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Abstract. As suggested by the title, this paper is a survey of
recent results and questions on the collection of computably enu-
merable sets under inclusion. This is not a broad survey but one
focused on the author’s and a few others’ current research.

There are many equivalent ways to definite a computably enumerable
or c.e. set. The one that we prefer is the domain of a Turing machine or
the set of balls accepted by a Turing machine. Perhaps this definition
is the main reason that this paper is included in this volume and the
corresponding talk in the “Incomputable” conference. The c.e. sets are
also the sets which are Σ0

1 definable in arithmetic.
There is a computable or effective listing, {Me|e ∈ ω}, of all Turing

machines. This gives us a listing of all c.e. sets, x in We at stage s iff
Me with input x accepts by stage s. This enumeration of all c.e. sets is
very dynamic. We can think of balls x as flowing from one c.e. set into
another. Since they are sets, we can partially order them by inclusion,
⊆ and consider them as model, E = 〈{We|e ∈ ω},⊆〉. All sets (not just
c.e. sets) are partially ordered by Turing reducibility, where A ≤T B iff
there is a Turing machine that can compute A given an oracle for B.

Broadly, our goal is to study the structure E and learn what we can
about the interactions between definability (in the language of inclusion
⊆), the dynamic properties of c.e. sets and their Turing degrees. A very
rich relationship between these three notions has been discovered over
the years. We cannot hope to completely cover this history in this short
paper. But, we hope that we will cover enough of it to show the reader
that the interplay between these three notions on c.e. sets is, and will
continue to be, an very interesting subject of research.

We are assuming that the reader has a background in computability
theory as found in the first few chapters of Soare [26]. All unknown
notation also follows [26].
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1. Friedberg Splits

The first result in this vein was Friedberg [15], every noncomputable
c.e. set has a Friedberg split. Let us first understand the result then
explore why we feel this result relates to the interplay of definability,
Turing degrees and dynamic properties of c.e. sets.

Definition 1.1. A0tA1 = A is a Friedberg split of A iff, for all W (all
sets in this paper are always c.e.), if W −A is not a c.e. set neither are
W − Ai.

The following definition depends on the chosen enumeration of all
c.e. sets. We use the enumeration given to us in the second paragraph
of this paper, x ∈ We,s iff Me with input x accepts by stage s, but with
the convention that if x ∈ We,s then e, x < s and, for all stages s, there
is at most one pair e, x where x enters We at stage s. Some details on
how we can effectively achieve this type of enumeration can be found
in Soare [26, Exercise I.3.11]. Moreover, when given a c.e. set, we are
given the index of this c.e. set in terms of our enumeration of all c.e.
sets. At times we will have to appeal to Kleene’s Recursion Theorem
to get this index.

Definition 1.2. For c.e. sets A = We and B = Wi,

A\B = {x|∃s[x ∈ (We,s −Wi,s)]}
and A↘ B = A\B ∩B.

By the above definition, A\B is a c.e. set. A\B is the set of balls
that enter A before they enter B. If x ∈ A\B then x may or may not
enter B and if x does enters B, it only does so after x enters A (in
terms of our enumeration). Since the intersection of two c.e. sets is c.e,
A↘ B is a c.e. set. A↘ B is the c.e. set of balls x that first enter A
and then enter B (under the above enumeration).

Note that W\A = (W − A) t (W ↘ A) (t is the disjoint union).
Since W\A is a c.e. set, if W −A is not a c.e. set then W ↘ A must be
infinite. (This happens for all enumerations.) Hence infinitely many
balls from W must flow into A.

Lemma 1.3 (Friedberg). Assume A = A0 t A1, and, for all e, if
We ↘ A is infinite then both We ↘ A0 and We ↘ A1 are infinite.
Then A0tA1 is a Friedberg split of A. Moreover if A is not computable
neither are A0 and A1.

Proof. Assume that W − A is not a c.e. set but X = W − A0 is a c.e.
set. X − A = W − A is not a c.e. set. So X ↘ A is infinite and
therefore X ↘ A0 is infinite. Contradiction.
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If A0 is computable then X = A0 is a c.e. set and if A is not com-
putable then X −A cannot be a c.e. set. So use the same reasoning as
above to show X ↘ A0 is infinite for a contradiction. �

Friedberg more or less invented the priority method to split every
c.e. set into two disjoint c.e. sets while meeting the hypothesis of the
above lemma. The main idea of Friedberg’s construction is when a ball
x enters A at stage s to add it to one of A0 or A1 but which set x enters
is determined by priority. Let

Pe,i,k if We ↘ A is infinite then |We ↘ Ai| ≥ k.

We say x meets Pe,i,k at stage s if |We ↘ Ai| < k by stage s − 1 and
if we add x to Ai then |We ↘ Ai| ≥ k by stage s. Find the highest
〈e, i, k〉 that x can meet and add x to Ai at stage s. It is not hard to
show that all the Pe,i,k are meet.

It is clear that the existence of a Friedberg split is very dynamic.
Let’s see why it is also a definable property. But, first, we need to
understand what we can say about E with inclusion. We are not going
to go through the details but we can define union, intersection, disjoint
union, the empty set and the whole set. We can say that a set is com-
plemented. A very early result shows that if A and A are both c.e. then
A is computable. So it is definable if a c.e. set is computable. Inside
every computable set we can repeat the construction of the halting set.
So a c.e. set X is finite iff every subset of X is computable. Hence
W − A is a c.e. set iff there is a c.e. set X disjoint from A such that
W ∪ A = X t A. So saying that A0 t A1 = A is a Friedberg split and
A is not computable is definable.

Friedberg’s result answers a question of Myhill, “Is every non-
recursive, recursively enumerable set the union of two disjoint non-
recursive, recursively enumerable sets?” The question of Myhill was
asked in print in the Journal of Symbolic Logic in June 1956, Volume
21, Number 2 on page 215 in the “Problems” section of the JSL. This
question was the eighth problem appearing in this section. The ques-
tion about the existence of maximal sets, also answered by Friedberg,
was ninth. This author does not know how many questions were asked
or when this section was dropped. Myhill also reviewed Friedberg [15]
for the AMS, but the review left no clues why he asked the question
in the first place.

The big question in computability theory in the 1950’s was “Does
there exist an incomplete noncomputable c.e. set”? Kleene and Post
[20] showed that there are a pair of incomparable Turing degrees below
0′. We feel that after Kleene-Post, Myhill’s question is very natural.



4 P. CHOLAK

So we can claim that the existence of a Friedberg split for every c.e. set
A fits into our theme, the interplay of definability, dynamic properties
and Turing degree on the c.e. sets.

1.0.1. Recent Work and Questions on Friedberg Splits. Given a c.e.
set one can uniformly find a Friedberg split. It is known that there
are other types of splits. One wonders if any of these non-Friedberg
splits can be done uniformly. It is also known that for some c.e. sets
the only nontrivial splits (A = A0 t A1 and the A0 and A1 are not
computable) are Friedberg. So one cannot hope to get a uniform pro-
cedure which always provides a nontrivial non-Friedberg split of every
noncomputable c.e. set. But it would be nice to find a computable func-
tion f(e) = 〈e0, e1〉 such that, for all e, if We is noncomputable then
We0 tWe1 = We is a nontrivial split of We and, for every c.e. set A, if
A has a nontrivial non-Friedberg split and A = We (so We is any enu-
meration of A), and then We0 tWe1 = We is a nontrivial non-Friedberg
split. So, if A has a nontrivial non-Friedberg split and We is any enu-
meration of A, f always gives out a nontrivial non-Friedberg split. In
work yet to appear, the author has shown that such a computable f
cannot exist.

Let P be a property in E . We say that A is hemi -P iff there are
c.e. sets B and C such that A t B = C and C has P . We can also
define Friedberg-P iff there are c.e. sets B and C such that AtB = C
is a Friedberg split and C has P . If P is definable then hemi -P and
Friedberg-P are also definable. One can get lots of mileage from the
hemi -P , see Downey and Stob [10] and Downey and Stob [11]. Most
of these results are about properties P where every nontrivial split of a
set with P is Friedberg. We feel that one should be using Friedberg-P
rather than hemi -P . To that end we ask the following:

Question 1.4. Is there a definable P such that the Friedberg splits are
a proper subclass of the nontrivial splits?

We feel that the Friedberg splits are very special and they should
not be able to always cover all the nontrivial splits of every definable
property.

2. All orbits nice? No!

As we mentioned earlier, Friedberg also constructed a maximal set
answering another question of Myhill. A maximal set, M , is a c.e. set
such that for every superset X either X =∗ M (=∗ is equal modulo
finite) or W =∗ ω. Being maximal is definable. Friedberg’s construc-
tion of a maximal set is very dynamic. Martin [23] showed that all
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maximal sets must be high. A further result of Martin [23] shows a
c.e. degree is high iff it contains a maximal set. A remarkable result
of Soare [24] shows that the maximal sets form an orbit, even an orbit
under automorphisms computable from 0′′ or ∆0

3-automorphisms.
The result of Soare gives rise to the question are all orbits as nice as

the orbit of the maximal sets? We can go more into the formality of
the question but that was dealt with already in another survey paper,
Cholak, Downey, and Harrington [6]. To tell if two c.e. sets, A and B,
are in the same orbit, it is enough to show if there is an automorphism
Φ of E taking the one to the other, Φ(A) = B (we write this as A is
automorphic to B). Hence it is Σ1

1 to tell if two sets are in the same
orbit. The following theorem says that is the best that we can do and
hence not all orbits are as nice as the orbits of maximal sets. The
theorem has a number of interesting corollaries.

Theorem 2.1 (Cholak, Downey, and Harrington [7]). There is a c.e.
set A such that the index set {i : Wi ≈ A} is Σ1

1-complete.

Corollary 2.2 (Cholak et al. [7]). Not all orbits are elementarily de-
finable; there is no arithmetic description of all orbits of E.

Corollary 2.3 (Cholak et al. [7]). The Scott rank of E is ωCK
1 + 1.

Theorem 2.4 (Cholak et al. [7]). For all finite α > 8 there is a properly
∆0
α orbit.

These results were completely explored in the survey, [6]. So we will
focus on some more recent work. In the work leading to the above
theorems, Cholak and Harrington also showed that:

Theorem 2.5 ([4]). Two simple sets are automorphic iff they are ∆0
6

automorphic. A set A is simple iff for every (c.e.) set B if A ∩ B is
empty then B is finite.

Recently Harrington improved this result to show:

Theorem 2.6 (Harrington 2012, private email). The complexity of the
Lω1,ω formula describing the orbit of any simple set is very low (close
to 6).

That leads us to make the following conjecture:

Conjecture 2.7. We can build the above orbits in Theorem 2.4 to have
complexity close to α in terms of the Lω1,ω formula describing the orbit.

3. Complete Sets

Perhaps the biggest questions on the c.e. sets are the following:
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Question 3.1 (Completeness). Which c.e. sets are automorphic to
complete sets?

Motivation for this question dates back to Post. Post was trying to
use properties of the complement of a c.e. set to show that the set was
not complete. In the structure E all the sets in the same orbit have the
same definable properties.

By Harrington and Soare [16], [17], and [18], we know that not every
c.e. set is automorphic to a complete set and, furthermore, there is a
dichotomy between the “prompt” sets and the “tardy” (nonprompt)
sets with the “prompt” sets being automorphic to complete sets. We
will explore this dichotomy in more detail, but more definitions are
needed:

Definition 3.2. X = (We1 −We2)∪ (We3 −We4)∪ . . . (We2n−1 −We2n)
iff X is 2n-c.e. and X is 2n+ 1-c.e. iff X = Y ∪We, where Y is 2n-c.e.

Definition 3.3. Let Xn
e be the eth n-c.e. set. A is almost prompt iff

there is a computable nondecreasing function p(s) such that for all e
and n if Xn

e = A then (∃x)(∃s)[x ∈ Xn
e,s and x ∈ Ap(s)].

Theorem 3.4 (Harrington and Soare [18]). Each almost prompt sets
are automorphic to some complete set.

Definition 3.5. D is 2-tardy iff for every computable nondecreasing
function p(s) there is an e such that X2

e = D and (∀x)(∀s)[if x ∈ X2
e,s

then x 6∈ Dp(s)]

Theorem 3.6 (Harrington and Soare [17]). There are E definable prop-
erties Q(D) and P (D,C) such that

(1) Q(D) implies that D is 2-tardy and hence the orbit of D does
not contain a complete set.

(2) for D, if there is a C such that P (D,C) and D is 2-tardy then
Q(D) (and D is high).

The 2-tardy sets are not almost prompt and the fact they are not
almost prompt is witnessed by e = 2. It would be nice if the above
theorem implied that being 2-tardy was definable. But it says with an
extra definable condition being 2-tardy is definable.

Harrington and Soare [17] ask if each 3-tardy set is computable by
some 2-tardy set. They also ask if all low2 simple sets are almost
prompt (this is the case if A is low). With Gerdes and Lange, Cholak
answered these negatively:

Theorem 3.7 (Cholak, Gerdes, and Lange [8]). There exists a properly
3-tardy B such that there is no 2-tardy A such that B ≤T A. Moreover,
B can be built below any prompt degree.
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Theorem 3.8 (Cholak, Gerdes, and Lange [8]). There is a low2, sim-
ple, 2-tardy set.

Moreover, with Gerdes and Lange, Cholak showed that there are
definable (first-order) properties Qn(A) such that if Qn(A) then A is
n-tardy and there is a properly n-tardy set A such that Qn(A) holds.
Thus the collection of all c.e. sets not automorphic to a complete set
breaks up into infinitely many orbits.

But, even with the work above, the main question about complete-
ness and a few others remain open. These open questions are of a more
degree-theoretic flavor. The main still open questions are:

Question 3.9 (Completeness). Which c.e. sets are automorphic to
complete sets?

Question 3.10 (Cone Avoidance). Given an incomplete c.e. degree d

and an incomplete c.e. set A, is there an Â automorphic to A such that
d 6≤T Â?

It is unclear whether these questions have concrete answers. Thus
the following seems reasonable.

Question 3.11. Are these arithmetical questions?

Let us consider how we might approach these questions. One pos-
sible attempt would be to modify the proof of Theorem 2.1 to add
degree-theoretic concerns. Since the coding comes from how A inter-
acts with the sets disjoint from it, we should have reasonable degree-
theoretic control over A. The best we have been able to do so far is alter
Theorem 2.1 so that the set constructed has hemimaximal degree and
everything in its orbit also has hemimaximal degree. However, what
is open is whether the orbit of any set constructed via Theorem 2.1
must contain a representative of every hemimaximal degree or only
have hemimaximal degrees. If the infinite join of hemimaximal degrees
is hemimaximal then the degrees of the sets in these orbits only contain
the hemimaximal degrees. But, it is open whether the infinite join of
hemimaximal degrees is hemimaximal.

3.1. Tardy Sets. As mentioned above, there are some recent results
on n-tardy and very tardy sets (a set is very tardy iff it is not almost
prompt). But there are several open questions related to this work. For
example, is there a (first-order) property Q∞ so that if Q∞(A) holds,
then A is very tardy (or n-tardy, for some n). Could we define Q∞
such that Qn(A) =⇒ Q∞(A)? How do hemi-Q and Q3 compare? But
the big open questions here are the following:
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Question 3.12. Is the set B constructed in Theorem 3.7 automorphic
to a complete set? If not, does Q3(B) hold?

It would be very interesting if both of the above questions have a
negative answer.

Not a lot about the degree theoretic properties of the n-tardies is
known. The main question here is whether Theorem 3.7 can be im-
proved to n other than 2.

Question 3.13. For which n are there n + 1 tardies which are not
computed by n-tardies?

But there are many other approachable questions. For example, how
do the following sets of degrees compare:

• the hemimaximal degrees?
• the tardy degrees?
• for each n, {d : there is an n-tardy D such that d ≤T D}?
• {d : there is a 2-tardy D such that Q(D) and d ≤T D}?
• {d : there is an A ∈ d which is not automorphic to a complete

set}?
Does every almost prompt set compute a 3-tardy? Or a very tardy?
Harrington and Soare [16] show there is a maximal 2-tardy set. So
there are 2-tardy sets which are automorphic to complete sets. Is there
a nonhigh, nonhemimaximal, 2-tardy set which is automorphic to a
complete set?

3.2. Cone Avoidance, Question 3.10. The above prompt vs. tardy
dichotomy gives rise to a reasonable way to address Question 3.10.
An old result of Cholak [1] and, independently, Harrington and Soare
[18], says that every c.e. set is automorphic to a high set. Hence,
a positive answer to both the following questions would answer the
cone avoidance question but not the completeness question. These
questions seem reasonable as we know how to work with high degrees
and automorphisms, see [1],

Question 3.14. Let A be incomplete. If the orbit of A contains a set
of high prompt degree, must the orbit of A contain a set from all high
prompt degrees?

Question 3.15. If the orbit of A contains a set of high tardy degree,
must the orbit of A contain a set from all high tardy degrees?

Similarly we know how to work with prompt degrees and automor-
phisms, see Cholak, Downey, and Stob [5] and Harrington and Soare
[18]. We should be able to combine the two. No one has yet explored
how to work with automorphisms and tardy degrees.
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4. D-Maximal Sets

In the above sections we have mentioned maximal and hemimaximal
sets several times. It turns out that maximal and hemimaximal sets
are both D-maximal.

Definition 4.1. D(A) = {B : ∃W (B ⊆ A∪W and W ∩A = ∅)} under
inclusion. Let ED(A) be E modulo D(A).

D(A) is the ideal of c.e. sets of the form Ã t D̃ where Ã ⊆ A and
D̃ ∩ A = ∅.

Definition 4.2. A is D-hhsimple iff ED(A) is a Σ0
3 Boolean algebra. A

is D-maximal iff ED(A) is the trivial Boolean algebra iff for all c.e. sets
B there is a c.e. set, D, disjoint from A, such that either B ⊂ A ∪D
or B ∪D ∪ A = ω.

Maximal sets and hemimaximal sets are D-maximal. Plus, there are
many other examples of D-maximal sets. In fact, with the exception of
the creative sets, all known elementary definable orbits are orbits of D-
maximal sets. In the lead up to Theorem 2.1, Cholak and Harrington
were able to show:

Theorem 4.3 ([3]). If A is D-hhsimple and A and Â are in the same
orbit then ED(A)

∼=∆0
3
ED(Â).

So it is an arithmetic question to ask if the orbit of a D-maximal
set contains a complete set. But the question remains does the orbit
of every D-maximal set contain a complete set? It was hoped that the
structural properties of D-maximal sets would be sufficient to allow us
to answer this question.

Cholak, Gerdes, and Lange [9] have completed a classification of all
D-maximal sets. The idea is to look at how D(A) is generated. For
example, for a hemimaximal set A0, D(A0) is generated by A1, where
A0 t A1 is maximal. There are ten different ways that D(A) can be
generated. Seven were previously known and all these orbits contain
complete and incomplete sets. Work from Herrmann and Kummer [19]
shows that these seven types are not enough to provide a characteriza-
tion of all D-maximal sets. Cholak, Gerdes, and Lange construct three
more types and show that these ten types provide a characterization
of all D-maximal sets. We have constructed three new types of D-
maximal sets; for example, a D-maximal set where D(A) is generated
by infinitely many not disjoint c.e sets. We show these three types plus
another split into infinitely many different orbits. We can build exam-
ples of these sets which are incomplete or complete. But, it is open if
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each such orbit contains a complete set. So, the structural properties
of D-maximal sets was not enough to determine if each D-maximal set
is automorphic to a complete set.

It is possible that one could provide a similar characterization of the
D-hhsimple sets. One should fix a Σ0

3 Boolean algebra, B, and charac-
terize the D-hhsimple sets, A, where ED(A)

∼= B. It would be surprising
if, for some B, the characterization would allow us to determine if every
orbit of these sets contains a complete set.

5. Lowness

Following his result that the maximal sets form an orbit, Soare[25]
showed that the low sets resemble computable sets. A set A is lown

iff 0(n) ≡T A(n). We know that noncomputable low sets cannot have a
computable set in their orbit, so, the best that Soare was able to do is
the following:

Definition 5.1. L(A) are the c.e. supersets of A under inclusion. F
is the filter of finite sets. L∗(A) is L(A) modulo F .

Theorem 5.2 (Soare [25]). If A is low then L∗(A) ≈ L∗(∅).

In 1990, Soare conjectured that this can be improved to low2. Since
then there have been a number of related results but this conjecture
remains open. To move forward some definitions are needed:

Definition 5.3. A is semilow iff {i|Wi ∩ A 6= ∅} is computable from
0′. A is semilow1.5 iff {i|Wi ∩ A is finite} ≤1 0′′. A is semilow2 iff
{i|Wi ∩ A is finite} is computable from 0′′.

Semilow implies semilow1.5 implies semilow2, if A is low then A is
semilow, and low2 implies semilow2 (details can be found in Maass [22]
and Cholak [1]). Soare [25] actually showed that if A is semilow then
L∗(A) ≈ L∗(∅). Maass [22] improved this to when A is semilow1.5.

In Maass’s proof semilow1.5ness is used in two ways: A c.e. set, W , is
well-resided outside A iff W ∩A is infinite. Semilow1.5 makes determin-
ing which sets are well-resided outside A a Π0

2 question. The second
use of semilow1.5 was to capture finitely many elements of W ∩A. For
that Maass showed that semilow1.5 implies the outer splitting property :

Definition 5.4. A has the outer splitting property iff there are com-
putable functions f, h such that, for all e, We = Wf(e)tWh(e), Wf(e)∩A
is finite, and if We ∩ A is infinite then Wf(e) ∩ A is nonempty.

Cholak used these ideas to show that:
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Theorem 5.5 (Cholak [1])). If A has the outer splitting property and
A is semilow2 then L∗(A) ≈ L∗(∅).

It is known that there is a low2 set which does not have the outer
splitting property, see Downey, Jockusch, and Schupp [12, Theo-
rem 4.6]. So to prove that if A is low2 then L∗(A) ≈ L∗(∅) will need a
different technique. However, Lachlan [21] showed that every low2 set
has a maximal superset using the technique of true stages. Perhaps
the true stages technique can be used to show Soare’s conjecture.

Recently there has been a result of Epstein.

Theorem 5.6 (Epstein [13] and [14]). There is a properly low2 degree
d such that if A ≤T d then A is automorphic to a low set.

Epstein’s result shows that there is no collection of c.e. sets which is
closed under automorphisms and contains at least one set of every non-
low degree. Related results were discussed in Cholak and Harrington
[2].

This theorem does have a nice yet unmentioned corollary: The collec-
tion of all sets A such that A is semilow (these sets are called speedable)
is not definable. By Downey, Jockusch, and Schupp [12, Theorem 4.5],
every nonlow c.e. degree contains a set A such that A is not semilow1.5

and hence not semilow. So there is such a set A in d. A is automorphic

to a low set Â. Since Â is low, Â is semilow.
Esptein’s result leads us wonder if the above results can be improved

as follows:

Conjecture 5.7 (Soare). Every semilow set is (effectively) automor-
phic to a low set.

Conjecture 5.8 (Cholak and Epstein). Every set A such that A has
the outer splitting property and A is semilow2 is automorphic to a low2

set.

Cholak and Epstein are currently working on a proof of the latter
conjecture and some related results. Hopefully, a draft will be available
soon.
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