Computability Theory
Domination, Measure, Randomness, and Reverse Mathematics

Peter Cholak

University of Notre Dame
Department of Mathematics

Peter.Cholak.1@nd.edu

Supported by NSF Grant DMS 02-45167 (USA). Special thanks to Joe Miller.

University of Auckland
March 2007
The Game Plan

Basic Concepts
 Computability
 Cantor Space – Category and Measure

Domination
 and Measure, again

Randomness

Reverse Mathematics

(Given my contribution to this project please consider this as a survey talk not a research talk.)
Domination
Motivation and Definition

Definition
If $f(n) \geq g(n)$ for all but finitely many n, then f dominates g, $f \geq^* g$.
Theorem

Ackermann’s function dominates all primitive recursive functions.

Ackermann’s function is computable. Hence the primitive recursive functions do not capture the informal notion of computable.
Computable Functions

Basic Definitions

Definition (Turing Machines)

- \(\Phi^X_{e,s}(n) = \Phi_{e,s}(X, n) = \Phi^\emptyset_{e,s}(X, n) \) is the \(e \)th Turing machine with oracle \(X \) with input \(n \) run \(s \) stages. Determining if \(\Phi^X_{e,s}(n) \downarrow \) is computable in \(X \). The number and type of the inputs can vary.

- \(\Phi^X_e(n) \downarrow \) if there is a stage \(s \) such that \(\Phi^X_{e,s}(n) \downarrow \). \(\Phi_e \) need not be total. But from now on we will assume we are dealing with total \(\Phi \).

Definition (Turing Reducibility)

- \(f \leq_T X \) iff \(f = \Phi^X_e \), for some \(e \).
- \(Y \leq_T X \) iff \(\chi_Y \leq_T X \).
- \(Y \equiv_T X \) iff \(X \leq_T Y \) and \(Y \leq_T X \). We write this as the Turing degree, \(x \).
We will work in Cantor Space, 2^ω.

Definition

- Let $\sigma \in 2^\omega$. $[\sigma]$ is a basic clopen (open and closed) class.
- A *open* class is a countable union of basic open classes. The complement of a open class is *closed*.
- The countable intersection of (basic) open classes is a G_δ class.
- The countable union of closed classes is a F_σ class.

Cantor Space is compact: if a closed class \mathcal{X} can be covered by open classes, \mathcal{X} can be covered by finitely open open classes.
Cantor Space
Computability and Category

Definition

- $X \subseteq 2^\omega$ is *computable* in Z iff there is a total Φ such that $X \in X$ iff $\Phi^Z(X) \downarrow = 1$ and $X \notin X$ iff $\Phi^Z(X) \downarrow = 0$.

- X is Π^Z_1 iff $X = \{X \mid \forall n (\Phi^Z(X, n) \downarrow = 1)\}$.

- X is Π^Z_2 iff $X = \{X \mid \forall n \exists m (\Phi^Z(X, n, m) \downarrow = 1)\}$.

Lemma

- X is clopen iff X is computable. (Finite Use Principle)

- X is closed iff X is Π^Z_1, for some Z. If $Z = \emptyset$ then X is called a Π^0_1-class or effectively closed.

- A class X is G_δ iff X is Π^Z_2, for some Z. These classes are called boldface Π^0_2 or Π^0_2.

- Similarly a F_σ class is Σ^0_2.
Measure Theory on Cantor Space

Definition

- $\mu([\sigma]) = 2^{-|\sigma|}$. This determines the measure of G_δ classes and hence F_σ classes.
- A class X is measurable iff $\lim\inf \mu(G)$ exists and is equal to $\mu(X)$, where G is a G_δ class containing X.

Definition

A Borel measure $\hat{\mu}$ is regular if every measurable (in terms of $\hat{\mu}$) class P there is a G_δ class $Q \supseteq P$ and an F_σ class $S \subseteq P$ such that $\hat{\mu}(S) = \hat{\mu}(P) = \hat{\mu}(Q)$.

Theorem

μ is regular.
(Uniformly) Almost Everywhere Dominating

Definition (Dobrinen and Simpson)

- A Turing degree \(a \) is *almost everywhere* (a.e.) **dominating** if for almost all \(Z \) for all \(g \leq_T Z \) there is function \(f \) of degree \(a \) which dominates \(g \).
- A Turing degree \(a \) is *uniformly almost everywhere* (u.a.e.) **dominating** if there is function \(f \) of degree \(a \) such that

\[
\mu \left(\{ Z \in 2^{\omega} : (\forall g)[g \leq_T Z \Rightarrow g \leq^* f] \} \right) = 1.
\]

We also call such a function \(f \) **uniformly a.e. dominating**.

Lemma

U.a.e. dominating implies a.e dominating.
Existence

Theorem (Martin)
An uniformly a.e. dominating function f dominates all computable functions and hence must be high. I.e. $f' \equiv_T 0''$, where $f' = \{e | \Phi_e^f(e) \downarrow \}$.

Theorem (Kurtz)
There is a uniformly a.e. dominating function of degree $0'$.

Theorem (Cholak, Greenberg, Miller)
There is an incomplete (c.e.) uniformly a.e. dominating degree.
Positive Measure Dominating

Definition (Kjos-Hanssen)

- \(\text{Tot}(\Phi) = \{X \mid \forall n \exists s \Phi_s(X, n) \downarrow \text{ is total}\}\)
- \(\Phi < a\) iff either \(\mu(\text{Tot}(\Phi)) = 0\) or there is an \(f \leq_T a\) such that
 \[
 \mu(\{X \in \text{Tot}(\Phi) \mid f \geq \Phi(X)\}) > 0.
 \]
- If, for all \(\Phi\), \(\Phi < a\) then \(a\) is positive measure (p.m.) dominating.

Lemma

\textit{U.a.e. dominating implies a.e dominating implies p.m. dominating.}

Theorem (Binns, Kjos-Hanssen, Miller, Soloman)

\textit{Converse holds. P.m. dominating implies a.e dominating which implies u.a.e. dominating.}
Theorem (Dobrinen and Simpson)

A Turing degree a is u.a.e. dominating iff for every Π^0_2 class $Q \subseteq 2^\omega$ there is a Σ^a_2 class $S \subseteq Q$ such that $\mu(S) = \mu(Q)$.

$$(\Rightarrow) \quad Q = \{X | \forall n (\Phi_e(X, n) \downarrow)\},$$

for some e. Let Ψ be such that $\Psi^X(n)$ is the least s where $\Phi_{e,s}(X, n) \downarrow$. f dominates Ψ^X for almost all $X \in Q$.

$$S = \{X : \exists k \forall n (\Phi_{e,f(n)+k}(X, n) \downarrow)\}.$$
P.m. Domination and Measure

Theorem (Kjos-Hanssen after Dobrinen and Simpson)

A Turing degree α is p.m. dominating iff $\text{Tot}(\Phi)$ has a Π^a_1 subclass, \mathcal{S}, of positive measure.

(\Leftarrow) By compactness, $\{\Phi(X, n) \mid X \in \mathcal{S}\}$ is finite for all n. Therefore $\{\langle n, m \rangle : \forall X (X \in \mathcal{S} \rightarrow \Phi(X, n) < m)\}$ is Σ^a_1. Hence by Σ^a_1 uniformization there is a function $f \leq \alpha$ such that $\forall n \forall X (X \in \mathcal{S} \rightarrow \Phi(X, n) < f(n))$.

Goal Check I: We have related domination and measure. Now lets add randomness to this mixture.
1-Random Reals

Want to miss all “effectively null classes”.

Definition (Martin-Löf)

- A *Martin-Löf test (relative to X)* is a computable (in X) collection of Σ^0_1 open classes $\{U_e\}$ with $\mu(U_e) \leq 2^{-e}$.
- R misses a test, $\{U_e\}$, iff $R \notin \bigcap_e U_e$.
- R is *1-random (relative to X)* iff R misses all Martin-Löf tests (relative to X).

Theorem (Martin-Löf, Solovay, Levin, Chaitin, Kolmogorov)

The definition of 1-randomness is very robust.
Low for 1-Random

Definition

- A is *low for 1-random* iff the class of 1-randoms is the class of 1-randoms relative to A.
- A is *low for 1-random over Z* iff the class of 1-randoms relative to Z is the class of 1-randoms relative to A and Z (or equivalently $A \oplus Z$) iff $A \leq_{LR} Z$.

Theorem (Downey, Hirschfeldt, Nies, Solovay, Stephan, Terwijn)

The class of A such that A is low for 1-random is a nontrivial robust class. Furthermore for all such A, $A' \leq \emptyset'$.
Lowness and Domination

Theorem (Binns, Kjos-Hanssen, Lerman, Solomon)
If B is a.e. domainating then $0' \leq_{LR} B$.

Theorem (Kjos-Hanssen)
$A \leq_{LR} 0'$ iff every Π^0_2 class of positive measure has a Π^A_1 subclass of positive measure iff A is positive measure dominating.

Theorem (Binns, Kjos-Hanssen, Miller, Solomon)
If $A \leq_T B'$ and $A \leq_{LR} B$ then every Σ^A_2 class has a Σ^B_2 subclass of the same measure.

Question (Aside)
What is needed for this theorem in reverse math?
Lowness and Domination, II

Theorem (Binns, Kjos-Hanssen, Miller, Solomon)

B is a.e. domainating iff $0' \leq_{LR} B$.

Proof.

(\Leftarrow) Let P be any Π^0_2 class. P is a Σ^0_3 class, so it has a Σ^0_2 subclass Q of the same measure (Kurtz, 1981). But, by the above theorem, Q has a Σ^B_2 class of the same measure.

Corollary

U.a.e. domainating iff a.e domainating iff p.m. domainating.
Weakly 2-random

- A Martin-Löf test (relative to X) is a computable (in X) collection of Σ^0_1 open classes $\{U_e\}$ with $\mu(U_e) \leq 2^{-e}$.
- We will remove the restriction that $\mu(U_e) \leq 2^{-e}$.
- Consider a computable (in X) collection of Σ^0_1 open classes $\{U_e\}$ with $\lim_e \mu(U_e) = 0$.
- $\bigcap_e U_e$ is a measure zero Π^0_2 class (G_δ).
- R is weakly 2-random (relative to X) iff R misses all measure zero Π^0_2 (Π^X_2) classes.

Theorem (Kurtz)

Weakly 2 random implies 1-random but converse does not hold.
Low for weakly 2-random

- A is *low for weakly 2-random* if every weak 2-random is weak 2-random over A.
- A is *low for weak 2-tests* iff every Π^A_2 nullclass is covered by a Π^0_2 nullclass.

Lemma

Low for weak 2-tests implies low for weak 2-random. (Shortly we will see the converse also holds)

Theorem (Downey, Nies, Weber, Yu)

- *If A is low for weakly 2-random then A is low for random.*
- *There is a noncomputable c.e. A is that is low for weak 2-tests.*
Low for random and weakly 2-random

Theorem (Binns, Kjos-Hanssen, Nies, Miller, Solomon)

If A is low for random then A is low for weak 2-tests.

Corollary

A is low for random iff A is low for weak 2-tests iff A is low for weakly 2-randoms.
Statement \((G_\delta\text{-REG})\)
For every \(G_\delta\) class \(\mathcal{Q} \subseteq 2^\omega\) there is a \(F_\sigma\) class \(\mathcal{S} \subseteq \mathcal{Q}\) such that \(\mu(\mathcal{S}) = \mu(\mathcal{Q})\).

Theorem (Dobrinen and Simpson)
\(\text{ACA}_0\) implies \(G_\delta\text{-REG}\).

Theorem (Kjos-Hanssen)
\(\text{RCA}_0 + G_\delta\text{-REG}\) does not imply \(\text{ACA}_0\).
G_δ-REG and traditional systems

G_δ-REG seems to be “orthogonal" to the traditional systems.

Theorem (Referee of Dobrinen and Simpson)
WKL$_0$ does not imply G_δ-REG.

Theorem (Cholak, Greenberg, Miller)
RCA$_0$ + G_δ-REG does not imply DNR$_0$.

Theorem (Cholak, Greenberg, Miller)
WKL$_0$ + G_δ-REG does not imply ACA$_0$; WWKL$_0$ + G_δ-REG does not imply WKL$_0$.

Question
Does DNR$_0$ + G_δ-REG imply WWKL$_0$?