.2.3 The construction 28

2.3 A \(\text{low}_2 \) proof of \(\text{PRT}^2_k \) 31
 2.3.1 The strategy .. 32
 2.3.2 Conditions .. 33
 2.3.2.1 Pre-conditions 34
 2.3.2.2 The tree ... 35
2.3.3	The module for even stages	35
2.3.3.1	Forcing divergence	36
2.3.3.2	Forcing convergence	36
2.3.4	The module for odd stages	37
2.3.5	Putting it all together	38
2.4	Tools for proving PRT_n^k	39
2.4.1	Trees and colorings of n-tuples	39
2.4.2	Largeness for exponent n	40
2.4.2.1	Motivation	40
2.4.2.2	Definitions and lemmas	40
2.5	A tree proof of PRT_n^k	44
2.5.1	The strategy	45
2.5.2	Obtaining the helper colorings	47
2.5.3	Selecting a sequence of blocks	51
2.5.4	Putting it all together	52
2.6	Lower bounds and reversals	53
2.6.1	Sharpness of number of colors	53
2.6.2	Using PRT_n^k to prove RT_n^k over RCA_0	55
2.6.3	Σ_0^n sets and PRT_n^k	57

CHAPTER 3: REVERSE MATHEMATICS AND A RAMSEY-TYPE KÖNIG’S LEMMA
3.1	Introduction	38
3.1.1	Working in second order arithmetic	39
3.2	Reverse mathematics of RKL	60
3.3	Trees generated by sets of strings	63
3.4	Arithmetically-definable trees	67
3.4.1	Subsets, co-subsets, and trees	68

BIBLIOGRAPHY | 72 |
<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 The big 5 subsystems and RT_2^2.</td>
<td>16</td>
</tr>
<tr>
<td>2.1 A is packed for ϕ.</td>
<td>19</td>
</tr>
<tr>
<td>3.1 The reverse mathematical strength of RKL.</td>
<td>70</td>
</tr>
<tr>
<td>3.2 The reverse mathematical strength of RKL and PRT.</td>
<td>71</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Peter Cholak for his patience, guidance, and constant exhortations to prove theorems.

I would like to give special thanks to Francis Su, Kevin O’Neill, and Rosalie Carlson. Their enthusiasm and creativity has been an inspiration.

I also thank the many logicians who have aided and encouraged this work. Above all, Damir Dzhafarov has helped focus my questions and given many useful suggestions. His feedback on my papers has greatly improved them. Wei Wang also gave helpful feedback and some very useful suggestions at an early stage of my work on PRT^2_k. Keita Yokoyama generously allowed me to include his proof of Theorem 3.3.9 in my paper on RKL. And throughout the past five years, my office-mates Christopher Porter, Joshua Cole, Sean Walsh, Logan Axon, and Quinn Culver have consistently expressed their interest and encouragement.

I thank the University of Notre Dame for their many efforts to build a campus and academic community that embraces the whole person. I also thank the NSF for providing partial support for this research through EMSW21-RTG 0353748, 0739007, and 0838506.

And finally, I would like to express my deep gratitude to my family, friends, and church family. They have walked with me through every stage of this journey.
CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Introduction

We study the interplay between combinatorics and computation. Together, computability theory and reverse mathematics provide a robust set of tools for studying the “computational strength” of theorems in infinite combinatorics. Two of these theorems have particularly interesting computational strength: Ramsey’s Theorem and Weak König’s Lemma.

Weak König’s Lemma is the statement “every infinite binary tree has an infinite path.” Weak König’s Lemma is essentially the statement “2^N is compact,” and is equivalent in reverse mathematics to many theorems about compactness (see [22]). In computability theory, the Low Basis Theorem of [18] says that every computable infinite binary tree has a low infinite path.

Ramsey’s Theorem is a generalization of the pigeonhole principle. The infinite form of Ramsey’s Theorem says that for any coloring f of n element subsets of \mathbb{N} with k colors, there is an infinite set which is given a single color by f. The computational strength of this theorem has been studied extensively, particularly in [1, 2, 16, 19, 21].

By studying variants of Ramsey’s Theorem and Weak König’s Lemma, we can deepen our understanding of the relationship between specific combinatorial fea-

1 The previous two paragraphs appear in [10] in a slightly modified form.
tures and computational strength. We begin in Chapter 2 by studying a theorem of Erdős and Galvin that blends features of finite and infinite Ramsey’s Theorem. We continue in Chapter 3 by studying a new combinatorial principle that blends features of Ramsey’s Theorem and Weak König’s Lemma.

We will present the motivation, combinatorial background, and a detailed summary of results at the beginning of each chapter. In the remainder of this chapter, we will give background on the two notions of “computational strength” that we study: computability theory and reverse mathematics. In Section 1.2, we discuss reverse mathematics. Chapter 3 will make frequent use of the material discussed in Section 1.2.2. In Section 1.3, we discuss two aspects of computability theory. Section 1.3.1 surveys some results on the computational complexity of trees, which we will be used during the proofs of Chapter 2. We close in Section 1.3.2 by surveying some major results concerning the strength of infinite Ramsey’s Theorem.

1.2 Reverse mathematics

The standard introduction to, and reference for, reverse mathematics is [22]. Our goal here is to highlight the connections between reverse mathematics and computability theory. A key intuition of reverse mathematics is that the statement “T_1 implies T_2 over RCA_0” essentially means that “T_2 is proved using T_1, computable constructions, and computable verifications.” We will return to this intuition with greater detail in Section 1.2.3.

1.2.1 Second order arithmetic

In reverse mathematics, we formalize theorems of different areas of mathematics using a single language: second-order arithmetic. Because it is arithmetic, we
have symbols for 0, 1, +, ×, and <. Because it is second order, we can use two sorts of variables: one for natural numbers and one for sets of natural numbers. We also use the symbol ∈, and we have equality for number variables.

A model of this language has the form \(M = (\mathbb{N}, S(M), 0, 1, +, \times, <) \). Here \(\mathbb{N} \) denotes the first order part of \(M \) (the collection of numbers which exist in the model), and \(S(M) \) denotes the second order part (the collection of sets which exist in the model). A model of second order arithmetic is often abbreviated \(M = (\mathbb{N}, S(M)) \).

Note that in reverse mathematics, \(\mathbb{N} \) refers to the first order part of some (often unspecified, possibly non-standard) model of arithmetic. We will write \(\omega \) to refer to the first order part of the true natural numbers, when it is important to distinguish between the two.

We also include (in our language) additional symbols for set parameters and number parameters, and use a natural deduction system as the background logical axioms. More on natural deduction systems, which are equivalent in strength to the other standard logical systems, can be found in [24], (particularly Chapters 1 and 2).

When presented with an existential statement, we generally work with an “arbitrary witness” for this statement. Arbitrary set parameters give a formal analog of these witnesses in our formal system. When our proof is complete, this system contains logical rules which eliminate the use of the set parameter by an appeal to the original existential assumption. Thus, set parameters will not appear in the theorems studied. Instead, they are used within individual proofs, and axiom schemes are stated to cover all possible sentences obtained by assigning different parameters to free variables.
We define levels of formula complexity as usual, with the one important remark that the presence of set parameters does not influence a formula’s complexity.

Definition 1.2.1. A formula is $\Delta^0_0 = \Sigma^0_0 = \Pi^0_0$ if it has only bounded number quantifiers, and no set quantifiers. A formula is Σ^0_{n+1} if it has the form $(\exists x)\psi(x)$ for ψ a Π^0_n formula, and a formula is Π^0_{n+1} if its negation is Σ^0_{n+1}. A formula $\theta(x)$ is Δ^0_n if there is a Π^0_n formula $\psi(x)$ and a Σ^0_n formula $\phi(x)$ such that $(\forall x)[\theta(x) \leftrightarrow \psi(x) \leftrightarrow \phi(x)]$. A formula is *arithmetical* if it is Δ^0_n for any n.

A formula is Π^1_1 if it has the form $(\forall X)\psi(X)$, where ψ is arithmetical. A formula is Σ^1_n if it is the negation of a Π^1_n formula. A formula is Π^1_{n+1} if it has the form $(\forall X)\psi(X)$, where ψ is Σ^1_n. A formula $\theta(x)$ is Δ^1_n if there is a Π^1_n formula $\psi(x)$ and a Σ^1_n formula $\phi(x)$ such that $(\forall x)[\theta(x) \leftrightarrow \psi(x) \leftrightarrow \phi(x)]$.

1.2.2 The base system RCA_0

In order to compare the strength of theorems in second order arithmetic, we first require a set of background axioms. Let Γ be a collection of formulas. We say that T_1 implies T_2 over Γ, if there is a proof of T_2 from $\Gamma \cup \{T_1\}$. We will say that we work over Γ, or that Γ is our base system, to say that the implications being discussed hold over Γ. We will work almost exclusively with the base system RCA_0, which roughly corresponds to computable mathematics.

Statement 1.2.2. RCA_0 is the axiom scheme that consists of:

1. The ordered semi-ring axioms (the usual rules for 0, 1, +, ×, <), denoted Q.

2. Δ^0_1 comprehension, denoted Δ^0_1-CA. This asserts that each Δ^0_1 definable set exists. More formally, Δ^0_1-CA is the axiom scheme which, for each Π^0_1...
formula $\phi(x, X)$ and each Σ^0_1 formula $\psi(x, X)$, asserts

$$(\forall X)[(\forall x)[\psi(x, X) \leftrightarrow \phi(x, X)]] \implies (\exists Y)(\forall x)[x \in Y \leftrightarrow \psi(x, X)]],$$

3. Σ^0_1 induction, written $I\Sigma^0_1$. This is the axiom scheme asserting, for each Σ^0_1 formula $\phi(x)$ with free variable x, that

$$\phi(0) \land (\forall x)[\phi(x) \to \phi(x + 1)] \to (\forall x)\phi(x)$$

Inside RCA_0, we have access to a number of other first order principles, which we freely use in our verifications. We will discuss the relationship between these principles in more generality in Section 1.2.5.

Remark 1.2.3. In RCA_0, the following are provable:

1. Π^0_1 induction, written $I\Pi^0_1$.

2. Σ^0_1 least-element principle, written $L\Sigma^0_1$. This is the axiom scheme asserting, for each Σ^0_1 formula $\phi(x)$ with free variable x, that

$$(\exists x)\phi(x) \to (\exists x)[\phi(x) \land (\forall y < x)\neg \phi(y)]$$

3. Π^0_1 least-element principle, written $L\Pi^0_1$.

4. Σ^0_1 bounding, written $B\Sigma^0_1$. This is the axiom scheme asserting, for each Σ^0_1 formula $\phi(x, y)$ with free variables x, y, that

$$(\forall a)[(\forall x < a)(\exists y)\phi(x, y) \to (\exists b)(\forall x < a)(\exists y < b)\phi(x, y)]$$
5. It is possible to iterate an arbitrary function of the second order part an arbitrary finite number of times. This formal axiom, denoted PREC, states:

\[(\forall m)(\forall f \text{ a total function})(\exists g \text{ a total function})
\[g(0) = m \land (\forall z)[g(z + 1) = f(g(z))].\]

In fact, as Hirschfeld and Shore show in [12], RCA₀ can be stated in an equivalent form by replacing IΣ₁⁰ by the combination of PREC and induction for all sets in S(ℳ). This gives additional support for the suggestion in [22] that RCA₀ corresponds roughly to “computable mathematics.”

Remark 1.2.4. It is also important to note that a number of standard first order proof techniques cannot be proved from RCA₀. In particular, BΠ₀, BΣ₀, I∆₀, and L∆₀ are all independant of RCA₀.

An important intuition is that RCA₀ lacks the tools required to perform verifications which reference functions of high enough arithmetical complexity. For example, verifications that use \emptyset'-computable functions often fail in RCA₀, or at least require additional subtlety.

1.2.3 Proofs over RCA₀

Given a Π₂¹ axiom T₁, we often wish to give a proof of some Π₂¹ sentence T₂ over RCA₀. Working over RCA₀ gives us access to three types of steps (beyond the usual logical rules) that we can use in our proof:

1. Describe how to compute a new set from a given set parameter,

2. Apply T₁ to a set parameter X (obtained previously), obtaining a new set parameter Y (representing a solution of T₁ for the instance X), and
3. Prove an arithmetical fact using Σ^0_1 and/or the semi-ring axioms.

Intuitively, (1) and (2) correspond to *constructions*, because they give us the ability to begin with one set X and to obtain a new set Y with a certain desired property. Intuitively, (3) is used in the *verification* that the constructions behave as desired (or expected).

To be more precise, note that most Π^1_2 theorems T_1 have the form

$$\forall X [X \text{ has property } P \implies \exists Y Q(X,Y)].$$

Thus to apply T_1, and obtain the desired instance Y, we must first verify that X does indeed have property P. Often, P is an arithmetical statement about X. Furthermore, if we obtained X using Δ^0_1-CA, we simply know that X is a set. Because Δ^0_1-CA does not say that X has any specific property, we must verify statements about X ourselves.

It is important to note that many arithmetical statements cannot be proved using computable methods alone, and certainly not with Σ^0_1 induction alone. Therefore, proofs in reverse mathematics must be careful when verifying that X truly has property P.

1.2.4 Subsystems of second order arithmetic

There are five central systems in reverse mathematics, sometimes called the “big five.” In order of (strictly) increasing strength, they are: RCA_0, WKL_0, ACA_0, ATR_0, and Π^1_1-CA. Each includes RCA_0, together with a more powerful set comprehension axiom or axiom scheme. The more powerful the comprehension principle, the more complicated the sets that can be “built” in proofs. In this thesis, we will only work with the first three of these systems: RCA_0, WKL_0 and
ACA_0.

Statement 1.2.5. WKL_0 consists of RCA_0 together with the statement:

\[(\forall T)(\exists P) [T \text{ is an infinite binary tree } \implies P \text{ is a path through } T] \]

Weak König’s Lemma is equivalent to many theorems about compactness.

Statement 1.2.6. ACA_0 consists of RCA_0 together with the statement

\[(\forall X)(\exists Y) [x \in Y \iff \phi(x, X)] \]

for each arithmetical formula \(\phi(x, X) \).

It is well known that ACA_0 is equivalent to the existence of the jump. ACA_0 is often equivalent to theorems asserting the existence of limits.

For any set \(Z \) and any arithmetical \(\theta \) with a single free set and number variable, we can define the set \(\theta^Z = \{ x : \theta(x, Z) \} \). Note that ACA_0 essentially says that we can iterate \(Z \mapsto \theta^Z \) a fixed, (standard) finite number of times.

Statement 1.2.7. ATR_0 consists of RCA_0 together with the axiom scheme which, for each arithmetical formula \(\theta \), asserts “for any well ordering \(X \), the set defined by iterating \(Z \mapsto \theta^Z \) along \(X \) exists.”

ATR_0 is the weakest subsystem of arithmetic where it is possible to develop the basic theory of ordinal arithmetic \([13]\).

Statement 1.2.8. \(\Pi^1_1 \)-CA consists of RCA_0 together with statement

\[(\forall X)(\exists Y) [x \in Y \iff \phi(x, X)] \]
for each Π_1^1 formula $\phi(x, X)$.

For more on these systems, including an overview of the strength of many different theorems, see [22].

1.2.5 First-order subsystems of second order arithmetic

In this section, we consider the first order principles of induction, least element, and bounding discussed in Section 1.2.2, now stated for formulas of various complexity. To define these principles, simply replace Σ_1^0 with $\Gamma \in \{\Pi_n^0, \Sigma_n^0, \Delta_n^0\}$ in the both the name and the definition of the Σ_1^0 analog.

We begin by comparing the strength of these first order principles. We write exp to denote the formula asserting that the exponential function is total. Note that exp is provable from $I\Sigma_1^0$. Working over $Q + I\Sigma_0^0 + exp$, these principles form a linear hierarchy of strength.

Theorem 1.2.9 (Gandy, Kirby, Paris, and Slaman). Over $Q + I\Sigma_0^0 + exp$,

1. $I\Sigma_n^0 \leftrightarrow I\Pi_n^0 \leftrightarrow L\Sigma_n^0 \leftrightarrow L\Pi_n^0$,

2. $B\Pi_n^0 \leftrightarrow B\Sigma_{n+1}^0 \leftrightarrow I\Delta_{n+1}^0 \leftrightarrow L\Delta_{n+1}^0$,

3. $I\Sigma_{n+1}^0 \Rightarrow B\Sigma_{n+1}^0 \Rightarrow I\Sigma_n^0$.

While interesting in their own right, induction principles are not immediately informative from the perspective of “computable mathematics.” Hirschfeldt and Shore introduced the principle $PREC_n$, which roughly states that every Π_{n-1}^0-definable function can be iterated an arbitrary finite number of times. For each n, Hirschfeldt and Shore show that $PREC_n$ is equivalent to $I\Sigma_n^0$ over a relatively weak induction scheme.
Definition 1.2.10 (Hirschfeldt and Shore [12]). PREC_n is the axiom scheme which asserts for each Π^0_{n-1} formula $\phi(x, y)$: if ϕ defines a total function, then

$$(\forall z)(\forall m)(\exists \sigma)[|\sigma| = z \land \sigma(0) = m \land (\forall i < z)[\phi(\sigma(i), \sigma(i + 1))]]$$

Proposition 1.2.11 (Hirschfeldt and Shore [12]). For each $n \in \omega$, PREC_n is equivalent to $\text{I} \Sigma^0_n$ over $Q + \Delta^0_1\text{-CA} + \text{I} \Delta^0_1$.

1.3 Computability theory

For an introduction to computability theory, see of Part A of [23]. Our goal here is to provide background, and to introduce some results which will be used in Chapter 2.

1.3.1 Computability theory and trees

In Chapter 2 we will frequently define functions via initial segments. We will use trees to organize these definitions, leading us to identify elements of $k^{<\omega}$ with initial segments of functions $g : \omega \to \{1, \ldots, k\}$.

We begin with the following basic definitions to fix our choice of notation. These definitions also provide a point of comparison for the more unusual trees introduced in Section 2.4.1 (used to prove Packed Ramsey’s Theorem for exponent n).

Definition 1.3.1. Let $k^{<\omega}$ denote the set of all functions τ such that for some $w \in \omega$, $\tau : \{1, \ldots, w\} \to \{1, \ldots, k\}$. If $\text{dom}(\tau) = \{1, \ldots, w\}$, we will call $w = |\tau|$ the length of τ. Given $\tau, \rho \in k^{<\omega}$, we say that $\tau \preceq \rho$ if and only if $|\tau| \leq |\rho|$ and $\tau(x) = \rho(x)$ for each $x \in \{1, \ldots, |\tau|\}$.
Definition 1.3.2. A set $T \subseteq k^{<\mathbb{N}}$ is a tree if it is closed downward under \preceq. Let $[T]$ denote the set of infinite paths through $T \subseteq k^{<\mathbb{N}}$. Then each $g \in [T]$ is a function $g : \mathbb{N} \to \{1, \ldots, k\}$.

A set X is low if $X' \equiv_T \emptyset'$, and X is low$_n$ if $X^{(n)} \equiv_T \emptyset^{(n)}$. We say that a is a lowness index of X if $X' = \Phi^{\emptyset'}_a$. Working relative to a set $B \subseteq \mathbb{N}$, X is low$_n^B$ if $(X \oplus B)^{(n)} \leq_T B^{(n)}$.

The next theorem is often called the Low Basis Theorem.

Theorem 1.3.3 (Jockusch and Soare [18]). For any computable infinite binary tree $T \subseteq k^{<\mathbb{N}}$, there is a low infinite path $g \in [T]$.

In Section 2.3 when we construct low$_2$ solutions to the $n = 2$ case of Packed Ramsey’s Theorem, we will work with low trees. Cholak, Jockusch, and Slaman note in [1] that the proof of the Low Basis Theorem gives the following:

Remark 1.3.4. There is a \emptyset'-computable uniform procedure that takes any lowness index for an infinite low tree T and returns a lowness index for a path through T.

We will also use the following standard fact:

Remark 1.3.5. If L is low, any statement $S(X)$ that is $\Pi^0_2^L$ is actually Π^0_2.

Definition 1.3.6. Given $X, P \subseteq \mathbb{N}$, we say that P is PA over X, written $P \gg X$, if P is able to compute a path through each infinite X-computable binary tree.

A tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ is X-computably bounded if T is X-computable and if there is an X-computable function $l : \mathbb{N} \to \mathbb{N}$ such that for each w, $l(w)$ bounds the codes for all strings in T of length w.

In fact, any $P \gg X$ can compute a path through each infinite X-computably bounded tree T. In particular, any $P \gg X$ is able to compute a path through
every infinite X-computable tree $T \subseteq k^\infty$. For the remainder of the paper, we restrict our attention to computably bounded infinite trees.

Lemma 1.3.7 (Lemma 4.2 of [I]). Suppose that $P \gg \emptyset'$ and that $(\gamma_{e,0}, \gamma_{e,1})_{e \in \omega}$ is an effective enumeration of all ordered pairs of Π^0_2 sentences of first order arithmetic. Then there is a P-computable $\{0,1\}$-valued (total) function f such that $\gamma_{e,f(e)}$ is true whenever $\gamma_{e,0} \lor \gamma_{e,1}$ is true.

Fix any $P \gg \emptyset'$ and any $k \in \mathbb{N}$. Whenever we are given k-many Π^0_2 formulas $\gamma_1, \ldots, \gamma_k$ such that $\gamma_1 \lor \cdots \lor \gamma_k$ is true, we can use P to uniformly find $c \in \{1, \ldots, k\}$ s.t. γ_c is true. Simply query the function f from the above lemma $k - 1$ times.

We will make frequent use of the following corollary of Lemma 1.3.7.

Lemma 1.3.8. Any $P \gg \emptyset'$ can compute a path through each Π^0_2 definable tree.

Lemma 1.3.8 is also a consequence of the following lemma, which will be useful when considering Packed Ramsey’s Theorem for n-tuples when $n > 2$. The proof is taken from the first half of Proposition 12 of [10].

Lemma 1.3.9. For any $\Pi^0_2^X$ tree T, there is a $\Sigma^0_1^X$ tree S s.t. $[T] = [S]$.

Proof. Fix a $\Pi^0_2^X$-definable tree T. Then there is a formula ϕ which is Δ^0_1 such that $\tau \in T \iff (\forall y)(\exists z)\phi(\tau, y, z)$. Using the Δ^0_1 formula

$$\psi(\tau, \hat{z}) =_{\text{def}} (\forall x, y \leq |\tau|)(\exists z < \hat{z})\phi(\tau \upharpoonright x, y, z),$$

we can define a Σ^0_1 tree S by $\tau \in S \iff (\exists \hat{z})\psi(\tau, \hat{z})$. Then

$$[S] = \{f : (\forall w)(\exists \hat{z})\psi(f \upharpoonright w, \hat{z})\} = \{f : (\forall x)(\forall y)(\exists z)\phi(f \upharpoonright x, y, z)\} = [T].$$
1.3.2 Computability theory and Ramsey’s Theorem

The study of the computational strength of Ramsey’s Theorem has woven together the two themes of computability theory and reverse mathematics.

Definition 1.3.10. Given $X \subseteq \mathbb{N}$ and $n \in \mathbb{N}$, we write $[X]^n = \{Z \subseteq X : |Z| = n\}$.

Theorem 1.3.11 (Ramsey [20]). For each $n,k \in \mathbb{N}$, and each coloring $f : [\mathbb{N}]^n \rightarrow \{1, \ldots, k\}$, there is an infinite set H given a single color by f.

We say that the one colored set H is homogeneous for f. We write RT_k^n to refer to Ramsey’s Theorem (for fixed n and k as above) formalized in the context of second order arithmetic.

Jockusch fully classified the arithmetical complexity of homogeneous solutions to computable instances of Ramsey’s Theorem.

Theorem 1.3.12 (Jockusch [16]). Fix $n,k \in \mathbb{N}$ with $n \geq 2$.

1. Each computable $f : [\mathbb{N}]^n \rightarrow \{1, \ldots, k\}$ has a Π_0^n definable homogeneous set.

2. There is a computable $f : [\mathbb{N}]^n \rightarrow \{1, \ldots, k\}$ with no Σ_0^n definable homogeneous set.

A similar proof formalized in second order arithmetic, and working over RCA_0, gives a reverse mathematical analog.

Corollary 1.3.13 (Simpson [22]). For each $n \in \omega$ with $n \geq 3$, RT_2^n is equivalent to ACA_0 over RCA_0.

This completes our review of the computational strength of RT_k^n for $n \geq 3$. For colorings f of singletons, it is clear that every computable f has a computable infinite homogeneous set. The reverse mathematical strength of RT_k^1 was fully characterized by Hirst in his thesis.
Theorem 1.3.14 (Hirst [14]). For each \(k \in \omega\), \(\text{RCA}_0 \vdash \text{RT}_k^1\). On the other hand, working over \(\text{RCA}_0\), \((\forall k)[\text{RT}_k^1]\) is equivalent to \(\text{B}\Sigma^0_2\).

The reverse mathematical strength of \(\text{RT}_k^2\) has taken longer to fully characterize. Work has generally proceeded by giving an increasingly refined analysis of the computational strength of homogeneous sets, which is then translated into reverse mathematical results.

Theorem 1.3.15 (Seetapun). For each computable \(f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\}\), there is an infinite \(f\)-homogeneous set \(H\) such that \(H\) does not compute \(\emptyset'\).

Using this theorem, Seetapun proved that \(\text{RT}_2^2\) does not imply \(\text{ACA}_0\) over \(\text{RCA}_0\). In fact, he showed the following stronger result.

Corollary 1.3.16. \(\text{WKL}_0 + \text{RT}_2^2\) does not imply \(\text{ACA}_0\) over \(\text{RCA}_0\).

Earlier, Hirst had separated \(\text{WKL}_0\) and \(\text{RT}_2^2\) by showing that \(\text{WKL}_0\) is not able to prove \(\text{RT}_2^2\).

Theorem 1.3.17 (Hirst [14]). \(\text{WKL}_0\) does not imply \(\text{RT}_2^2\) over \(\text{RCA}_0\).

Hirst gives two different proofs of this separation. The second, more powerful proof produces an \(\omega\)-model of \(\text{WKL}_0\) where \(\text{RT}_2^2\) fails. The first proof of this separation uses the fact \(\text{RT}_2^2\) implies \((\forall k)[\text{RT}_k^1]\), and that \(\text{WKL}_0\) does not. Harrington showed in more generality that \(\text{WKL}_0\) does not have first order strength beyond \(\text{RCA}_0\).

Theorem 1.3.18 (Harrington). \(\text{WKL}_0\) is \(\Pi_1^1\) conservative over \(\text{RCA}_0\).

Further research on the computational strength of Ramsey’s Theorem for pairs yielded a conservativity result for \(\text{RT}_2^2\). Cholak, Jockusch, and Slaman showed the following.
Theorem 1.3.19 (Cholak, Jockusch, Slaman [1]). For each computable coloring $f : [N]^2 \rightarrow \{1, \ldots, k\}$, there is an infinite low$_2$ set that is homogeneous for f.

Adapting the proof of the above theorem, Cholak, Jockusch, and Slaman showed that RT$_2^2$ is Π^1_1 conservative over $\text{RCA}_0 + \text{I}\Sigma^0_2$.

For many years, it was unknown if RT$_2^2$ implied WKL$_0$. This was answered recently by Liu, who produced an ω-model of RT$_2^2$ where WKL$_0$ fails.

Theorem 1.3.20 (Liu [19]). For each $f : [N]^2 \rightarrow \{1, \ldots, k\}$ s.t. $f \not\gg \emptyset$, there is an infinite f-homogeneous set H such that $f \oplus H \not\gg \emptyset$.

Corollary 1.3.21 (Liu [19]). RT$_2^2$ does not imply WKL$_0$ over RCA_0.

In other words, there is no way to use RT$_2^2$, together with computable constructions and verifications, to prove WKL$_0$.

15
Figure 1.1. The big 5 subsystems and RT_2^2.
2.1 Introduction

The pigeonhole principle says that for any w and $k \in \mathbb{N}$, if w-many pigeons try to roost in k holes, at least one hole will contain at least $\lceil \frac{w}{k} \rceil$ pigeons.

More generally, fix $n, k, m \in \mathbb{N}$. Instead of acting alone, suppose that our pigeons are team players – where each team has n members. Any set of n pigeons is a possible team. When an n pigeon team is chosen, it selects some hole and all members of this team roost in this hole. Different teams (even ones that differ by a single pigeon) may chose very different roosts. In this case, finite Ramsey’s Theorem says that if the number of pigeons w is large enough, then there will be collection of m pigeons and a hole c such that each n pigeon team chosen from this collection will roost in hole c. Along these lines, we make the following definitions:

Definition 2.1.1. Fix any $X \subseteq \mathbb{N}$ and $n, k \in \mathbb{N}$. We write $[X]^n$ to refer the set of n-element subsets of X. That is, $[X]^n = \{ Z \subseteq X : |Z| = n \}$.

Given a coloring $f : [X]^n \to \{1, \ldots, k\}$, we say H is homogeneous for f if f assigns a single color to $[H]^n$.

Theorem 2.1.2 (Finite Ramsey’s Theorem). Fix any $n, k, m \in \mathbb{N}$. There is some $w \in \mathbb{N}$ such that for any coloring $f : \{1, \ldots, w\}^n \to \{1, \ldots, k\}$, there is a size m homogeneous set.
The following notation is very useful when working with finite Ramsey’s Theorem.

Definition 2.1.3. Given w, m, n, k, we say that $w \to (m)^n_k$ if for each $X \subseteq \mathbb{N}$ such that $|X| = w$ and each coloring $f : [X]^n \to \{1, \ldots, k\}$, there is a homogeneous $H \subseteq X$ with $|H| = m$.

In arrow notation, finite Ramsey’s Theorem says that for any $n, k, m \in \mathbb{N}$, there is a $w \in \mathbb{N}$ such that $w \to (m)^n_k$.

Theorem 2.1.4 (Infinite Ramsey’s Theorem). Fix any $n, k \in \mathbb{N}$. For each $f : [\mathbb{N}]^n \to \{1, \ldots, k\}$, there is an infinite $H \subseteq \mathbb{N}$ which is homogeneous for f.

In arrow notation, infinite Ramsey’s Theorem simply asserts that $\mathbb{N} \to (\mathbb{N})^n_k$ for each $n, k \in \mathbb{N}$. The following notation is the standard way to refer to Ramsey’s Theorem when it is formalized in second-order arithmetic:

Statement 2.1.5. RT^n_k is the assertion that

“$(\forall f : [\mathbb{N}]^n \to \{1, \ldots, k\})(\exists H \subseteq \mathbb{N})[H \text{ is infinite and is homogeneous for } f]$.”

The infinite form of Ramsey’s Theorem is particularly nice because it tells you that a very big (infinite) homogeneous set always exists. However, even though infinite sets are big, they can be arbitrarily spread out. Erdős and Galvin use the following notion to say how spread out an infinite set is:

Definition 2.1.6. Fix some $\phi : \mathbb{N} \to \mathbb{N}$. We say that $A \subseteq \mathbb{N}$ is packed for ϕ if $|A \cap \{1, \ldots, w\}| \geq \phi(w)$ for infinitely many w. We say that $A \subseteq \mathbb{N}$ is sparse for ϕ if it is not packed for ϕ.

18
This notion is only interesting for ϕ such that $\liminf_w \phi(w) = \infty$. Otherwise, any large enough finite set is packed for ϕ. Unfortunately, there is no interesting function $\phi : \mathbb{N} \to \mathbb{N}$ such that each coloring has a homogeneous set that is packed for ϕ. The following is essentially Theorem 2.3 of [8]:

Theorem 2.1.7 (Erdős and Galvin [8]). *Fix any $\phi : \mathbb{N} \to \mathbb{N}$ with $\liminf_w \phi(w) = \infty$ and any $n \in \mathbb{N}$, $n \geq 1$. Then there is a function $g : [\mathbb{N}]^n \to 2^{n-1}$ such that for any set A, either*

1. $|\{g(Z) : Z \in [A]^n\}| = 2^{n-1}$ or
2. A is sparse for ϕ.

This motivates the following weakening of homogeneity:

Definition 2.1.8. Fix $n \in \mathbb{N}$. A set A is *semi-homogeneous* for a coloring $f : [\mathbb{N}]^n \to \{1, \ldots, k\}$ if A is given at most 2^{n-1} colors by f. That is, A is semi-homogeneous if $|\{f(Z) : Z \in [A]^n\}| \leq 2^{n-1}$.

Remark 2.1.9. For colorings of singletons ‘semi-homogeneous’ means ‘homogeneous,’ but this changes for larger exponents. Any set that is semi-homogeneous for $f : [\mathbb{N}]^2 \to \{1, \ldots, k\}$ can be assigned up to 2 colors by f. For a coloring of triples, a semi-homogeneous set can be assigned up to 4 colors.
Using this weakening of homogeneity, Erdős and Galvin proved the following infinitary version of Ramsey’s Theorem, which has a finite-Ramsey flavor:

Theorem 2.1.10 (Erdős and Galvin [8]). Fix $n, k \in \mathbb{N}$, and any $\phi : \mathbb{N} \to \mathbb{N}$ such that $w \to (\phi(w))_{k+1}^n$ for all (big enough) w. For any $f : [\mathbb{N}]^n \to \{1, \ldots, k\}$, there is a set A which is packed for ϕ and semi-homogeneous for f.

Statement 2.1.11. PRT_k^n is the assertion that

\[
\forall \phi : \mathbb{N} \to \mathbb{N} \text{ s.t. } (\forall w) (w \to (\phi(w))_{k+1}^n)(\forall f : [\mathbb{N}]^n \to \{1, \ldots, k\}) (\exists H \subseteq \mathbb{N}) [H \text{ is packed for } \phi \text{ and semi-homogeneous for } f].
\]

In second-order arithmetic (when we are working over RCA_0), PRT_k^n will refer to this Π^1_2 formula. When we are not working over RCA_0, we will sometimes abuse this notation and write PRT_k^n to refer to Theorem 2.1.10 itself.

Because PRT_k^n is trivial when $\lim \inf_w \phi(w) < \infty$, our proofs of PRT_k^n will always assume that $\lim \inf_w \phi(w) = \infty$. In this case, any set A which is packed for ϕ is automatically infinite.

Some asymptotic lower bounds are known for the fastest growing ϕ which satisfies $w \to (\phi(w))_{k+1}^n$. For $n \in \mathbb{N}$, \log_{n-1} denotes the $n - 1$-iterated logarithm.

Theorem 2.1.12 (Theorem 26.6 of [9]). For any integers $n, k \geq 2$, there is a constant $\hat{c}_{n,k} > 0$ depending only on n and k such that for all large enough w, $w \to (\hat{c}_{n,k} \cdot \log_{n-1} w)^n_k$.

In other words, for each $n, k \geq 2$, the function $\phi(w) = \hat{c}_{n,k+1} \cdot \log_{n-1} w$ satisfies the conditions of PRT_k^n for all large enough w. The next theorem gives upper bounds on the rate of growth of ϕ.

20
Theorem 2.1.13 (Theorem 26.3 of [9]). For $n \geq 3$, there are constants $c_n > 0$ and $d_n > 0$ depending only on n such that for all large enough w,

$$w \not\rightarrow (c_n \cdot \sqrt{\log_{n-2} w})^n_2,$$

$$w \not\rightarrow (d_n \cdot \log_{n-1} w)^n_4$$

Thus for each $n, k \geq 3$ and each ϕ as in PRT_k^n, we have $\phi(w) < d_n \cdot \log_{n-1} w$ for all large enough w.

2.1.1 Summary of results

Definition 2.1.14. Given $n, k \in \mathbb{N}$, a computable instance of PRT_k^n is computable coloring $f : [N]^n \rightarrow \{1, \ldots, k\}$ and a computable $\phi : \mathbb{N} \rightarrow \mathbb{N}$ such that $w \rightarrow (\phi(w))_{k+1}^n$ for all w. We say that $A \subseteq \mathbb{N}$ is a solution to a computable instance of PRT_k^n if A is packed for the appropriate ϕ, and semi-homogeneous for the appropriate f.

From the perspective of computability theory, we show:

Theorem 2.1.15. Fix $n, k \in \mathbb{N}$.

1. For any $P \gg \emptyset^{(n-1)}$, each computable instance of PRT_k^n has a P-computable solution. Hence, there is always a Δ^0_{n+1} solution.

2. If $n \geq 2$, there is a computable instance of PRT_k^n with no Σ^0_n solution.

3. Any computable instance of PRT_k^2 has a low$_2$ solution.

4. Each computable instance of PRT_k^1 has a computable solution.
Proof. (1) is Theorem 2.5.1 and (2) is Theorem 2.6.2. (3) is Theorem 2.3.1 in the case where B is computable. (4) is Corollary 2.1.20.

From the perspective of reverse mathematics, we show:

Theorem 2.1.16. Over RCA₀,

1. \(\text{PRT}^n_k\) is equivalent to \(\text{RT}^n_k\) for each \(n \in \omega\) such that \(n \neq 2\) and each \(k \in \mathbb{N}\) such that \(k > 2^{n-1}\),

2. \(\text{PRT}^2_{k+1}\) implies \(\text{RT}^2_k\) for each \(k \in \mathbb{N}\), and

3. \(\text{PRT}^2_k\) does not imply \(\text{ACA}_0\) for any \(k \in \mathbb{N}\).

4. \((\forall k)\ \text{PRT}^1_k\) is equivalent to \(B\Sigma^0_2\).

Proof. (2) is Theorem 2.6.1 for exponent \(n = 2\), and (3) is Corollary 2.3.2. For (4), recall that \((\forall k)\ \text{RT}^1_k\) is equivalent to \(B\Sigma^0_2\) by Theorem 1.3.14.

To prove (1), we work over RCA₀. First, consider \(n = 1\). For any \(k \in \mathbb{N}\), \(\text{RT}^1_k\) implies \(\text{PRT}^1_k\) by Theorem 2.1.18 and \(\text{PRT}^1_k\) implies \(\text{RT}^1_k\) by Theorem 2.6.1.

Next, consider any \(n \in \omega\) with \(n \geq 3\) and any \(k \in \mathbb{N}\) with \(k > 2^{n-1}\). Because \(n \geq 3\), \(\text{RT}^n_k\) is equivalent to both \(\text{RT}^2_{2^n}\) and \(\text{ACA}_0\). By Theorem 2.6.1, \(\text{PRT}^n_k\) implies \(\text{RT}^n\), so \(\text{PRT}^n_k\) also implies \(\text{RT}^n_k\). By Theorem 2.5.1, \(\text{ACA}_0\) implies \(\text{PRT}^n_k\), so \(\text{RT}^n_k\) also implies \(\text{PRT}^n_k\).

2.1.2 Outline

We begin in Section 2.1.3 with a proof of \(\text{PRT}^1_k\) from \(\text{RCA}_0 + \text{RT}^1_k\). In Section 2.2, we prove \(\text{PRT}^2_k\) using paths through a \(\Pi^0_2\)-definable tree. In Section 2.3, we adapt this proof to produce low₂ solutions to computable instances of \(\text{PRT}^2_k\).
In Sections 2.4.1 and 2.4.2 we present the combinatorial tools which we use to prove \(\text{PRT}_n^k \). In Section 2.5 we show that each computable instance of \(\text{PRT}_n^k \) has a solution which can be computed using any path through a certain \(\Pi^0_n \)-definable tree.

These proofs share a common proof method, and the intuition from the earlier proofs is helpful in the later proofs. In fact, Section 2.2 is exactly the \(n = 2 \) case of the proof of \(\text{PRT}_n^k \) in Section 2.5. It is given separately to illuminate both the \(\text{low}_2 \) proof of \(\text{PRT}_k^2 \) and the general proof of \(\text{PRT}_n^k \).

Definition 2.1.17. Suppose we have fixed \(f \) and \(\phi \) as in \(\text{PRT}_n^k \) for some \(n,k \). A finite set \(Y \subseteq \mathbb{N} \) is a *block* if it is \(f \)-homogeneous and there is \(w \in \mathbb{N} \) such that \(Y \subseteq \{1, \ldots, w\} \) and \(|Y| \geq \phi(w) \). We say that a sequence of blocks \(\{Y_i\}_{i \in I} \) is an *increasing sequence of blocks* if \(\max(Y_i) < \min(Y_{i+1}) \) for each \(i \).

The central idea of these proofs is (1) to define paths through certain trees, then (2) to use these paths to define an increasing sequence of blocks, and finally (3) to refine this sequence to obtain the desired set.

In Section 2.6 we prove lower bounds on the complexity of \(\text{PRT}_n^k \). We begin by using \(\text{PRT}_n^{2^n-1+k} \) to prove to \(\text{RT}_k^n \) over \(\text{RCA}_0 \). Adapting this argument, we show that there is a computable instance of \(\text{PRT}_n^{2^n-1+k} \) that has no \(\Sigma^0_n \) solution.

2.1.3 A proof of \(\text{PRT}_n^1 \)

We begin by showing:

Theorem 2.1.18 (RCA\(_0\)). For each \(k \in \mathbb{N} \), \(\text{RT}_k^1 \) implies \(\text{PRT}_n^1 \)

In this proof, no tree is needed: we simply select and refine a sequence of blocks. We will use the following fact to obtain the sequence of finite sets:
Claim 2.1.19 (RCA$_0$). Suppose $\phi : \mathbb{N} \to \mathbb{N}$ satisfies $w \to (\phi(w))_{k+1}^1$ for all w. Then $(\forall m)(\exists w > m)[w - m \to (\phi(w))_{k}^1]$.

Proof. Given m, take w large enough so that $\phi(w) > m$. Fix any $A \subseteq \mathbb{N}$ with $|A| = w - m$, and any coloring $f : A \to \{1, \ldots, k\}$. We must obtain a $\phi(w)$-element homogeneous set. First, select any $X \subseteq \mathbb{N}$ of size w such that $A \subseteq X$. Next, define $\hat{f} : X \to \{1, \ldots, k, k+1\}$ by setting $\hat{f}(x) = f(x)$ if $x \in A$, and setting $\hat{f}(x) = k + 1$ if $x \notin A$.

Let Y be a \hat{f}-homogeneous subset of X of size $\phi(w)$. Then Y is \hat{f} homogeneous with color $c \in \{1, \ldots, k\}$ since the color $k + 1$ was assigned to $m < \phi(w)$ numbers. It follows that $Y \subseteq A$ is the desired f homogeneous set of size $\phi(w)$. \qed

Proof of Theorem 2.1.18. Fix $f : [\mathbb{N}]^1 \to \{1, \ldots, k\}$ and ϕ as in PRT$_k^1$. We produce a set A which is packed for ϕ and semi-homogeneous for f. Because $n = 1$, ‘semi-homogeneous’ means ‘homogeneous.’

Inductively define an increasing sequence $w_0 < w_1 < \ldots$ by setting $w_0 = 1$ and w_{i+1} to be the least $w > w_i$ such that $w - w_i \to (\phi(w))_{k}^1$. By Claim 2.1.19, w_{i+1} exists whenever w_i exists. Notice that w_i is defined by iterating a total Δ^0_1 function i many times. It follows that $i \mapsto w_i$ is total by Σ^0_1 induction (and Proposition 6.5 of [12]). Furthermore, $\{w_i : i \in \mathbb{N}\}$ is unbounded by Σ^0_1 induction.

For each i, let $Y_i \subseteq (w_i, w_{i+1}]$ be the f-homogeneous subset of size $\phi(w_{i+1})$ with least index as a finite set. For each i, Y_i exists because $w_{i+1} - w_i \to (\phi(w_{i+1}))_{k}^1$. This sequence has a Δ^0_1 definition.

The sequence $\{Y_i\}$ induces a coloring $g : \mathbb{N} \to \{1, \ldots, k\}$ such that $g(i)$ is the color given to any/all $x \in Y_i$ by f. Then g is Δ^0_1 because f and the Y_i are both Δ^0_1, and g is well defined because each Y_i is f-homogeneous. By Δ^0_1 comprehension, g exists as a set in the model. By RT$_k^1$, there is a $c \in \{1, \ldots, k\}$ and an infinite
$H \subseteq \mathbb{N}$ such that H is g-homogeneous.

Let $A = \bigcup_{i \in H} Y_i$. Clearly, A is f-homogeneous. Furthermore, $Y_i \subset A$ for all $i \in H$, hence $|A \cap \{1, \ldots, w_i\}| \geq \phi(w_i)$ for each $i \in H$. Recall that H is infinite. In other words, A is packed for ϕ and homogeneous for f. \hfill \Box

Recall that RCA_0 is true in the ω-model of second order arithmetic whose second order part is the collection of all computable sets (that is, $(\omega, \text{REC}) \models \text{RCA}_0$). Thus PRT^1_k is true in (ω, REC), and we obtain the following corollary.

Corollary 2.1.20. For each computable $f : \mathbb{N} \rightarrow \{1, \ldots, k\}$ and each computable $\phi : \mathbb{N} \rightarrow \mathbb{N}$ such that $\phi(w) \leq \lceil \frac{w}{k+1} \rceil$ for all w, there is a computable set A which is packed for ϕ and homogeneous for f.

2.2 A tree proof of PRT^2_k

We begin by proving:

Theorem 2.2.1. Fix any $P \gg \emptyset$. For any computable $f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\}$ and any computable ϕ as in PRT^2_k, there is a set A computable from P which is packed for ϕ and semi-homogeneous for f.

Both the statement and the proof of Theorem 2.2.1 are the $n = 2$ case of Theorem 2.5.1. In Section 2.3, we will adapt this proof to obtain the low_2 proof of PRT^2_k, and in Section 2.5 we will generalize it to prove PRT^n_k.

For the remainder of this section, fix a computable instance of PRT^2_k. That is, fix a computable coloring $f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\}$ and a computable total function $\phi : \mathbb{N} \rightarrow \mathbb{N}$ such that $w \rightarrow (\phi(w))_{k+1}^2$ for all w. Recall that we assume, without loss of generality, that $\lim \inf_w \phi(w) = \infty$.

25
2.2.1 Outline

In proofs of Ramsey’s Theorem, one usually builds homogeneous sets by adding one number at each step.

We will build packed sets by adding a block set Y at each step. Our goal is to build a semi-homogeneous (2-colored) set where each pair x, y in the same block is given one single fixed color, and each pair x, y in different blocks is given another (possibly different) fixed color. We ensure that we can always pick the next block by keeping the set of potential future numbers sufficiently “large.”

During the construction, each block will be f homogeneous, and all elements of our finite set Y will be given a single color with all elements of future blocks. At the end of the construction, we will apply the infinite pigeonhole principle twice: once to ensure that all blocks are homogeneous with the same color, and once to ensure that there is a single color given to pairs in different blocks.

2.2.2 Largeness for exponent 2

We will use a helper coloring $g : \mathbb{N} \to \{1, \ldots, k\}$ to define this sequence of blocks. When we select any block Y, we will commit to choosing all future blocks inside $\{y : (\forall x \in Y)[f(x, y) = g(x)]\}$. By choosing each Y to be g-homogeneous, we ensure that the elements of each Y are given a single color with all future blocks.

The notion of “largeness” given by Erdős and Galvin is Π^1_1 (quantifying over all possible $g : \mathbb{N} \to \{1, \ldots, p\}$), and corresponds to our Lemma 2.2.5. To make the construction computable relative to some $P \gg \emptyset'$, we work with the following Π^0_2 definition of largeness:

\footnote{Recall that we call a finite set Y a block if it is f-homogeneous and there is $w \in \mathbb{N}$ such that $Y \subseteq \{1, \ldots, w\}$ and $|Y| \geq \phi(w)$.}
Definition 2.2.2 (Largeness for exponent 2). A set $X \subseteq \mathbb{N}$ is large if

$$
(\forall m)(\forall p)(\exists w)(\forall \rho \in p^w)[\exists Y \subseteq (m, w] \cap X \text{ s.t.}
|Y| \geq \phi(w),
Y \text{ is homogeneous for } f, \text{ and}
Y \text{ is homogeneous for } \rho.]
$$

Here, we are thinking of ρ as a partial function with domain $\{1, \ldots, w\}$. We say X is small if X is not large. Note that “X is large” is a $\Pi^0_{2,X}$ statement.

We begin with the analog of the $n = 2$ case of Claim 1 of [8].

Lemma 2.2.3. \mathbb{N} is large.

Proof. Given m and p, define w large enough so that $(\phi(w) - m) \to (2)_p^1$. For any $\rho \in p^w$, we must obtain $Y \subseteq (m, w]$ as in the definition of largeness.

First, define a coloring $F : [\{1, \ldots, w\}]^2 \to \{1, \ldots, k, k + 1\}$ as follows\footnote{This is where we use the assumption in PRT_k^2 that $w \to (\phi(w))_{k+1}^2$ for all w.} For $Z \in [\{1, \ldots, w\}]^2$, set $F(Z) = f(Z)$ if $Z \subseteq (m, w]$ and Z is ρ-homogeneous. Otherwise, set $F(Z) = k + 1$.

Because $w \to (\phi(w))_{k+1}^2$, there is a set $Y \subseteq \{1, \ldots, w\}$ such that $|Y| \geq \phi(w)$ and Y is F homogeneous for some $i \in \{1, \ldots, k, k + 1\}$.

We show that $i \neq k + 1$: Because $\phi(w) - m \to (2)_p^1$, there is an 2-element subset $Z \subseteq Y \cap (m, w]$ which is ρ-homogeneous. By definition of F, $F(Z) \neq k + 1$. Because Y is F homogeneous, we see that $i = F(Z) \neq k + 1$.

Consequently, Y is f-homogeneous, $Y \subseteq (m, w]$, and $|Y| \geq \phi(w)$. To see that Y is ρ-homogeneous, notice that any 2-element subset of Y is ρ-homogeneous. □

Next, we give the analog of the $n = 2$ case of Claim 2 of [8].
Lemma 2.2.4. The union of two small sets is small. Therefore, for any partition \(L = L_1 \cup \cdots \cup L_k \) of a large set \(L \), one of the \(L_i \) is large.

Proof. Given \(S_1 \) and \(S_2 \) small, fix \(m_i, p_i, \) and \(w \mapsto \rho_{i,w} \in p^w \) witnessing the smallness of \(S_i \). Define \(m = \max\{m_1, m_2\} \) and \(p = p_1 \cdot p_2 \cdot 2^3 \). Define \(s : \mathbb{N} \to \{1, 2\} \) by \(s(x) = 1 \) if \(x \in S_1 \), and \(s(x) = 2 \) otherwise. Given \(w \), define \(\hat{\rho}_w(x) = \langle \rho_{1,w}(x), \rho_{2,w}(x), s(x) \rangle \) for each \(x \leq w \).

Suppose toward a contradiction that \(S_1 \cup S_2 \) is large. Then there is some \(\hat{w} \) witnessing that \(S_1 \cup S_2 \) is large for \(p \) and \(m \) defined as above. Obtain the set \(\hat{Y} \subseteq S_1 \cup S_2 \) promised by the definition of largeness applied to \(m, p, \hat{w}, \) and \(\hat{\rho}_w \). Note that \(\hat{Y} \) is homogeneous for \(s \), so \(\hat{Y} \subseteq S_i \) for some \(i \). In either case, \(\hat{Y} \) is contained in the interval \((m_i, \hat{w}]\), is homogeneous for \(f \) and \(\rho_{i,\hat{w}} \), and has size \(|\hat{Y}| \geq \phi(\hat{w}) \).

This contradicts our choice of witnesses of the smallness of \(S_i \). \(\square \)

2.2.3 The construction

To prove \(\text{PRT}_k^2 \), we first show that if \(X \) is large in the sense of Definition 2.2.2, it is large in the sense used by Erdős and Galvin:

Lemma 2.2.5 (The inductive step). If \(X \) is large and \(g : \mathbb{N} \to \{1, \ldots, p\} \), then for each \(m \in \mathbb{N} \) there is a \(w \in \mathbb{N} \) and \(Y \subseteq (m, w] \cap X \) such that \(|Y| \geq \phi(w) \) and \(Y \) is homogeneous for \(f \) and \(g \).

Proof. Fix \(X \) large, \(g : \mathbb{N} \to \{1, \ldots, p\} \), and any \(m \in \mathbb{N} \). Find \(w \in \mathbb{N} \) as in the definition of largeness. Then \(g \upharpoonright w \in p^w \) so there is a set \(Y \subseteq (m, w] \) with \(|Y| \geq \phi(w) \) homogeneous for \(g \upharpoonright w \) and \(f \). Hence, \(Y \) is homogeneous for \(g \). \(\square \)

We will use a single well-chosen helper coloring \(g : \mathbb{N} \to \{1, \ldots, k\} \) to build a packed semi-homogeneous set.

\(^3\)Note that \(p > p_i \). This is why Definition 2.4.4 quantifies over all possible choices of \(p \).
Lemma 2.2.6 (Obtaining a guide). Given any \(P \gg \emptyset' \), there is a \(P \)-computable coloring \(g : \mathbb{N} \to \{1, \ldots, k\} \) such that for each \(w \in \mathbb{N} \), the set \(\{ y > w : (\forall x \leq w) [f(x, y) = g(x)] \} \) is large.

Proof. We begin by defining a \(\Pi^0_2 \) tree \(T \). For each \(\tau \in k^{<\mathbb{N}} \),

\[\tau \in T \iff \{(y > |\tau| : (\forall x \leq |\tau|) [\tau(x) = f(x, y)]\} \text{ is large.} \]

We show that \(T \) is infinite by induction on \(|\tau| \). The empty string is an element of \(T \), by Lemma 2.2.3. Suppose \(\tau \in T \). Then \(\{(y > |\tau| + 1 : f(|\tau| + 1, y) = i \land (\forall x \leq |\tau|) [\tau(x) = f(x, y)]\} \) is large for some \(i \in \{1, \ldots, k\} \) by Lemma 2.2.4. It follows that \(\tau \downarrow i \in T \) for some \(i \in \{1, \ldots, k\} \).

By Lemma 1.3.8, any \(P \gg \emptyset' \) is able to compute a path \(g \in [T] \). By the definition of \(T \), the set \(\{ y > w : (\forall x < w) [g(x) = f(x, y)]\} \) is large for any \(w \). In other words, \(g \) is the desired helper coloring. \(\square \)

Lemma 2.2.7 (Building a packed semi-homogeneous set). Fix \(g : \mathbb{N} \to \{1, \ldots, k\} \) such that for each \(w \in \mathbb{N} \), the set \(\{ y > w : (\forall x \leq w) [f(x, y) = g(x)]\} \) is large. Then there is a set \(A \) computable from \(g \) which is packed and semi-homogeneous.

Proof. We begin by computing an increasing sequence of blocks \(\{Y_i\} \) and an infinite set \(\{w_0 < w_1 < \ldots\} \) such that for each \(i \), two properties hold: (1) \(Y_i \subseteq (w_{i-1}, w_i] \) with \(|Y_i| \geq \phi(w_i) \) and (2) there is a color \(c_i \) such that for each \(j > i \), each \(x \in Y_i \), and each \(y \in Y_j \), we have \(f(x, y) = c_i = g(x) \).

We proceed by induction on \(s \). Let \(w_1 \) and \(Y_1 \) be the number and set obtained by applying Lemma 2.2.6 to the large set \(\mathbb{N} \) with \(m = w_0 = 1 \) and \(p = k \).

Here, \(\tau \downarrow i \) denotes the string obtained by adding the character \(i \) to the end of the string \(\tau \).
For the inductive step, suppose \(Y_1, \ldots, Y_s \) has been defined. By our choice of \(g \), \(X = \{ y > w_s : (\forall x \leq w_s)[f(x, y) = g(x)] \} \) is large. Let \(w_{s+1} \) and \(Y_{s+1} \) be the number and set obtained by applying Lemma 2.2.5 with \(m = w_s \) and \(p = k \) to the large set \(X \).

The set \(Y_{s+1} \) is homogeneous for \(f \) and \(g \), and \(Y_{s+1} \subseteq (w_s, w_{s+1}] \) with \(|Y_{s+1}| \geq \phi(w_{s+1})\). In other words, \(Y_{s+1} \) is a block and property (1) holds for \(i = s + 1 \). We must show that property (2) holds for \(j = s + 1 \). Let \(i \leq s \) and let \(c_i = g(\min(Y_i)) \). Because \(Y_i \) is homogeneous for \(g \), and because

\[
Y_{s+1} \subseteq X \subseteq \{ y : (\forall i \leq s)(\forall x \in Y_i)[f(x, y) = g(x)] \},
\]

we see that \(f(x, y) = c_i = g(x) \) for each \(x \in Y_i \) and each \(y \in Y_{s+1} \). In other words, property (2) continues to hold and our construction produces the desired increasing sequence of blocks \(\{Y_i\} \).

We will now extract an infinite semi-homogeneous subsequence of blocks. By property (2), there is a total function \(d : \mathbb{N} \rightarrow \{1, \ldots, k\} \) given by \(d(i) = f(x, y) \) for any/all \(x \in Y_i \) and \(y \in Y_j \) for \(j > i \). Because each \(Y_i \) is homogeneous for \(f \), there is also a total function \(s : \mathbb{N} \rightarrow \{1, \ldots, k\} \) given by \(s(i) = f(x, y) \) for any/all \(x < y \in Y_i \). Note that \(d \) and \(s \) are computable from \(f \).

Applying the infinite pigeonhole principle twice, we obtain \(I \subseteq \mathbb{N} \) infinite and homogeneous for \(d \) and \(s \). Furthermore, we can (non-uniformly) compute \(I \) from \(g \). Let \(A = \bigcup_{i \in I} Y_i \).

To see that \(A \) is semi-homogeneous, note that the color given by \(f \) to pairs in a single \(Y_i \) is the given by \(s \), and the color given by \(f \) to pairs in different blocks is given by \(d \). Because \(I \) is homogeneous for both colorings, \(\bigcup_{i \in I} Y_i \) is given at most two colors by \(f \). Because \(I \) is infinite and because each \(Y_i \) is a block, \(A \) is packed.
Because this procedure was uniform in any $P \gg \emptyset'$, the set $A = \bigcup_{i \in I} Y_i$ is the desired g-computable packed semi-homogeneous set.

In summary:

Proof of Theorem 2.2.1. Suppose we have fixed P, f, and ϕ. By Lemma 2.2.6, we obtain a P-computable function $g : \mathbb{N} \to \{1, \ldots, k\}$ such that for each $w \in \mathbb{N}$, the set $\{y > w : (\forall x \leq w)[f(x, y) = g(x)]\}$ is large. By Lemma 2.2.7, there is a P-computable set A which is packed for ϕ and semi-homogeneous for f, as desired.

2.3 A low_2 proof of PRT^2_k

Modifying the above construction, we prove:

Theorem 2.3.1. Fix any set $B \subseteq \mathbb{N}$. For any B-computable $f : [\mathbb{N}]^2 \to \{1, \ldots, k\}$ and any B-computable ϕ as in PRT^2_k, there is a low_B^2 set A which is packed for ϕ and semi-homogeneous for f.

Iterating this result, we obtain an ω-model of PRT^2_k with only low_2 sets.

Corollary 2.3.2. There is an ω-model of $\text{RCA}_0 + \text{PRT}^2_k$ that is not a model of ACA_0.

In the previous section, we built a sequence of blocks $\{Y_i\}$ such that each element of Y_i was given color $g(\min Y_i)$ with each element of every later block. In this section, we define a sequence of blocks $\{Y_i\}$ with a weaker property: each element of Y_i will be given color $g(\min Y_i)$ with each element of almost every later block. This will allow us to use Mathias forcing (in the style of [1]) to build the sequence of blocks such that $\bigoplus_i Y_i$ is low_2. This induces a low_2 coloring of
pairs: \(d(i, j) = f(\min Y_i, \min Y_j) \). Applying the following result, we will obtain an infinite low\(_2\) semi-homogeneous sequence of blocks.

Theorem 2.3.3 (Cholak, Jockusch, and Slaman [1]). *For each computable coloring \(f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\} \), there is an infinite low\(_2\) homogeneous set.*

A coloring \(f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\} \) is *stable* if \(\lim_y f(x, y) \) exists for each \(x \in \mathbb{N} \). Note that \(\lim_y d(x, y) \) will exist for each \(x \), so we will only apply the above theorem to stable colorings.

For simplicity we present the proof of 2.3.1 when \(B = \emptyset \). We leave the straightforward process of relativizing this proof to an arbitrary set \(B \) to the reader.

2.3.1 The strategy

Fix a computable coloring \(f : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\} \) and a computable function \(\phi : \mathbb{N} \rightarrow \mathbb{N} \) such that \(w \rightarrow (\phi(w))_{k+1}^2 \) for all \(w \).

In this subsection, we give an overview of the construction. Beginning in 2.3.2, we will define our conditions and give the individual steps of the construction. Recall that \(\{Y_i\} \) is an increasing sequence of blocks if for each \(i \), \(Y_i \subseteq \mathbb{N} \) is \(f \)-homogeneous, \(\max(Y_i) < \min(Y_{i+1}) \), and \(|Y_i \cap \{1, \ldots, w\}| \geq \phi(w) \) for some \(w \).

Definition 2.3.4. For any \(I \subseteq \mathbb{N} \), an increasing sequence of blocks \(\{Y_i\}_{i \in I} \) is *pre-semi-homogeneous for \(f \)* if for each \(i, j \in I \) with \(i < j \), there is a single color \(c \) such that \(f(x, y) = c \) for any \(x \in Y_i \), and any \(y \in Y_j \).

Note that any infinite sequence of blocks \(\{Y_i\} \) that is pre-semi-homogeneous induces a coloring \(d : [\mathbb{N}]^2 \rightarrow \{1, \ldots, k\} \), where \(d(i, j) = f(\min Y_i, \min Y_j) \) for each \(\{i, j\} \in [\mathbb{N}]^2 \). We will build an infinite pre-semi-homogeneous sequence of blocks \(\{Y_i\}_{i \in \mathbb{N}} \). Furthermore, we will ensure that for each \(i \), there is a color
\[c_i \in \{1, \ldots, k\} \text{ such that for each } x \in Y_i, \lim_{y \in \bigcup_j Y_j} f(x, y) = c_i. \]

In other words, the induced coloring \(d \) is stable.

In the following construction, we will build a low_2 set \(X \) which is the union of the desired pre-semi-homogeneous sequence of blocks \(\{Y_i\} \). We will also define an infinite set \(W_X = \{w_0 < w_1 < \ldots\} \) such that \(Y_i = X \cap (w_{i-1}, w_i] \), and we will force \(X \oplus W_X \) to be low_2. Intuitively, \(W_X \) records boundaries between the blocks making up \(X \). In this way, we will ensure that we can uniformly recover \(\{Y_i\} \) from the low_2 sets we build. Let \(C\{Y_i\} \) denote \(X \oplus W_X \) (the code for \(\{Y_i\} \)).

The induced stable coloring \(d \) is computable from \(C\{Y_i\} \). By the stable case of Theorem 2.3.3 relativized to \(C\{Y_i\} \), we obtain a homogeneous set \(H \) such that \((H \oplus C\{Y_i\})'' \leq_T (C\{Y_i\})'' \). Note that \(\bigcup_{i \in H} Y_i \) is a \(H \oplus C\{Y_i\} \)-computable packed set, with a single color that is assigned by \(f \) to any pair which is not contained in a single block.

For each \(i \in H \), let \(s(i) \) be the color assigned by \(f \) to each/any pair of elements in \(Y_i \). Applying the infinite pigeonhole principle to \(s \), we obtain an \(H \oplus C\{Y_i\} \)-computable infinite set \(I \subseteq H \) such that \(A = \bigcup_{i \in I} Y_i \) is packed and semi-homogeneous. Note that \(A \) is \(H \oplus C\{Y_i\} \)-computable. Because \(C\{Y_i\} \) is low_2 and because \((H \oplus C\{Y_i\})'' \leq_T (C\{Y_i\})'' \), we see that \(A'' \leq_T \emptyset'' \). Thus \(A \) is low_2, as desired.

2.3.2 Conditions

The construction proceeds by Mathias forcing. For convenience, we define ‘pre-conditions’ (which have computable definitions) and ‘conditions’ (which are pre-conditions with low sets that satisfy a certain \(\Pi^0_2 \) property).

We use a string \(\tau \) to keep track of the colors we are committed to assigning
elements of X with all large enough numbers. All the blocks will be chosen to be f and τ homogeneous, but different blocks may be given different colors.

To ensure that $X \oplus W$ is low$_2$, our construction is computable by any degree PA over \emptyset', and it forces the e^{th} jump at stage $2e$. At stage $2e+1$, it forces $X \oplus W$ to be infinite by adding another block to the initial segment built so far.

2.3.2.1 Pre-conditions

Our pre-conditions have the form (τ, D, W, L) where $\tau \in k^{<N}$ is a string, D and W_D are finite sets, and L is a (possibly infinite) set.

Definition 2.3.5. Consider (τ, D, W, L) with $W_D = \{w_0 < w_1 < \cdots < w_l\}$. For each i such that $1 \leq i \leq l$, set $Y_i := D \cap (w_{i-1}, w_i]$.

We say that (τ, D, W, L) is a pre-condition if (1) $D = \bigcup_{i \leq l} Y_i$, (2) $\{Y_i\}_{i \leq l}$ is pre-semi-homogeneous for f, (3) $|Y_i| \geq \phi(w_i)$, (4) $w_l \leq |\tau| < \min(L)$ (hence each Y_i is in the domain of $\tau \in k^{<N}$), and (5) each Y_i is f- and τ-homogeneous.

In the construction, we will first choose a finite extension of τ, then pick a finite number of blocks Y_i which are homogeneous for τ. This is a key difference between the proof in this section and that in the previous section: here we interleave extending the initial segment of the helper function and extending to the sequence of blocks $\{Y_i\}$.

Definition 2.3.6. We say that a pre-condition $(\hat{\tau}, \hat{D}, \hat{W}_D, \hat{L})$ extends the pre-condition (τ, D, W, L) if the following hold: $\tau \preceq \hat{\tau}$, $D \subseteq \hat{D} \subset D \cup L$ and $W_D \subseteq \hat{W}_D \subset W_D \cup L$, and $\hat{L} \subseteq L$.

We wish to ensure that elements of each block in D will be given a single fixed color with elements of all sufficiently large blocks.
In fact, we will ensure that each element x of a block that is added to D at stage i will be given the color $\tau(x)$ with each element of any block which is added to D at any stage $j > i$.

2.3.2.2 The tree

We use $\tau(x)$ to keep track of the color we have committed to assigning all large enough numbers with x. When f is not a stable coloring, there may be many possible choices of τ. We use a tree to organize our options for extending τ. When we extend (τ, D, W_D, L), we consider the tree T^L defined by

$$\sigma \in T^L \iff \{y \in L : y > |\sigma| \land (\forall x \leq |\sigma|)[f(x, y) = \sigma(x)]\} \text{ is large.}$$

Clearly T^L is Π^0_2-definable. If L is large, then $\lambda \in T^L$ and Lemma 2.2.4 implies that T^L has no dead ends. Note that T^L has a fixed Π^0_2 definition (it does not depend on L or τ).

When we extend any condition (τ, D, W_D, L), we will always extend τ to a string $\hat{\tau} \in T^L$ such that $\hat{\tau} \succeq \tau$, and we will always choose \hat{L} such that $\hat{\tau} \in T^L$.

Definition 2.3.7 (Conditions). A pre-condition (τ, D, W_D, L) is a condition if L is large, L is low, and $L \subseteq \{y > |\tau| : (\forall x \leq |\tau|)[f(x, y) = \tau(x)]\}$.

In particular, each condition will have $\tau \in T^L$.

2.3.3 The module for even stages

At stage $2e$, our goal is to force $\Phi^X_e(e)$. Let (τ, D, W_D, L) be the current condition, and select t such that $D = Y_1 \cup \cdots \cup Y_t$.

35
Definition 2.3.8 (The Π^0_1, L class). If $g \in k^N$, then $g \in U$ if and only if $g \succ \tau$ and

$$(\forall l \geq 1)(\forall w_l > \cdots > w_1 > w_0 = |\tau|)(\forall Y_{t+1}, \ldots, Y_{t+l} \text{ s.t. } Y_{t+i} \subseteq (w_{i-1}, w_i] \cap L)$$

If $\{Y_{t+i}\}_{i \leq l}$ is pre-semi-homogeneous for f, and

for each $i \leq l$, $|Y_{t+i}| \geq \phi(w_i)$ and Y_{t+i} is g homogeneous,

then $\Phi_{e}^{(D, Y_{t+1} \cup \cdots \cup Y_{t+l}) \oplus (W_D \cup \{w_1, \ldots, w_l\})}(e) \uparrow$.

2.3.3.1 Forcing divergence

Suppose $U \neq \emptyset$. By the Low Basis Theorem (Theorem 1.3.3), there is some $g \in U$ which is low over L. Because L is low, $L \oplus g$ is low. The sets $L \cap g^{-1}(c)$ for $c \in \{1, \ldots, k\}$ partition the large set L. For each such c, $L \cap g^{-1}(c)$ is computable from $L \oplus g$, so is low.

By Lemma 2.2.4, there is a c such that $L \cap g^{-1}(c)$ is large. This statement is $\Pi^0_2, L \oplus g$. Because $L \oplus g$ is low, this statement is Π^0_2. Therefore a degree which is PA over \emptyset' can select one of these sets which is large.

Let $\hat{L} = L \cap g^{-1}(c)$ for the c selected above. By our choice of c, $\hat{L} \subseteq \{y > |\tau| : (\forall x \leq |\tau|)[f(x, y) = \tau(x)\}$, and \hat{L} is large and low. Let $\hat{\tau} = \tau$, $\hat{D} = D$, and $\hat{W}_D = W_D$. Then $(\hat{\tau}, \hat{D}, \hat{W}_D, \hat{L})$ is a condition extending (τ, D, W_D, L).

The definition of $g \in U$ and the g-homogeneity of \hat{L} ensures that no future initial segment of $X \oplus W$ will cause $\Phi_{e}^{X \oplus W}(e)$ to converge. We have thus forced that $\Phi_{e}^{X \oplus W}(e) \uparrow$.

2.3.3.2 Forcing convergence

Suppose $U = \emptyset$. Recall that T^L has no dead ends, and that $\tau \in T^L$ because (τ, D, W_D, L) is a condition. In particular, T^L is infinite, and no path through T^L
is in \mathcal{U}.

Note that T^L is Π^0_2 because T^L is Π^0_2. Uniformly in any $P \gg \emptyset'$, we can compute longer and longer (comparable) strings in T^L which extend τ. Because \mathcal{U} is empty, we will eventually compute a string $\hat{\tau} \in T^L$, a pre-semi-homogeneous sequence of blocks $Y_{t+1}, \ldots, Y_{t+l} \subset \mathbb{N}$, and dividers $w_1 < \cdots < w_l \leq |\hat{\tau}|$ which witness $\Phi^{(\cdots) \oplus (\cdots)}(e) \downarrow$. Set $\hat{D} = D \cup Y_{t+1} \cup \cdots \cup Y_{t+l}$ and $\hat{W}_D = W_D \cup \{w_1, \ldots, w_l\}$. Let u be larger than all numbers appearing so far (including the use of the computation and $|\hat{\tau}|$), and set $\hat{L} = L \cap \{y \geq u : (\forall x \leq |\hat{\tau}|)[\hat{\tau}(x) = f(x, y)]\}$. \hat{L} remains low because $\{y \geq u : (\forall x \leq |\hat{\tau}|)[\hat{\tau}(x) = f(x, y)]\}$ is a computable set. \hat{L} remains large because $\hat{L} = L \cap \{y > |\hat{\tau}| : (\forall x \leq |\hat{\tau}|)[\hat{\tau}(x) = f(x, y)]\}$, which is large by definition of $\hat{\tau} \in T^L$. In short, $($$\hat{\tau}, \hat{D}, \hat{W}_D, \hat{L})$ is a condition extending (τ, D, W_D, L).

We have made progress toward our pre-semi-homogeneous packed set, and we have forced that $\Phi^{\hat{D} \oplus \hat{W}_D}(e) \downarrow$.

2.3.4 The module for odd stages

At stage $2e + 1$, our goal is to ensure that X is made up of at least $e + 1$ many blocks by adding another block on the end.

By the induction hypothesis L is large. Applying the definition of largeness with $p = k$ and $m = |\tau|$, gives a w such that for any $\rho \in k^w$ there is a block $Y \subseteq (m, w] \cap L$ with $|Y| \geq \phi(w)$ which is homogeneous for ρ and f.

Because T^L contains τ and has no dead ends, it contains a string $\hat{\tau} \succeq \tau$ of length w. Take $Y \subseteq (m, w] \cap L$ to be the block with $|Y| \geq \phi(w)$ that is homogeneous for $\hat{\tau}$ and f.

Define $\hat{L} = L \cap \{y > |\hat{\tau}| : (\forall x \leq |\hat{\tau}|)[\hat{\tau}(x) = f(x, y)]\}$. This set is large by the
definition of $\hat{\tau} \in T^L$. Note that \hat{L} is low because it computable from L. Define $\hat{D} = D \cup Y$ and $\hat{W}_D = W_D \cup \{w\}$. Then $(\hat{\tau}, \hat{D}, \hat{W}_D, \hat{L})$ is a condition extending (τ, D, W_D, L).

2.3.5 Putting it all together

We now complete the proof Theorem 2.3.1.

Proof of Theorem 2.3.1. The construction above relativizes to any set $B \subseteq \mathbb{N}$. Fix any P that is PA over B' and is low over B'. We claim that the construction is P-uniform. On even stages, deciding which case to enter requires asking if a $\Pi^0_{1,B}$ class is nonempty. This can be rephrased as a $\Pi^0_{1,B}$ question, which can be answered uniformly by P.

Forcing divergence required selecting some $g \in U$ that is low over L, and finding a correct color c. By the second half of Theorem 1.3.3 g can be found P-uniformly, together with an index witnessing that g is lowB. As noted in the construction, c can also be found P-uniformly.

Odd stages and forcing convergence both require finding longer and longer $\tau \in T^L$. Because T^L is $\Pi^0_{2,B}$, P has a uniform procedure for computing arbitrarily long initial segments of a path through T^L. Finally, we can computably find an index witnessing the lowness of \hat{L} over B using the computable reduction of the appropriate \hat{L} to L together with an index witnessing the lowness of L over B.

This gives a P-uniform sequence of conditions $(\tau_i, D_i, W_{D_i}, L_i)$. From these conditions, we can P-uniformly recover a code $C\{Y_i\}$ for a sequence $\{Y_i\}$. Furthermore, the relativized construction ensures that P can compute the jump of the $B \oplus C\{Y_i\}$. Because P is low over B', it follows that B'' can compute the double jump of $B \oplus C\{Y_i\}$. In other words, $C\{Y_i\}$ is lowB_2.

38
Refining this sequence as described in Section 2.3.1 produces a low_2^B set that is packed for ϕ and semi-homogeneous for f, as desired.

2.4 Tools for proving PRT_k^n

2.4.1 Trees and colorings of n-tuples

As in Section 2.2, we will use helper colorings to prove PRT_k^n. When $n > 2$ we will need helper colorings which assign colors to $[N]^a$ for $a \in \{1, \ldots, n-1\}$. As before, we will define these helper colorings via initial segments, which we will identify with elements of $k^{[<N]^a}$.

Definition 2.4.1. Let $k^{[<N]^a}$ denote the set of all partial functions τ such that $\tau : [\{1, \ldots, w\}]^a \rightarrow \{1, \ldots, k\}$ for some $w \in \mathbb{N}$. If $\tau : [\{1, \ldots, w\}]^a \rightarrow \{1, \ldots, k\}$, we will call $w = |\tau|$ the length of τ.

Given $\tau, \rho \in k^{[<N]^a}$, we say that $\tau \preceq \rho$ if and only if (1) $|\tau| \leq |
ho|$ and (2) $\tau(Z) = \rho(Z)$ for each $Z \in [\{1, \ldots, |\tau|\}]^a$.

Remark 2.4.2. We will sometimes refer to a string $\tau \in k^{[1,\ldots,w]^a}$ when $w < a$. In this case, $\text{dom}(\tau) = \emptyset$. This has the strange, but not serious, consequence that the empty string in $k^{[1,\ldots,w]^a}$ has length 0, 1, \ldots, and $a-1$.

While $k^{[<N]^a}$ is not a k-ary tree, or even a k-branching tree, there is a computable function that bounds the strings of any given length w. In fact, the set $\{\sigma \in k^{[<N]^a} : |\sigma| = w\}$ is computable for each $w \in \mathbb{N}$.

Remark 2.4.3. There are $\binom{w+1}{a} - \binom{w}{a}$ many strings in $[\{1, \ldots, w+1\}]^a$ that are not in $[\{1, \ldots, w\}]^a$. Therefore, each string in $k^{[1,\ldots,w]^a}$ has exactly $k^{(w+1) - \binom{w}{a}}$ immediate successors in $k^{[1,\ldots,w,w+1]^a}$.
Our motivation for working with subtrees of $k^{[<\mathbb{N}]^a}$ is the natural correspondence between colorings $g : [\mathbb{N}]^a \to \{1, \ldots, k\}$ and elements of $k^{[\mathbb{N}]^a}$. If $\tau \in k^{[<\mathbb{N}]^a}$ and $g \in k^{[\mathbb{N}]^a}$, we say that $\tau \prec g$ if $\tau(Z) = g(Z)$ for each $Z \in \{1, \ldots, |\tau|\}^a$.

2.4.2 Largeness for exponent n

2.4.2.1 Motivation

We will build a sequence of blocks $\{Y_i\}$ so that the color of $Z \in [\bigcup Y_i]^n$ depends only on how Z is partitioned by the Y_i. When $n = 2$, we built this sequence with the aid of a single helper function (which assigned x the color it would be given with all big enough y).

For $n > 2$, we will need more than one helper function. In fact, when $f : [\mathbb{N}]^n \to \{1, \ldots, k\}$, we will need $2^{n-1} - 1$ helper colorings. When we select Y, we will need to ensure that Y is homogeneous for each of the helper colorings $g_1, \ldots, g_{2^{n-1} - 1}$.

When $n = 2$, we defined what it meant for a subset of \mathbb{N} to be large. For each $n > 2$, we now define what it means for a subset of $[\mathbb{N}]^{n-1}$ to be large. Before, the helper function was a map of numbers and large sets were sets of numbers. Now, the helper functions will be maps of (up to) $n - 1$-element sets and our large sets will be subsets $[\mathbb{N}]^{n-1}$. In fact, each $a \in \{1, \ldots, n - 1\}$ will be the exponent of at least one helper coloring.

2.4.2.2 Definitions and lemmas

In the construction, we will define a helper coloring of exponent r_1 for each ordered tuple (r_1, \ldots, r_j) such that $r_1 + \cdots + r_j = n$ and $j > 1$. Fix some enumeration of these $2^{n-1} - 1$-many tuples.
For clarity, we will write $\hat{l} = 2^{n-1} - 1$ for the number of helper colorings. We will write a_i to refer to 1st component of the i^{th} tuple in our enumeration (which will be the exponent of the i^{th} helper coloring). We can define $a_1, \ldots, a_{\hat{l}}$ using any listing of the tuples that define the helper colorings.

The earlier discussion suggests a Π^1_1 notion of largeness (quantifying over possible choices of the g_i). To make our constructions as effective as possible, we work with the following Π^0_2 notion of largeness:

Definition 2.4.4 (Largeness for exponent n). A set $L \subseteq [N]^{n-1}$ is large if

$$(\forall m)(\forall p_1, \ldots, p_I \in N)$$

$$(\exists w)(\forall p_1, \ldots, p_I \text{ s.t. } \rho_i \in p_i^{[\{1, \ldots, w\}^{n_i}]})$$

$$[\exists Y \subseteq (m, w] \text{ with } [Y]^{n-1} \subset L \text{ s.t. }$$

$$|Y| \geq \phi(w),$$

$$Y \text{ is homogeneous for } f, \text{ and}$$

$$Y \text{ is homogeneous for each } \rho_i.]$$

Here, we are thinking of each ρ_i as a partial function with domain $[\{1, \ldots, w\}^{n_i}]$. We say L is small if L is not large. Note that “L is large” is a Π^0_2 statement.

Once we have defined our helper functions, the following lemma will allow us to extract a sequence of blocks.

Lemma 2.4.5 (The inductive step). Fix $f : [N]^n \to \{1, \ldots, k\}$ and \hat{l}-many colorings $g_i : [N]^{a_i} \to \{1, \ldots, p_i\}$. Suppose that $L \subseteq [N]^{n-1}$ is large and $m \in N$. Then there exists $w \in N$ and $Y \subseteq (m, w]$ such that $[Y]^{n-1} \subset L$, $|Y| \geq \phi(w)$, and Y is f- and g_i-homogeneous for each i.

41

5In this section, our definition of largeness appears to diverge from the one used by Erdős and Galvin in [8]. They give a Π^1_1 definition which quantifies over a single coloring $g : [N]^{n-1} \to \{1, \ldots, p\}$. In fact, the proofs in this section are very similar to their analogs in [8].
Proof. Given m and the p_i’s, let w be as in the definition of largeness. Setting $\rho_i = g \upharpoonright w$ for each i, we obtain the desired set Y. \hfill \Box

In the next two lemmas, we verify that Definition 2.4.4 satisfies two key properties of "largeness:" (1) the set of all $n-1$-element sets is large, and (2) any finite partition of a large set contains at least one large set.

We begin with the analog of Claim 1 in \cite{8}:

Lemma 2.4.6. $[\mathbb{N}]^{n-1}$ is large.

Proof. Fix $m, p_1, \ldots, p_{\hat{I}} \in \mathbb{N}$. First we must select $w \in \mathbb{N}$. To help define w, we define numbers $w_1, \ldots, w_{\hat{I}}$ by induction from \hat{I} down to 1. Let $w_\hat{I} \in \mathbb{N}$ be large enough such that $w_\hat{I} \rightarrow (n)_{p_\hat{I}}^{a_\hat{I}}$. Beginning with $i = \hat{I} - 1$, and counting down until $i = 1$, let $w_i \in \mathbb{N}$ be large enough such that $w_i \rightarrow (w_{i+1})_{p_i}^{a_i}$. Finally, let $w \in \mathbb{N}$ be large enough such that $\phi(w) - m \geq w_1$.

Given any $\rho_1, \ldots, \rho_{\hat{I}}$ such that $\rho_i \in p_i^{[1, \ldots, w]}_{a_i}$, we will obtain the desired set $Y \subseteq (m, w)$. Toward this end, we define an auxiliary coloring $F : [\mathbb{N}]^n \rightarrow \{1, \ldots, k, k+1\}$ as follows. We set $F(Z) = f(Z)$ if Z is homogeneous for each ρ_i, and $Z \subseteq (m, w)$. Otherwise, we set $F(Z) = k + 1$.

Take any F-homogeneous subset $Y \subseteq \{1, \ldots, w\}$ with $|Y| \geq \phi(w)$. Such a set Y exists because $w \rightarrow (\phi(w))_{k+1}^n$. We will next argue that Y is homogeneous for F with some color $i \in \{1, \ldots, k\}$, and is therefore the desired set.

Because $|Y| = \phi(w)$, it is clear that $|Y \cap (m, w)| \geq \phi(w) - m \geq w_1$. Beginning with $i = 1$, and counting up until $i = \hat{I} - 1$, we see that there is a w_{i+1}-element subset of $Y \cap (m, w)$ which is homogeneous for ρ_1, \ldots, ρ_i. Finally, there is an n-element subset Z of $Y \cap (m, w)$ which is homogeneous for $\rho_1, \ldots, \rho_{\hat{I}-1}, \rho_\hat{I}$.

\footnote{This is where we use the assumption in PRT$_k^n$ that $w \rightarrow (\phi(w))_{k+1}^n$ for all w.}
Note that by the definition of F, that $F(Z) = f(Z) \in \{1, \ldots, k\}$. Because $Z \in [Y]^n$, and because Y is F-homogeneous, Y is given color $c \neq k + 1$ by F. It follows that $Y \subset (m, w)$ and that Y is f homogeneous. It also follows that each $V \in [Y]^n$ is homogeneous for ρ_1, \ldots, ρ_l. Because the exponent of each of these maps is less than n, Y itself is homogeneous for each ρ_i. Clearly $[Y]^{n-1} \subseteq [N]^{n-1}$, and $|Y| \geq \phi(w)$. In other words, Y is the desired set.

The next lemma is the analog of Claim 2 in [8]:

Lemma 2.4.7. The union of any two small sets of $[N]^{n-1}$ is small. In particular, for any partition $L = L_1 \cup \cdots \cup L_s$ of a large set L, one of the L_i is large.

Proof. Suppose that $S_1, S_2 \subset [N]^{n-1}$ are small. We show that $S_1 \cup S_2$ is small.

Let $m_1, p_1, \ldots, p_l \in N$ and $w \mapsto \rho_i^w$ be chosen to witness the smallness of S_1 (the strings $\rho_i^w \in \rho_i^{[1, \ldots, w]}$ demonstrate the failure of $w \in N$ to satisfy the definition of largeness). Let $m_2, q_1, \ldots, q_l \in N$ and $w \mapsto \sigma_i^w$ (such that $\sigma_i^w \in \sigma_i^{[1, \ldots, w]}$) witness the smallness of S_2. Recall that by our choice of the a_i, $a_t = n - 1$ for some $t \leq \hat{l}$.

To apply the definition of largeness to $S_1 \cup S_2$, we must define m (the lower bound on Y) and the p_i (the number of colors assigned by the ρ_i). Define $m = \max\{m_1, m_2\}$, define $\hat{p}_t = p_t \cdot q_t \cdot 2$, and define $\hat{p}_i = p_i \cdot q_i$ for $i \neq t$.

We want to define $\hat{\rho}_i$ such that any set Y which is homogeneous for each $\hat{\rho}_i$ has $[Y]^{n-1} \subseteq S_c$ for $c = 1$ or 2. Recall that $S_c \subseteq [N]^{n-1}$. As a first step, define $s : [N]^{n-1} \to \{1, 2\}$ by $s(U) = 1$ if $U \in S_1$, and $s(U) = 2$ otherwise.

Given w we define $\hat{\rho}_i^w(U) = \langle \rho_i^w(U), \sigma_i^w(U), s(U) \rangle$ for each $U \in \{1, \ldots, w\}^{n-1}$. For each $i \neq t$ and for each $U \in \{1, \ldots, w\}^{a_i}$, we define $\hat{\rho}_i^w(U) = \langle \rho_i^w(U), \sigma_i^w(U) \rangle$.

Note that $\hat{p}_i > p_i$. This is why Definition 2.4.4 quantifies over all possible choices of p_i.

43
Toward a contradiction, suppose that $S_1 \cup S_2$ is large. Fix \hat{w} witnessing that $S_1 \cup S_2$ is large with the m and \hat{p}_i defined as above. Obtain \hat{Y} as in the definition of largeness. Then $[\hat{Y}]^{n-1} \subseteq S_1 \cup S_2$ and Y is homogeneous for the $\hat{\rho}_i^{\hat{w}}$ defined above. Note that \hat{Y} is homogeneous for s (because it is homogeneous for $\hat{\rho}_i^{\hat{w}}$) so $[\hat{Y}]^{n-1} \subseteq S_j$ for some $j \in \{1, 2\}$. In either case, $\hat{Y} \subseteq (m_j, \hat{w}]$ and $|\hat{Y}| \geq \phi(\hat{w})$. Furthermore, \hat{Y} is homogeneous for f, each $\rho_i^{\hat{w}}$, and each $\sigma_i^{\hat{w}}$. This contradicts our choice of parameters to witness of the smallness of both S_1 and S_2.

Our last largeness lemma comes from the proof of Claim 4 of [8]. Essentially, it says that for any coloring h of exponent less than n, most elements of a large set are h-homogeneous.

Lemma 2.4.8. Suppose that $L \subseteq [N]^{n-1}$ is large and $p \leq n-1$. For any coloring $h : [N]^p \to \{1, \ldots, s\}$, the set $\{ Z \in L : Z$ is h-homogeneous $\}$ is large.

Proof. Let $E = \{ Z \in L : (\exists D_1, D_2 \in [Z]^p)(h(D_1) \neq h(D_2)) \}$. Then L is the union of E and $\{ Z \in L : Z$ is h homogeneous $\}$, so one of these is large by Lemma 2.4.7. Suppose toward a contradiction that E is large. Because $\lim \inf_x \phi(x) = \infty$, and by the definition of large, there are arbitrarily large finite sets Y such that $[Y]^{n-1} \subseteq E$. Take Y such that $|Y| \to (n-1)^p$. Then there is some $Z \in [Y]^{n-1}$ which is h-homogeneous. But then $Z \in E$ by our choice of Y, contradicting the definition of E.

2.5 A tree proof of PRT_k^n

We now prove:

Theorem 2.5.1. Given $n \in \omega$, fix any $P \gg \emptyset^{(n-1)}$. Each computable instance of PRT_k^n has a P-computable solution.
For each \(n \in \omega \), there is a \(\Delta^0_{n+1} \)-definable set \(P \gg \emptyset^{(n-1)} \). Because each set computable from a \(\Delta^0_{n+1} \)-definable set is itself \(\Delta^0_{n+1} \)-definable, we obtain the following corollary.

Corollary 2.5.2. Fix \(n \in \omega \). Each computable instance of \(\text{PRT}_k^n \) has a \(\Delta^0_{n+1} \)-definable solution.

For the rest of this section, fix a computable instance of \(\text{PRT}_k^n \). That is, fix a computable coloring \(f : [\mathbb{N}]^n \to \{1, \ldots, k\} \) and a computable function \(\phi : \mathbb{N} \to \mathbb{N} \) with unbounded range such that \(w \to (\phi(w))_{k+1}^n \) for all \(w \).

2.5.1 The strategy

Definition 2.5.3. Let \(S \) be the set of all ways of partitioning \(n \) numbers into disjoint intervals. In other words, \(S = \{(r_1, \ldots, r_l) : r_1 + \cdots + r_l = n\} \) where each \(r_i > 0 \). We say that \((r_1, \ldots, r_l)\) has length \(l \). Note that each \((r_1, \ldots, r_l) \in S\) has length \(l \leq n \).

As before, our goal is to define a sequence of blocks \(\{Y_i\} \) such that the color of any \(Z \in [\bigcup Y_i]^n \) depends only on how the \(\{Y_i\} \) partition \(Z \). More precisely, suppose that we are given an increasing sequence of blocks \(\{Y_i\} \). For any \(Z \subset \bigcup Y_i \), we say that \((r_1, \ldots, r_s)\) is the *partition type of \(Z \) if there are \(i_1 < \cdots < i_s \) such that \(|Z \cap Y_{i_j}| = r_j \) for each \(j \leq s \), and if \(Z = \bigcup_{j \leq s} Y_{i_j} \). Note that there are \(2^{n-1} \) elements in \(S \), including a single length 1 partition type \((n)\). If we can ensure that the color of an \(n \)-tuple depends only on its partition type, we will have ensured that \(X \) is semi-homogeneous.

The main work of the proof is to obtain a sequence of blocks \(\{Y_i\} \) such that the color of any \(Z \in [\bigcup Y_i]^n \) depends on *two* things: (1) how it is partitioned by
the \(\{Y_i\} \) and (2) the \(i \in \mathbb{N} \) such that \(\min(Z) \in Y_i \). The desired sequence of blocks is then obtained by \(2^{n-1} \) applications of the infinite pigeonhole principle.

The first step in building this sequence of blocks is to define a collection of helper colorings. That is, we must define a collection of \(2^{n-1} \) colorings \(f_{r_1, \ldots, r_l} : [N]^{r_1} \to \{1, \ldots, k\} \) — one for each valid partition \((r_1, \ldots, r_l) \).

Each helper coloring makes a promise. To be more precise, we need the following:

Definition 2.5.4. Given finite \(U, Z \subset \mathbb{N} \), we say that \(Z \) extends \(U \) if \(U = Z \cap \{1, \ldots, \max(U)\} \). That is, \(Z \) extends \(U \) if \(U \) is an initial segment of \(Z \).

For each \(r_1 \) element set \(U \in [N]^{r_1} \), \(f_{r_1, \ldots, r_l}(U) \) is the color that we promise to give any \(n \) element set \(Z \subset \bigcup Y_i \) with partition type \((r_1, \ldots, r_l) \) that extends \(U \).

We will proceed by induction on \(l \), using the coloring \(f_{r_1 + r_2, r_3, \ldots, r_l} \) to define the coloring \(f_{r_1, r_2, \ldots, r_l} \).

Recall that \((n) \) is the unique partition type of length \(l = 1 \). It is easy to see that we will want \(f_n = f \). That is, we should commit to give each \(n \)-element set \(Z \in [N]^n \) the color that we actually give it.

When \(l > 1 \), we must be more careful. We will define the colorings without reference to any sequence \(\{Y_i\} \) in Section 2.5.2. In Section 2.5.3, we will use the colorings to obtain the desired sequence of blocks \(\{Y_i\} \).

We will later show that it suffices to define the collection of helper colorings \(\{f_{r_1, r_2, \ldots, r_l}\} \) and the infinite sequence \(\{Y_i\} \) so that for any \(U \in [\bigcup Y_i]^{r_1} \),

\[
f_{r_1, r_2, \ldots, r_l}(U) = f_{r_1 + r_2, r_3, \ldots, r_l}(U \cup V)
\]

whenever \(V \in [Y_j]^{r_2} \) is taken from a block \(Y_j \) with \(\min(Y_j) > \max(U) \). In words,
it is enough for us to ensure that the color promised to each extension Z of U — where $Z \setminus U$ has partition type (r_2, \ldots, r_3) — is the same as the color promised to each extension \hat{Z} of $U \cup V$ — where $\hat{Z} \setminus U \cup V$ has partition type (r_3, \ldots, r_j).

By choosing each Y_i to be homogeneous for each f_{r_1, \ldots, r_l}, we will obtain a sequence of blocks $\{Y_i\}$ such that the color of $Z \in [\bigcup Y_i]^n$ depends only on two things: (1) how it is partitioned by the $\{Y_i\}$ and (2) the $i \in \mathbb{N}$ such that $\min(Z) \in Y_i$.

2.5.2 Obtaining the helper colorings

We will use the notion of ‘largeness’ to define helper colorings without reference to any sequence of blocks. Recall that for exponent n, largeness and smallness is defined for $S \subseteq [\mathbb{N}]^{n-1}$. First, we define:

Definition 2.5.5. Suppose we have fixed a collection of helper colorings. For any finite set $W \subset \mathbb{N}$ and any $Z \in [\mathbb{N} \setminus W]^{n-1}$, we say that Z is good with W if:

$$(\forall (r_1, \ldots, r_l) \in S)(\forall U \in [W]^r_1)(\forall V \in [Z]^r_2)[f_{r_1, r_2, \ldots, r_l}(U) = f_{r_1 + r_2, r_3, \ldots, r_l}(U \cup V)].$$

We must define our helper colorings so that for each finite set W, there is a large set of Z which is good with W (i.e. Z is compatible with all of the promises about subsets of W). More formally:

Definition 2.5.6. A collection of helper colorings is made up of compatible helper colorings if $\{Z : Z \text{ is good with } \{1, \ldots, w\}\}$ is large for each $w \in \mathbb{N}$.

The goal of this subsection is to prove the following lemma:

Lemma 2.5.7 (Obtaining guides). For any $P \gg \emptyset^{(n-1)}$, there is a P-computable collection of compatible helper colorings.
Before proving this lemma (with its computability bounds), we first describe the general construction (without computability bounds). For each \(l\), let \(S_l = \{(r_1, \ldots, r_l) \in S : t = l\}\). That is, \(S_l\) is the set of partition types of length \(l\).

Each helper coloring will be a path through a certain tree. We define these trees by induction on \(l\), using colorings of the form \(f_{s_1, \ldots, s_{l-1}}\) to define the tree that we use to select \(f_{r_1, \ldots, r_l}\). Let \(T_1 = \{\sigma : \sigma < f\}\). We will take \(f_n \in [T_1]\). That is, we will define \(f_n = f\).

If \(l > 1\), suppose we have defined \(f_{s_1, \ldots, s_{l-1}}\) for each \((s_1, \ldots, s_{l-1}) \in S_{l-1}\). We must define the function \(f_{r_1, \ldots, r_l}\) for each \((r_1, \ldots, r_l) \in S_l\). Intuitively: we will define a tree \(T_{r_1, \ldots, r_l} \subseteq k^{[<N]^{r_1}}\), and \(f_{r_1, \ldots, r_l} : [N]^{r_1} \to \{1, \ldots, k\}\) will be some path through this tree.

To ensure that the functions are compatible, we define these trees simultaneously. More precisely, we define a single tree \(T_l\) whose elements are a direct sum of strings. For each \((r_1, \ldots, r_l) \in S_l\), the \((r_1, \ldots, r_l)^{th}\) component of \(\tau \in T_l\) is a potential initial segment for \(f_{r_1, \ldots, r_l}\). Consider some string

\[
\tau = \left(\bigoplus_{(r_1, \ldots, r_l) \in S_l} \tau_{r_1, \ldots, r_l} \right) \in \left(\bigoplus_{(r_1, \ldots, r_l) \in S_l} k^{[\{1, \ldots, w\}]^{r_1}} \right).
\]

We say this string has length \(w\) because each \(\tau_{r_1, \ldots, r_l}\) is defined on all subsets of \(\{1, \ldots, w\}\). We define \(T_l\) as follows:

\[
\left(\bigoplus_{(r_1, \ldots, r_l) \in S_l} \tau_{r_1, \ldots, r_l} \right) \in T_l \\
\iff \\
\{Z \in [N \setminus \{1, \ldots, w\}]^{n-1} : (\forall (r_1, \ldots, r_l) \in S_l)[r_1 \geq w] \implies \}
\]

48
\[(\forall U \in \{1, \ldots, w\}^{r_1})(\forall V \in [Z]^{r_2})[\tau_{r_1, r_2, \ldots, r_1}(U) = f_{r_1 + r_2, r_3, \ldots, r_1}(U \cup V)]\} \text{ is large.}

In words, a collection of length \(w\) strings \(\tau_{r_1, \ldots, r_1}\) makes progress toward a set of compatible functions \(f_{r_1, \ldots, r_1}\) if there is a large number of \(n - 1\)-element sets \(Z\), such that for each \(U \in \{1, \ldots, w\}^{r_1}\) and each \(V \in [Z]^{r_2}\), the promise made by \(\tau_{r_1, \ldots, r_1}(U \cup V)\) agrees with the promise made by \(f_{r_1 + r_2, r_3, \ldots, r_1}(U)\).

Claim 2.5.8. Fix \(l \geq 2\). If \(T_{l-1}\) is infinite and if \(\bigoplus f \in [T_{l-1}]\) is used to define \(T_l\), then \(T_l\) is infinite.

Proof. Fix any \(w \in \mathbb{N}\). We will show that \(\rho \in T_l\) for some \(\rho\) of length \(w\). Consider

\[\rho = \bigoplus_{(r_1, \ldots, r_l) \in S_l} \rho_{r_1, \ldots, r_l} \in \bigoplus_{(r_1, \ldots, r_l) \in S_l} k^{[1, \ldots, w]^{r_1}}.\]

By definition, \(\rho \in T_l\) if and only if there is a large set of \(Z \in [\mathbb{N} \setminus \{1, \ldots, w\}]^{n-1}\) which respects the promises that \(\rho\) makes about finite subsets of \(\{1, \ldots, w\}\). Unfortunately, for any given \(Z\), there may be some \((r_1, \ldots, r_l) \in S_l\) and some \(U \in \{1, \ldots, w\}^{r_1}\) such that \(Z\) is not homogeneous for \(V \mapsto f_{r_1 + r_2, r_3, \ldots, r_1}(U \cup V)\). In this case, \(Z\) does not respect the promises made by any string \(\rho\).

We claim that the set

\[\{Z \in [\mathbb{N} \setminus \{1, \ldots, w\}]^{n-1} : Z \text{ respects the promises made by some } \rho \text{ with } |\rho| = w\}\]

is large. Because \(S_l\) and \(\{1, \ldots, w\}\) are finite, there are finitely many functions \(V \mapsto f_{r_1 + r_2, \ldots, r_1}(U \cup V)\). Iterating Lemma 2.4.8 (once for each function) yields a large set of \(Z\) such that for each \((r_1, \ldots, r_l) \in S_l\) and each \(U \in \{1, \ldots, w\}^{r_1}\), there is a color \(c\) such that \((\forall V \in [Z]^{r_2})[f_{r_1 + r_2, r_3, \ldots, r_1}(U \cup V) = c]\). Letting \(\rho_{r_1, r_2, r_3, \ldots, r_1}(U)\) be the corresponding \(c\), we see that \(Z\) respects the promises made by \(\rho\), as desired.
The set of all ρ of length w induces a partition of this large set into the finitely many sets $\{Z : Z \text{respects the promises made by } \rho\}$. By Lemma 2.4.7, one of the $\{Z : Z \text{respects the promises made by } \rho\}$ is large; hence, the associated string ρ is an element of T_l. Because w was arbitrary, we have shown that T_l contains a string of each length w. Thus, T_l is infinite.

Fix any path $p \in [T_l]$. Then p will have the form

$$\bigoplus_{(r_1, \ldots, r_l) \in S_l} f_{r_1, \ldots, r_l}.$$

In other words, the $(r_1, \ldots, r_l)^{th}$ component of p will be the desired helper function f_{r_1, \ldots, r_l}. Because the definition of “large” is Π^0_2, the tree T_l is Π^0_2 relative to the parameter

$$\bigoplus_{(r_1, \ldots, r_{l-1}) \in S_{l-1}} f_{r_1, \ldots, r_{l-1}}.$$

We can now prove the desired lemma:

Proof of Lemma 2.5.7. We first define T_l for each $l < n$ by induction, ensuring T_l has a path which is $\text{low}^{\theta(l-1)}$. Recall that $p_1 = f_n$ is computable because f is computable and $[T_1] = \{f\}$. Trivially, it follows that p_1 is low.

Suppose l satisfies $n > l \geq 2$, and that we have chosen $p_{l-1} \in [T_{l-1}]$ to be $\text{low}^{\theta(l-2)}$. Define T_l using p_{l-1} as above, and note that T_l is infinite by Claim 2.5.8. Because T_l is Π^0_2, Lemma 1.3.9 gives a Σ^0_1 tree S_l such that $[T_l] = [S_l]$. Because p_{l-1} is $\text{low}^{\theta(l-2)}$, S_l is $\theta^{(l-1)}$ computable and there is a $\text{low}^{\theta(l-1)}$ path $p_l \in [S_l] = [T_l]$.

Finally, suppose $l = n$, and that $p_{n-1} \in [T_{n-1}]$ is $\text{low}^{\theta(n-2)}$. Define T_n using p_{n-1}, as above, and note that T_n is infinite, by Claim 2.5.8. Because T_n is Π^0_2,
Lemma 1.3.9 gives a $\Sigma_{1}^{0,p_{n-1}}$ tree S_{n} such that $[T_{n}] = [S_{n}]$. Because p_{n-1} is $low^0(n-2)$, the tree S_{n} is $\emptyset^{(n-1)}$-computable, and P computes some path $p_{n} \in [S_{n}] = [T_{n}]$.

Define the desired collection of helper colorings to be the set of the components of the functions p_{1}, \ldots, p_{n}. Considering the definition of the trees T_{i}, we see that the set $\{Z \in [N \setminus \{1, \ldots, w\}]^{n-1} : Z$ is good with $\{1, \ldots, w\}\}$ is large for each $w \in N$, as desired.

2.5.3 Selecting a sequence of blocks

Lemma 2.5.9. Fix any P-computable collection of compatible helper colorings.

Then P computes an infinite sequence of blocks $\{Y_{i}\}$ such that the color of any $Z \in \{\{Y_{i}\}\}^{n}$ depends only on two things: (1) the smallest block that contains an element of Z and (2) the partition type of Z.

More precisely, consider some $Z \in [\bigcup_{i} Y_{i}]^{n}$. If (r_{1}, \ldots, r_{i}) is the partition type of Z and if Z_{1} is the r_{1} smallest elements of Z, then $f(Z) = f_{r_{1}, \ldots, r_{i}}(Z_{1})$.

Proof. We begin by giving a P-uniform definition of the sequence $\{Y_{i}\}$. We proceed by induction on i.

Suppose that we have defined Y_{1}, \ldots, Y_{i} and $w_{0}, w_{1}, \ldots, w_{i}$. The set of $Z \in [N]^{n-1}$ that are good with $Y_{1} \cup \cdots \cup Y_{i}$ is clearly large because $Y_{1} \cup \cdots \cup Y_{i} \subseteq \{1, \ldots, w_{i}\}$ and because $\{Z \in [N \setminus W]^{n-1} : Z$ is good with $\{1, \ldots, w_{i}\}\}$ is large.

Look for some finite set Y_{i+1} and $w_{i+1} \in N$ such that

$Y_{i+1} \subseteq (w_{i}, w_{i+1}]$ and each $Z \in [Y_{i+1}]^{n-1}$ is good with $Y_{1} \cup \cdots \cup Y_{i},$

$|Y_{i+1}| \geq \phi(w_{i+1}),$

Y is homogeneous for f, and

Y is homogeneous for $f_{r_{1}, \ldots, r_{i}}$ for each $(r_{1}, \ldots, r_{i}) \in S$.

51
By the Largeness Lemma 2.4.5, we will eventually find Y_{i+1} and w_{i+1}. Note that we can P-uniformly determine if a given finite set satisfies this property. This completes our definition of $\{Y_i\}$.

Now consider any $Z \in (\{Y_i\})^n$. For $i \leq l$, let $Z_i \subseteq Z$ be the smallest $r_1 + \cdots + r_i$ elements of Z. By the construction of $\{Y_i\}$ and the definition of “good with W”, if $i < l$ then

$$f_{r_1 + \cdots + r_i, r_{i+1}, \ldots, r_l}(Z_i) = f_{r_1 + \cdots + r_i + r_{i+1}, \ldots, r_l}(Z_{i+1}).$$

Inductively, we see that $f_{r_1, \ldots, r_l}(Z_1) = f(Z)$, as desired. \qed

2.5.4 Putting it all together

We now complete the proof of Theorem 2.5.1. Recall that the lemmas above were proved for an arbitrary computable instance of PRT_k^n.

Proof of Theorem 2.5.1 Fix $P \gg \emptyset^{(n-1)}$. Let f, ϕ be a computable instance of PRT_k^n. By Lemma 2.5.7 there is a P-computable collection of compatible helper colorings.

Let $\{Y_i\}$ be the sequence of blocks obtained by applying Lemma 2.5.9 to these functions. Note that this sequence of blocks induces 2^{n-1} colorings (one coloring for each partition type). More precisely, define $h_{r_1, \ldots, r_l} : \mathbb{N} \to \{1, \ldots, k\}$ by setting $h_{r_1, \ldots, r_l}(i) = f_{r_1, \ldots, r_l}(Z)$ for any/all $Z \in [Y_i]^{r_1}$. Iterating the infinite pigeonhole principle, once for each of the 2^{n-1}-many induced colorings, we get an infinite set I homogeneous for each h_{r_1, \ldots, r_l}. Note that we can (non-uniformly) compute I from P.

Define $A = \bigcup_{i \in I} Y_i$. Clearly $A \leq_T P$. Because A is the union of infinitely many
blocks, A is packed for ϕ. Note that the color given to any $Z \in [A]^n$ is completely determined by the way that Z is partitioned by $\{Y_i\}_{i \in I}$. In other words, A is the desired packed semi-homogeneous set.

2.6 Lower bounds and reversals

We conclude by giving lower bounds on the strength of PRT^n_k. We first prove:

Theorem 2.6.1 (RCA_0). $\text{PRT}^{2^n-1+k}_n$ implies RT^n_k for each $n \in \omega$ and $k \in \mathbb{N}$.

Adapting this argument, we also prove:

Theorem 2.6.2. If $n \geq 2$ and $k > 2^{n-1}$, there is a computable instance of PRT^n_k such that no Σ^0_n-definable set is both packed for ϕ and semi-homogeneous for f.

2.6.1 Sharpness of number of colors

Erdős and Galvin describe Theorem 2.1.7 (Theorem 2.3 of [8]) as showing that “2^n-1 is best possible” in Theorem 2.1.10.

We will use this sharpness of colors to prove RT^n from PRT^n. The first step is to state a version of Theorem 2.1.7 appropriate for reverse mathematics. The second step is to use this result to construct a helper coloring. The final step is to apply PRT^n to this helper coloring and refine the packed semi-homogeneous set, obtaining a set homogeneous for the original coloring.

Definition 2.6.3. We say that $\phi : \mathbb{N} \to \mathbb{N}$ is an order function if ϕ is total, non-decreasing, and has unbounded range.

The most natural choice for ϕ in PRT is an order function.

Remark 2.6.4 (RCA_0). For each w, let $\phi_{\text{max}}(w)$ be the largest m such that $w \to (m)^n_{k+1}$. Then ϕ_{max} is a total, Δ^0_1 definable order function.
Proof. Clearly ϕ_{max} is total, Δ^0_1 definable, and non-decreasing. Finite Ramsey’s Theorem, which is provable in RCA_0, implies that ϕ_{max} has unbounded range.

Recall that for exponent n, we write S for the set of all finite sequences (r_1, \ldots, r_l) such that $r_1 + \cdots + r_l = n$. The elements of S represent all possible ways of partitioning an n-element set into disjoint intervals. We will write $\mathbf{1}$ to refer to the partition type where $r_i = 1$ for each i (that is, $\mathbf{1} = (1, \ldots, 1)$).

Given an increasing sequence $\{w_i\}$ and a set $X \in [\mathbb{N}]^n$, we say that (r_1, \ldots, r_l) is the partition type of X with respect to $\{(w_i, w_{i+1})\}$ if there are $j_1 < \cdots < j_l$ such that $|X \cap (w_{j_i}, w_{j_i+1})| = r_i$ for each $i \leq l$.

The following lemma is an adaptation of the proof of Theorem 2.1.7:

Lemma 2.6.5 (RCA$_0$). Fix $n \in \omega$. Let $\phi : \mathbb{N} \to \mathbb{N}$ be any order function. There is a coloring $g : [\mathbb{N}]^n \to S$ and a strictly increasing function $i \mapsto w_i$ such that

- $g(X)$ is the partition type of $X \in [\mathbb{N}]^n$ with respect to $\{(w_i, w_{i+1})\}$, and
- for any infinite $A \subseteq \mathbb{N}$, either A is sparse for ϕ or $\{g(X) : X \in [A]^n\} = S$.

Proof. We define w_i by induction on i. Let $w_1 = 1$. For $i > 1$, define w_i to be the least element of $\{w > w_{i-1} : \phi(w) \geq n \cdot i\}$. This set is nonempty because ϕ has unbounded range, and has a least element by Δ^0_1 induction. We have defined $i \mapsto w_i$ by iterating a total Δ^0_1 function, so the map is total by Σ^0_1 induction (and Proposition 6.5 of [12]).

Define $g(X) : [\mathbb{N}]^n \to S$ to be the partition type of X with respect to the sequence $\{(w_i, w_{i+1})\}$. Then g and $i \mapsto w_i$ have Δ^0_1 definitions, so exist by Δ^0_1 comprehension.

We next verify that g assigns all colors to any infinite $A = \{a_1 < a_2 < \ldots \}$ such that $|A \cap \{1, \ldots, w\}| \geq \phi(w)$ for infinitely many w. If there are n values of i
such that \(|A \cap (w_i, w_{i+1}]| \geq n\), then \(\{g(X) : X \in [A]^n\} = S\), and we are done.

Suppose instead that there is \(i\) such that \((\forall i \geq \hat{i})[|A \cap (w_i, w_{i+1}]| < n]\). We will define \(i_0 \geq \hat{i}\) such that for all \(i \geq i_0\), \(|A \cap [1, \ldots, w_i]| \leq n \cdot i\). Simply set \(\hat{m} = \min(|A \cap [1, \ldots, w_i]| - n \cdot \hat{i}, 0)\), and set \(i_0 = \hat{i} + \hat{m}\). Furthermore, there is some \(j_0\) such that for each \(j \geq j_0\), there is some \(i \geq i_0\) such that \(a_j \in (w_i, w_{i+1}].\)

Fix any \(j \geq j_0\). Then \(n \cdot i > |A \cap [1, \ldots, w_{i+1}]|\) because \(i \geq i_0\), and \(a_j \in A \cap [1, \ldots, w_{i+1}].\) Recall that we defined \(w_i\) so that \(\phi(w_i) \geq n \cdot i\). Putting it all together, because \(\phi\) is non-decreasing and \(a_j \geq w_i\) we see that

\[
\phi(a_j) \geq \phi(w_i) \geq n \cdot i > |A \cap [1, \ldots, w_{i+1}]| \geq |A \cap [1, \ldots, a_j]|.
\]

Because \(\phi(a_j) > |A \cap [1, \ldots, a_j]|\) for all but finitely many \(j\), and because \(\phi\) is non-decreasing, it follows that \(A\) is sparse for \(\phi\).

2.6.2 Using \(\text{PRT}^n\) to prove \(\text{RT}^n\) over \(\text{RCA}_0\)

Proof of Theorem 2.6.1. Suppose \(\text{PRT}_{2n-1+k}^n\) holds. Given a function \(f : [N]^n \to \{1, \ldots, k\}\), we must produce a set \(H\) homogeneous for \(f\).

Recall that \(\phi_{\max}(w) = \max m[w \to (m)^n_{k+1}]\) is an order function. Using \(\phi_{\max}\), define \(g : [N]^n \to S\) as in Lemma 2.6.5. We can assume that \(S \cap \{1, \ldots, k\} = \emptyset\).

Define a helper coloring \(h : [N]^n \to (S \setminus \{\mathbf{1}\}) \cup \{1, \ldots, k\}\) as follows:

\[
h(Z) = \begin{cases} f(Z) & \text{if } g(Z) = \mathbf{1}, \\ g(Z) & \text{otherwise.} \end{cases}
\]

Claim 2.6.6 (\(\text{RCA}_0\)). Let \(A\) be semi-homogeneous for \(h\) and packed for \(\phi_{\max}\). Then there is a unique color \(\hat{c} \in \{1, \ldots, k\}\) such that for any \(X \in [A]^n\), if \(g(X) = \mathbf{1}\),
then \(f(X) = \hat{c} \)

Proof. We first examine the colors assigned to \(A \) by the coloring \(g: [N]^n \to S \). Recall that \(g \) was obtained from Lemma 2.6.5. Because \(A \) is packed for \(\phi_{\text{max}} \), it follows that \(g \) assigns all possible colors to subsets of \(A \). For each \(c \in S \setminus \{\overline{1}\} \), select some \(X_c \in [A]^n \) such that \(g(X_c) = c \).

We now examine the colors assigned to \(A \) by the helper coloring \(h: [N]^n \to \{1, \ldots, k\} \sqcup S \setminus \{\overline{1}\} \). For each \(c \in S \setminus \{\overline{1}\} \), our definition of \(h \) implies that \(h(X_c) = g(X_c) = c \). Recall that \(|S \setminus \{\overline{1}\}| = 2^n - 1 \). Also by our definition of \(h \), we know that \(h(X) \in \{1, \ldots, k\} \) for each \(X \) with \(g(X) = \overline{1} \). Because \(A \) is semi-homogeneous for \(h \), and because \(S \cap \{1, \ldots, k\} = \emptyset \), it follows that there is a unique color \(\hat{c} \in \{1, \ldots, k\} \) such that \(h(X) = \hat{c} \) for each \(X \in [A]^n \) with \(g(X) = \overline{1} \).

Examining our definition of \(h \) one last time, we see that whenever \(g(X) = \overline{1} \), we have \(h(X) = f(X) \). Consequently, we have shown that there is a unique color \(\hat{c} \in \{1, \ldots, k\} \) such that for each \(X \in [A]^n \) with \(g(X) = \overline{1} \), \(f(X) = \hat{c} \).

Note that \(h \) is a coloring of \([N]^n \) into \(2^n - 1 + k \) colors. Furthermore, \(h \) has a \(\Delta^0_1 \) definition, so exists by \(\Delta^0_1 \) comprehension. By \(\text{PRT}^{n-1-1+k}_{2^n-1} \), there is a set \(A \) that is semi-homogeneous for \(h \) and packed for \(\phi_{\text{max}} \).

Let \(H = \bigcup_{i \in \mathbb{N}} \{ \min(A \cap (w_i, w_{i+1}]) \} \). For each \(i \), \(A \cap (w_i, w_{i+1}] \) is \(\Delta^0_1 \) with parameters, so it has a least element. Because \(A \) is infinite and each interval is finite, \(H \) is infinite. Clearly, \(H \) is \(\Delta^0_1 \) definable from \(A \), so exists by \(\Delta^0_1 \) comprehension.

Suppose \(X \in [H]^n \). By definition of \(H \), at most 1 element of \(X \) is in any interval \((w_i, w_{i+1}] \). Then \(X \) has partition type \(\overline{1} \), so \(g(X) = \overline{1} \). Let \(\hat{c} \) be the unique color in Claim 2.6.6. Because \(H \subseteq A \), it follows that \(f(X) = \hat{c} \).

In summary, \(H \) is infinite and \(f \)-homogeneous with color \(\hat{c} \), as desired.
2.6.3 \(\Sigma^0_n \) sets and \(\text{PRT}^n_k \)

We conclude by showing that for \(n > 1 \) and \(k > 2^{n-1} \), there is a computable instance of \(\text{PRT}^n_k \) with no \(\Sigma^0_n \) solution. We use the following result:

Theorem 2.6.7 (Jockusch [16]). For each \(n \geq 2 \), there exists a computable coloring \(f : [\mathbb{N}]^n \to \{1, 2\} \) such that no \(\Sigma^0_n \) set is homogeneous for \(f \).

We now prove Theorem 2.6.2:

Proof of Theorem 2.6.2. Suppose toward a contradiction that for each appropriate computable coloring and \(\phi \), there is a \(\Sigma^0_n \) definable set which is both packed and semi-homogeneous.

Let \(f : [\mathbb{N}]^n \to \{1, \ldots, k\} \) be a coloring with no \(\Sigma^0_n \)-definable homogeneous set, which exists by Theorem 2.6.7. Define \(h \) as in the proof of Theorem 2.6.1. Note that the function \(g \) from Lemma 2.6.5 is computable. Then \(h \) is computable because it is computable from \(f \), \(g \), and \(\phi_{\text{max}} \).

Suppose that \(A \) is a \(\Sigma^0_n \) set that is packed for \(\phi_{\text{max}} \) and semi-homogeneous for \(h \). Let \(\theta \) be a \(\Delta^0_n \) formula such that \(x \in A \iff (\exists y)[\theta(x,y)] \). Let

\[
x \in H \iff (\exists y)(\exists i)[\theta(x,y) \land (x \in (w_i, w_{i+1}]) \land (\forall z \in (w_i, x))(\forall t \leq y)[\neg \theta(z,t)]].
\]

Note that this is a \(\Sigma^0_n \) definition for \(H \).

Because \(A \) is infinite, and because each interval \((w_i, w_{i+1}]\) is finite, we see that \(H \) is infinite. Because each element of \([H]^n\) has partition type \(\bar{1} \) with respect to the sequence \(\{(w_i, w_{i+1}]\)\), it follows that \(H \) is \(g \)-homogeneous with color \(\bar{1} \). By Claim 2.6.6, there is a unique \(\hat{c} \) such that \(f(X) = \hat{c} \) for each \(X \in [H]^n \). In short, \(H \) is an infinite \(f \) homogeneous set that is \(\Sigma^0_n \), contradicting our choice of \(f \). \(\square \)
CHAPTER 3

REVERSE MATHEMATICS AND A RAMSEY-TYPE KÖNIG’S LEMMA

3.1 Introduction

Weak König’s Lemma and Ramsey’s Theorem can be thought of as asserting the existence of different types of regularity. Viewed topologically, Weak König’s Lemma is essentially the statement “\(2^\mathbb{N}\) is compact.” This carries over to reverse mathematics, where \(\text{WKL}_0\) is equivalent to many theorems about compactness (see [22]). For its part, Ramsey’s Theorem says that no matter how badly behaved a coloring is, it always has a sizable homogeneous set. In the words of T.S. Motzkin, absolute disorder is impossible.

In this chapter, we study the computational and reverse mathematical strength of a regularity principle that combines features of Weak König’s Lemma and Ramsey’s Theorem. We will refer to the statement “for each infinite binary tree \(T\), there is an infinite set \(H\) homogeneous for a path through \(T\)” as a Ramsey-type König’s Lemma. In statement 3.1.2 we give a formal definition of our Ramsey-type König’s Lemma, denoted \(\text{RKL}\), in terms of finite strings. It is the novelty of this principle, rather than the complexity of the proofs, that is the main innovation of this chapter.

\footnote{This chapter is adapted from a paper which will appear in the Journal of Symbolic Logic as [10].}
We begin by showing that RKL is a nontrivial weakening of WKL_0 and of RT^2_2. More formally, we show that SRT^2_2 implies RKL, that WKL_0 implies RKL, and that RKL implies DNR (unless specified, we always work over RCA_0). Applying results of [1] and [19], we conclude that RKL is strictly weaker than WKL_0 and SRT^2_2.

In the remaining sections, we state analogs of RKL for trees generated by infinite sets of strings ($RKL^{(1)}$) and for arithmetically-definable trees ($RKL^{(<\omega)}$). We then study the strength of each principle, and obtain the surprising result that these stronger principles are more closely related to RT^2_2 than to WKL_0.

We show that RT^2_2 implies $RKL^{(1)}$, and that $RKL^{(1)}$ implies SRT^2_2. By the main results of [5] and [19], it follows that $RKL^{(1)}$ and WKL_0 are incomparable. We also show that RT^2_2 does not imply $RKL^{(<\omega)}$ and, by using a result of [19], we show that $RKL^{(<\omega)}$ does not imply WKL_0. It is open whether $RKL^{(<\omega)}$ implies RT^2_2. We summarize our results in figure 3.1.

3.1.1 Working in second order arithmetic

Some care is required to formalize RKL in RCA_0. Our goal here is to study the computational complexity of the homogeneous set $H \subseteq \mathbb{N}$, not of the path p. While there are computable trees T such that each path through T is reasonably complicated, there are paths p with relatively simple homogeneous sets H. We begin with definitions that allow us to say that H is homogeneous for some path through T without explicit reference to a path p.

Definition 3.1.1 (RCA$_0$). A set of natural numbers H is homogeneous for $\sigma \in 2^{\mathbb{N}}$ with color $c \in \{0, 1\}$ if $\sigma(x) = c$ for each $x \in H$ s.t. $x < |\sigma|$. H is homogeneous for a path through T if $\exists c \in \{0, 1\}$ s.t. H is homogeneous for σ with color c for

2SRT^2_2 and DNR will be defined below.
arbitrarily long $\sigma \in T$.

The idea of Definition 3.1.1 is this: if H is homogeneous for arbitrarily long strings in T, we obtain an infinite subtree of T by taking the downward closure of these strings. By compactness, H is homogeneous for some path through this induced subtree, but it is possible that neither the induced subtree nor any of its paths exist in $S(\mathcal{M})$.

Statement 3.1.2 (RCA_0). RKL asserts that “for each infinite binary tree T, there is an infinite set H which is homogeneous for a path through T."

Unless stated otherwise, all strings and trees we consider will be binary ($\{0, 1\}$-valued). Given $\tau, \sigma \in 2^{<\mathbb{N}}$ we write $\tau \preceq \sigma$ if τ is an initial segment of σ. We write $\sigma \upharpoonright t$ (or $p \upharpoonright t$) to denote the initial segment of $\sigma \in 2^{<\mathbb{N}}$ (or $p \in 2^{\mathbb{N}}$) of length t.

3.2 Reverse mathematics of RKL

Theorem 3.2.1 (RCA_0). WKL_0 implies RKL.

Proof. Given an infinite binary tree T, let p be an infinite path through T. Note that $p : \mathbb{N} \to \{0, 1\}$ maps singletons into two colors. Applying RT_1^2, which is provable in RCA_0, we obtain a set H that is homogeneous for p. In particular, $p \upharpoonright t \in T$ and H is homogeneous for $p \upharpoonright t$ for each $t \in \mathbb{N}$. Thus, H satisfies Definition 3.1.1 as desired. \qed

Definition 3.2.2 (RCA_0). A coloring $f : [\mathbb{N}]^2 \to \{0, 1\}$ is *stable* if for each x, there is some $t > x$ s.t. $(\forall y > t)[f(x, y) = f(x, t)]$. SRT_2^2 is the theorem “every stable coloring of pairs into two colors has an infinite homogeneous set.”

Theorem 3.2.3 (RCA_0). SRT_2^2 implies RKL.
Proof. Given an infinite tree T, we define a coloring $f : [\mathbb{N}]^2 \to \{0, 1\}$ as follows. For each y, let σ_y be the lexicographically least element of T of length y. For each $x < y$, define $f(x, y) = \sigma_y(x)$.

We show that f is a stable coloring. Fix x, and let T^ext denote the strings in T that are extended by arbitrarily long strings in T. For each $\tau \in T^\text{ext}$ of length $x + 1$, there is a bound on the length of strings in T extending τ, so there is a least such bound s_τ. Note that s_τ is Δ^0_1 definable (with parameters) from τ. By Σ^0_1 induction, there is a uniform upper bound t for $\{s_\tau : \tau \in 2^{x+1} \land \tau \in T^\text{ext}\}$. By Π^0_1 induction, there is a lexicographically least element $\tau_{x+1} \in T^\text{ext}$ of length $x + 1$. Then for each $y > t$, $\sigma_y \upharpoonright (x+1) = \tau_{x+1}$ hence $f(x, y) = \tau_{x+1}(x)$. In general, for each x, $(\exists t)(\forall y > t)[f(x, y) = \tau_{x+1}(x)]$. In other words, f is a stable coloring.

Suppose that H is homogeneous for f with color $c \in \{0, 1\}$. We now show that H is homogeneous for a path through T. Fix $t \in \mathbb{N}$. Because H is an infinite set, there is an element $y \in H$ with $y \geq t$. By the definition of f, $(\forall x < y)[\sigma_y(x) = f(x, y)]$. Because H is homogeneous for f with color c and because $y \in H$, $(\forall x < y)[x \in H \implies \sigma_y(x) = c]$. Then H is homogeneous for $\sigma_y \in T$ with color c. Since t is arbitrary and $|\sigma_y| \geq t$, we have satisfied Definition 3.1.1.

Corollary 3.2.4 (RCA_0). RKL does not imply SRT_2^2 or WKL_0.

Proof. By the main result of [19], SRT_2^2 does not imply WKL_0. Because SRT_2^2 implies RKL, RKL cannot imply WKL_0. Similarly, RKL cannot imply SRT_2^2 over RCA_0 because WKL_0 does not imply SRT_2^2 (by Theorem 3.3 of [21] and Theorem 10.5 of [1]).

We conclude our analysis of RKL by showing that RKL is not provable in RCA_0, and that RKL implies DNR. When $T \subseteq 2^{<\mathbb{N}}$ is a tree, $[T] \subseteq 2^\mathbb{N}$ will be the set of
infinite paths through T. The next lemma follows from the proof of Lemma 2 in [17].

Lemma 3.2.5 (Jockusch [17]). There is an infinite computable tree T such that for any $p \in [T]$ and for any $e \in \mathbb{N}$, if $|W_e| \geq e + 3$ then W_e is not homogeneous for p. In fact, for each $e \in \mathbb{N}$, there is a $t \in \mathbb{N}$ such that if $|W_e| \geq e + 3$ then W_e is not homogeneous for any string in T of length greater than t.

A simple corollary is that $\text{RCA}_0 \not \vdash \text{RKL}$, via an ω-model. Adapting the proof of Theorem 2.3 from [11], we can obtain a slightly stronger result. We say that a function f is *diagonally non-computable* relative to X if $f(e) \neq \Phi^X_e(e)$ for each e such that $\Phi^X_e(e) \downarrow$. The principle DNR asserts that for any set parameter X, there is a function that is diagonally non-computable relative to X.

Theorem 3.2.6 (RCA_0). RKL implies DNR.

Proof. We work relative to a set parameter X. The proof of Lemma 2 of [17] (Lemma 3.2.5 above) can be carried out in RCA_0. Let T be the tree defined in this proof. By RKL, there is a set H homogeneous for a path through T. Note that there is a Δ^0_1 definable function $g : \mathbb{N} \to \mathbb{N}$ such that $W_{g(e)}$ consists of the least $e + 3$ elements of H (in the \mathbb{N} order).

We now show that g is a fixed point free function. If $|W_e| < 2^{e+1}$, then $|W_{g(e)}| \neq |W_e|$. Suppose that $|W_e| \geq 2^{e+1}$. By the lemma above, there is some t such that W_e is not homogeneous for any $\sigma \in T$ of length greater than t. Because $W_{g(e)} \subset H$ and because H is homogeneous for a path through T, $W_{g(e)}$ is homogeneous for arbitrarily long $\sigma \in T$. In particular $W_e \neq W_{g(e)}$. In other words, g is fixed point free, so it can be used to give a Δ^0_1 definition for a DNR function (to see this, we may formalize V.5.8 of [23] in RCA_0).
Question 3.2.7. Does DNR imply RKL?

A number of principles are known to be stronger than DNR, such as ASRAM and ASRT2 from [7]. Proving that one of these principles does not imply RKL would separate DNR from RKL.

3.3 Trees generated by sets of strings

Definition 3.3.1. Given an infinite set of strings Σ, let T_Σ denote the downward closure of Σ. More formally, $T_\Sigma = \{ \tau : (\exists \sigma \in \Sigma)[\tau \preceq \sigma] \}.$

Statement 3.3.2 (RCA_0). RKL(1) asserts that “for each infinite set of strings Σ, there is an infinite set H which is homogeneous for a path through T_Σ.”

Note that if Σ is an infinite computable set of strings, T_Σ is an infinite c.e. tree. In [6], Downey and Jockusch note that each infinite $\Pi^0_1\emptyset$-class can be generated by a c.e. tree. We extend this slightly, to further motivate our definition of RKL(1).

Proposition 3.3.3. If T is an infinite Π^0_2 tree, then there is an infinite computable set of strings Σ such that $[T] = [T_\Sigma]$. Furthermore, Σ can be taken to contain exactly one string of each length.

Proof. It suffices to consider Σ_1^0 trees. To see this, suppose that T is Π^0_2. Then there is a formula ϕ which is Δ^0_1 such that $\tau \in T$ \iff $(\forall y)(\exists z)\phi(\tau, y, z)$. Using the Δ^0_1 formula $\psi(\tau, \hat{z}) =_{def} (\forall x, y \leq |\tau|)(\exists z < \hat{z})\phi(\tau \upharpoonright x, y, z)$, we can define a Σ_1^0 tree S by $\tau \in S$ $\iff (\exists \hat{z})\psi(\tau, \hat{z})$. Then

$$[S] = \{ f : (\forall w)(\exists \hat{z})\psi(f \upharpoonright w, \hat{z}) \} = \{ f : (\forall x)(\forall y)(\exists z)\phi(f \upharpoonright x, y, z) \} = [T],$$

so we may work with S instead.
Given a Σ_0 tree T, fix a computable enumeration $\{T_s\}$ of T. If necessary, we computably modify the enumeration to ensure that no τ enters T_s until $s \geq |\tau|$ and that exactly one string enters T at each stage. We computably enumerate the elements of Σ in increasing order. At stage $s > 0$, find $\tau \in T_s - T_{s-1}$, take one $\sigma \succeq \tau$ with $|\sigma| = s$ (the specific choice is not important), and put σ into Σ. It is not difficult to show that $T \subseteq T_\Sigma$ and that $T_\Sigma^{ext} \subseteq T^{ext}$. It follows that $[T] = [T_\Sigma]$.

We now examine the strength of $\text{RKL}^{(1)}$.

Theorem 3.3.4 (RCA_0). RT_2^2 implies $\text{RKL}^{(1)}$.

Proof. Fix an infinite set of strings Σ. For each y, let $l \geq y$ be the length of the shortest string in Σ of length at least y. Let σ_y be the lexicographically least string in Σ of length l. We now define a coloring $f : [\mathbb{N}]^2 \to \{0,1\}$ as before. For each $x < y \in \mathbb{N}$, set $f(x,y) = \sigma_y(x)$. Note that f is Δ^0_1-definable.

By RT_2^2, there is an infinite set H homogeneous for f with color $c \in \{0,1\}$. We claim that H is homogeneous for a path through T_Σ.

Fix $t \in \mathbb{N}$. Because H is infinite, there is some $y \in H$ with $y \geq t$. By the definition of f, $(\forall x < y)[f(x,y) = \sigma_y(x)]$. Because H is homogeneous for f with color c and because $y \in H$, $(\forall x < y)[x \in H \implies \sigma_y(x) = c]$. In other words, H is homogeneous for $\sigma_y \upharpoonright y$ with color c. Because $\sigma_y \upharpoonright y \in T_\Sigma$ and because $y \geq t$ with t arbitrary, H is homogeneous for a path through T_Σ (in the sense of Definition 3.1.1).

Remark 3.3.5. The coloring defined in the proof of Theorem 3.3.4 is not (necessarily) stable because it is defined in terms of Σ, and not in terms of T. For example, suppose that $\sigma(0) = 0$ for even length strings $\sigma \in \Sigma$, and that $\sigma(0) = 1$ for odd length strings. Then $\lim_y f(0,y)$ does not exist.

64
There is a natural correspondence between computable colorings $f : [N] \to \{0, 1\}$ and computable sets $\Sigma \subset 2^{<N}$ that contain exactly one string of each length. Given f, simply define $\Sigma = \{\sigma_y : \sigma_y \in 2^y \land (\forall x < y) [\sigma_y(x) = f(x, y)]\}$. Using the induced tree T_Σ, it is not difficult to show that $RKL^{(1)}$ implies SRT_2^2 over $\text{RCA}_0 + B\Sigma_2^0$. Yokoyama was able to eliminate the use of $B\Sigma_2^0$ by introducing the following principle.

Statement 3.3.6 (RCA_0). P_2^2 asserts that "for any Π_2^0-definable subsets A_0, A_1 of \mathbb{N} s.t. $A_0 \cup A_1 = \mathbb{N}$, there exists an infinite set $H \in S(\mathcal{M})$ s.t. $H \subseteq A_0$ or $H \subseteq A_1$."

The principle P_2^2 is particularly useful because it implies the better understood principle D_2^2. This is a special instance of the principle D_n^2, which we will return to in the next section.

Statement 3.3.7 (RCA_0). For each $n \in \omega$, D_n^2 asserts that "for each Δ_0^0-definable subset A of \mathbb{N}, there exists an infinite set $H \in S(\mathcal{M})$ s.t. $H \subseteq A$ or $H \subseteq \overline{A}$."

Theorem 3.3.8 (Cholak, Chong, Jockusch, Lempp, Slaman, Yang [1, 4]). Over RCA_0, D_2^2 is equivalent to SRT_2^2.

Theorem 3.3.9 (Yokoyama [25]). $RKL^{(1)}$ implies P_2^0, and hence SRT_2^2, over RCA_0.

Proof. Let $\mathcal{M} = (\mathbb{N}, S(\mathcal{M})) \models \text{RCA}_0 + \text{RKL}^{(1)}$ and suppose that A_0, A_1 are Π_2^0-definable subsets of \mathbb{N} such that $A_0 \cup A_1 = \mathbb{N}$. We will define a Δ_1^0 function $f : [N]^2 \to \{0, 1\}$ such that if $f(x, y) = i$ for infinitely many y, then $x \in A_i$.

Fix two Σ_0^0 formulas $\theta_i(x, m, n)$ such that $x \in A_i \iff (\forall m)(\exists n) \theta_i(x, m, n)$. Using these formulas, we define a helper function:

$$h(x, y) = (\mu z)[(\forall m < y)(\exists n < z)[\theta_0(x, m, n)] \lor (\forall m < y)(\exists n < z)[\theta_1(x, m, n)]].$$

65
Clearly, h is a Δ^0_1 function.

We must verify in RCA_0 that h is total. Fix $x \in \mathbb{N}$ arbitrary. Then $x \in \mathbb{N} = A_0 \cup A_1$, so $x \in A_0$ or $x \in A_1$. So $(\forall m)(\exists n)\theta_0(x, m, n)$ or $(\forall m)(\exists n)\theta_1(x, m, n)$. Let $y \in \mathbb{N}$ be arbitrary. Suppose $x \in A_i$. Then $(\forall m)(\exists n)\theta_i(x, m, n)$, so clearly $(\forall m < y)(\exists n)(\theta_i(x, m, n)$). By BS^0_1, there is a z_i such that $(\forall m < y)(\exists n < z_i)\theta_i(x, m, n)$. Thus, h will find a least z such that the desired condition holds.

Define $f(x, y) = 0$ if $(\forall m < y)(\exists n < h(x, y))\theta_0(x, m, n)$, and $f(x, y) = 1$ otherwise. Clearly, f is total since h is total, and f is Δ^0_1 since h is total and Δ^0_1.

If $f(x, y) = i$ for infinitely many y, then our definition of $h(x, y)$ confirms that $x \in A_i$.

Using f, let $\Sigma = \{\sigma_y : \sigma_y \in 2^y \land (\forall x < y)(\sigma_y(x) = f(x, y))\}$ and define T_Σ as before. By $\text{RKL}^{(1)}$, there is an infinite set $H \in S(\mathcal{M})$ which is homogeneous for a path through T_Σ with some color $c \in \{0, 1\}$.

Let $x \in H$ be arbitrary. By the definition of “homogeneous for a path through T_Σ with color c,” there are infinitely many y such that $f(x, y) = \sigma_y(x) = c$. By our choice of f, this means that $x \in A_c$. In other words, $H \subseteq A_c$ is the desired infinite set.

Question 3.3.10 (Yokoyama [25]). Does D^2_2 imply P^2_2? Does P^2_2 imply $\text{RKL}^{(1)}$?

Corollary 3.3.11. $\text{RKL}^{(1)}$ is incomparable with WKL_0 over RCA_0.

Proof. Because WKL_0 does not imply SRT_2^2 (Theorem 3.3 of [21] and Theorem 10.5 of [1]), WKL_0 does not imply $\text{RKL}^{(1)}$. By the main result of [19], RT_2^2 does not imply WKL_0, so $\text{RKL}^{(1)}$ cannot imply WKL_0. \qed

Remark 3.3.12. Using the arguments above, we can rephrase RT_2^2 as the statement “for each Σ that contains exactly one string of each length, there is an infinite H which is homogeneous (with fixed color c) for each $\sigma \in \Sigma$ s.t. $|\sigma| \in H$.”
Question 3.3.13. Does $RKL^{(1)}$ imply COH, CAC, ADS or RT^2_2? One implication holds if and only if all implications hold. Does SRT^2_2 imply $RKL^{(1)}$?

3.4 Arithmetically-definable trees

Statement 3.4.1 (RCA_0). $RKL^{(<\omega)}$ is the axiom scheme which, for each arithmetic formula ϕ, asserts that “if ϕ defines a tree T containing arbitrarily long strings, there is an infinite set H which is homogeneous for a path through T.”

Theorem 3.4.2. Over RCA_0, we have the following strict implications: $ACA_0 \implies RKL^{(<\omega)} \implies RKL^{(1)} \implies RKL$.

The implications are immediate. We have already seen that the third implication is strict. We now show that the first two implications are also strict. We first use the following result from [19] to separate $RKL^{(<\omega)}$ from ACA_0.

Theorem 3.4.3 (Liu [19]). For every $C \not\gg \emptyset$ and every coloring $p : \mathbb{N} \to \{0, 1\}$, there exists an infinite set H homogeneous for p such that $H \oplus C \not\gg \emptyset$.

Corollary 3.4.4. There is an ω-model of $RKL^{(<\omega)}$ where WKL_0 fails.

Proof. To build an ω-model $\mathcal{M} = (\omega, S(\mathcal{M}))$ of $RKL^{(<\omega)}$, we begin with $S(\mathcal{M}) = REC$ and add sets to $S(\mathcal{M})$.

The general strategy for creating a model of $RKL^{(<\omega)}$ uses a list of the infinite trees which are arithmetically-definable from any set $X \in S(\mathcal{M})$. For each $i \in \mathbb{N}$, we must ensure that there is some finite stage s where we select a path p through the i^{th} tree T, where we select an infinite set H_s homogeneous for p, and where we add H_s to $S(\mathcal{M})$ and close downward under \leq_T. To ensure that $\mathcal{M} \not\models WKL_0$, we use Theorem 3.4.3 to select H_s such that $H_s \oplus \bigoplus_{j \leq s} H_j \not\gg \emptyset$.

67
It is possible that adding the set H_s to $S(M)$ causes new sets to become arithmetically-definable with parameters from $S(M)$. Therefore, each time we add H_s to $S(M)$, we create a new list containing the trees arithmetically-definable from $\bigoplus_{i \leq s} H_i$. We dovetail the lists, eventually running the general strategy for each tree in each list. In the limit, we obtain $M \models RKL^{(<\omega)} + \neg WKL_0$.

Corollary 3.4.5 (RCA_0). $RKL^{(<\omega)}$ does not imply WKL_0.

We separate $RKL^{(<\omega)}$ from $RKL^{(1)}$ with an ω-model by the following observation.

Lemma 3.4.6. For each n, no model of $RKL^{(<\omega)}$ is bounded by \emptyset^n.

Proof. By the proof of Lemma 3.2.5 relativized to $X = \emptyset^n$, we obtain an \emptyset^n-computable infinite tree T such that no infinite set $W_e^{\emptyset^n}$ is homogeneous for a path through T. Since each \emptyset^n-computable set is $W_e^{\emptyset^n}$ for some e, it follows that no infinite \emptyset^n-computable set is homogeneous for a path through T.

Proposition 3.4.7. RT^2_2 does not imply $RKL^{(<\omega)}$ over RCA_0. Hence $RKL^{(1)}$ does not imply $RKL^{(<\omega)}$ over RCA_0.

Proof. By the previous lemma, there is no model of $RKL^{(<\omega)}$ which is bounded by \emptyset^2. By Theorem 3.1 of [1], there is an ω-model of RT^2_2 consisting of only low$_2$ sets. This model is bounded by \emptyset^2 so is not a model of $RKL^{(<\omega)}$.

Question 3.4.8. Does $RKL^{(<\omega)}$ imply COH over RCA_0? That is, does $RKL^{(<\omega)}$ imply RT^2_2 over RCA_0?

3.4.1 Subsets, co-subsets, and trees

There is a close relationship between finding subsets/co-subsets of a fixed set, and finding sets that are homogeneous for a path through a fixed tree.
Statement 3.4.9 (RCA₀). We define $D_2^{<\omega}$ to be the axiom scheme which asserts D_2^n for each $n \in \omega$.

Proposition 3.4.10 (RCA₀). RKL(≪ω) implies $D_2^{<\omega}$.

Proof. Let $\mathcal{M} = (\mathbb{N}, S(\mathcal{M})) \models \text{RCA}_0 + \text{RKL}(≪\omega)$ and suppose that A is a Δ^0_n-definable subset of \mathbb{N}. We give a Π^0_n definition for a tree T as follows. Given $\tau \in 2^{<\mathbb{N}}$, we say that $\tau \in T$ if and only if $(\forall x < |\tau|)(\tau(x) = 1$ if and only if $x \in A]$.

By RKL(≪ω), there is a set $H \in S(\mathcal{M})$ which is homogeneous for arbitrarily long strings in T with color $c \in \{0, 1\}$. Note that the only strings in T are initial segments of χ_A, so H is homogeneous for χ_A with color c. Then $H \subseteq A$ if $c = 1$, and $H \subseteq \overline{A}$ if $c = 0$, as desired.

Remark 3.4.11. For ω-models, the reverse implication also holds.

Question 3.4.12. Does $D_2^{<\omega}$ imply RKL(≪ω) over RCA₀?

By results of [1], SRT₂² implies $B\Sigma^0_2$.

Question 3.4.13. Are there first order consequences of RKL(≪ω) beyond $B\Sigma^0_2$?

Chong, Slaman, and Yang have recently announced a proof that D_2^2 does not imply COH over RCA₀ [3].

Question 3.4.14. Does D_2^n imply COH for any $n \in \omega$?

Theorem 2.1 of [15] gives another way to state this question for ω-models.

Question 3.4.15. Is there any arithmetically-definable $f : \mathbb{N} \to \{0, 1\}$ such that any set H homogeneous for f satisfies $H' \gg \emptyset'$?
Figure 3.1. The reverse mathematical strength of RKL.
Figure 3.2. The reverse mathematical strength of RKL and PRT.
BIBLIOGRAPHY

