Thin sets and the Preservation of Hyperimmunities

Peter Cholak

September 14, 2019

Joint with Ludovic Patey

Special Session on Computability Theory in Honor of Steffen Lempp’s 60th Birthday

AMS Sectional Meeting, Madison, WI

Consider combinatorial principles P as instances-solutions pairs, (I_P, S_P).

The Thin Set Theorem: $RT^n_{<\infty, \ell}$

Instance Let c be a coloring of all finite sets of size n (all subsets of ω) by finitely many colors, not necessarily computable.

Solution A set T is l-thin iff c uses at most l colors to color all the sets of size n from T and T is infinite. So $|c([T]^n)| \leq l$.
Cone Avoidance

Definition (Cone Avoidance)

Cone avoidance for a principle P says every set Z, every non-Z-computable set X and every Z-computable instance \mathcal{I}_P, there is a solution S_P such that $X \not\leq_T Z \oplus S_P$-computable.

Theorem

Given an noncomputable set X there is an (c.e.) set W such that $X \not\leq_T W$.

Corollary

For every Z, for every non-Z-computable set X there is an set W such that $X \not\leq_T Z \oplus W$.
The Catalan and Schröder numbers

The nth Catalan number is the number of paths from $(0, 0)$ to (n, n) that take steps $(0, 1)$ and $(1, 0)$, and don’t go above main diagonal; the nth Schröder number is the same, except the paths are also allowed to take $(1, 1)$ steps.
Theorem (Wang)

For l the nth Schröder number, $RT^n_{<\infty,l}$ satisfies cone avoidance. Let C_0, C_1, \ldots be the sequence of Catalan numbers. In particular, $C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14, C_5 = 42, C_6 = 132, C_7 = 429.$

Theorem

$RT^n_{<\infty,C_n}$ satisfies cone avoidance. Moreover this bound is tight.
Preservation of Hyperimmunities

Definition
A function \(f : \mathbb{N} \to \mathbb{N} \) is \(Z \)-hyperimmune if it is not dominated by any function computable in \(Z \). An infinite set \(A = \{ x_0 < x_1 < \ldots \} \) is \(Z \)-hyperimmune if its principal function, \(p_A(n) = x_n \), is \(Z \)-hyperimmune.

Definition
A problem \(P \) admits the preservation of \(p \) hyperimmunities if for every set \(Z \) and every collection \(\{ f_s : s < p \} \) of \(Z \)-hyperimmune functions, every instance \(\mathcal{I}_P \leq_T Z \) has a solution \(S_P \) such that, for every \(s \leq m \), \(f_s \) is \(Z \oplus S_P \)-hyperimmune.
So \(S_P \) does not contain the information needed to dominate any of the \(f_s \)'s.
What does preservation of hyperimmunities get us?

Theorem (Patey)

$RT^2_{<\omega,k}$ admits preservation of k, but not $k + 1$, hyperimmunities.

Hence $RT^2_{<\omega,k+1}$ does not "follow" from $RT^2_{<\omega,k}$.

Definition

The thin set theorem for n and ω, TS^n, says for all ω-colorings, $c : [\mathbb{N}]^n \to \omega$, there is an infinite set T such that $|c([T])^n| \neq \omega$.

Theorem

TS^n preserves k-hyperimmunities, for every $k \in \omega$, but not ω-hyperimmunities.
Hyperimmune-free degrees

Definition
A Turing degree d is hyperimmune-free iff, for all $f \leq_T d$, f is not hyperimmune.

Lemma
Every instance of a problem P has a solution of hyperimmune-free degree iff P preserves all continuum many hyperimmune functions.

Corollary (Jockusch and Soare)
WKL preserves all continuum many hyperimmune functions.
Patey also showed that problems where all instances have generic or random solutions admit the preservation of countable many hyperimmunities.
Cone Avoidance and preservation of 1-hyperimmunity

Theorem (Downey, Greenberg, Harrison-Trainor, Patey, and Turestsky)

A problem admits the preservation of 1-hyperimmunity iff the problem satisfies cone avoidance.

Corollary

$RT_{<\infty,C_n}^n$ admits the preservation of 1-hyperimmunity. Moreover this bound is tight.
Main new result

Theorem

$RT^n <_\infty, p^n C_n$ admits the preservation of p-hyperimmunities. Moreover this bound is tight.

So $RT^n <_\infty, (p+1)^n C_n$ does not follow from $RT^n <_\infty, p^n C_n$.
Nonhyperarithmetic hyperimmune functions

Definition
A problem P admits the preservation of p nonhyperarithmetic hyperimmunities if for every set Z and every collection \(\{f_s : s < p\} \) of Z-nonhyperarithmetic Z-hyperimmune functions, every instance $I_P \leq_T Z$ has a solution S_P such that, for every $s \leq m$, f_s is $Z \oplus S_P$-hyperimmune (and also likely $Z \oplus S_P$-nonhyperarithmetic).

Theorem
$RT^n_{< \infty, 2^n}$ preserves one nonhyperarithmetic hyperimmunity. Moreover this bound is tight.
Question
For which ℓ does $RT_{n,\ell}^n < \infty$ preserve p hyperimmunities and q nonhyperarithmetic hyperimmunities?

Question
Is there an n and ℓ such that $RT_{n,\ell+1}^n$ follows from $RT_{n,\ell}^n$.
