[1] | Peter Cholak, Rod Downey, Noam Greenberg, and Daniel Turetsky. Realizing computably enumerable degrees in separating classes. In Higher Recursion Theory and Set Theory, volume 44 of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore., pages 19--35. World Scientific Publishing Co. Pte. Ltd, 2025. Pdf. [ http ] |
[2] | Peter A. Cholak. Some recent research directions in the computably enumerable sets. In The incomputable, Theory Appl. Comput., pages 83--93. Springer, Cham, 2017. Pdf. MR 3644779. |
[3] | Peter A. Cholak. On splits of computably enumerable sets. In Computability and complexity, volume 10010 of Lecture Notes in Comput. Sci., pages 521--535. Springer, Cham, 2017. Pdf. MR 3629739. |
[4] | Peter Cholak and Rod Downey. Undecidability and definability for parametrized polynomial time m-reducibilities. In Logical methods (Ithaca, NY, 1992), volume 12 of Progr. Comput. Sci. Appl. Logic, pages 194--221. Birkhäuser Boston, Boston, MA, 1993. Pdf. MR 95e:03124. |
[5] | Peter Cholak, Rod Downey, and Richard Shore. Intervals without critical triples. In Logic Colloquium '95 (Haifa), volume 11 of Lecture Notes Logic, pages 17--43. Springer, Berlin, 1998. Pdf. MR 2000e:03121. |
[6] | Peter A. Cholak. The global structure of computably enumerable sets. In Computability theory and its applications (Boulder, CO, 1999), volume 257 of Contemp. Math., pages 61--72. Amer. Math. Soc., Providence, RI, 2000. Pdf. MR 2001d:03099. |
[7] | Peter A. Cholak, Mariagnese Giusto, Jeffry L. Hirst, and Carl G. Jockusch, Jr. Free sets and reverse mathematics. In Reverse mathematics 2001, volume 21 of Lect. Notes Log., pages 104--119. Assoc. Symbol. Logic, La Jolla, CA, 2005. Pdf. MR 2006g:03101. |
This file was generated by bibtex2html 1.99.