Radiative B meson Decays at BaBar

Colin Jessop University of Notre Dame

Contents

- 1. Motivations for studying radiative decays
- 2. Brief Theoretical overview
- 3. Experimental considerations
- 4. Measurements of exclusive modes
- 5. Measurements of inclusive modes
- 6. Conclusions

Motivations

 Window to new Physics

 Help measure the unitarity triangle

Test QCD technology

Radiative Penguin Decays

The Penguin Zoo

Several different types of penguins (not including gluonic penguins)

I will focus today mostly on electromagnetic penguins. BaBar has results on all these processes

4

Sensitivity to New Physics

Example: If SUSY exact $B(b \rightarrow s\gamma) = 0$

W/.

b

New Physics enters at same order (1-loop) as Standard Model

b

Sensitive to many models - very extensive literature

S/d

SUSY

S/d

H+

Contents

- 1. Motivations for studying radiative decays
- 2. Brief Theoretical overview
- 3. Experimental considerations
- 4. Measurements of exclusive modes
- 5. Measurements of inclusive modes
- 6. Conclusions

Penguin Theory – A brief Overview

B mesons are low energy decays at scale μ = m_b ~ 5 GeV

Formulate a low energy effective theory :

Generalization of Fermi Theory of β -decay.

Operator Product Expansion

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

Ci: Wilson Coefficients - contains short distance (high energy) perturbative component

Qi : Local Operators - contains long distance (low energy) non-perturbative component

 μ (renormalization) scale dependence cancels in C and Q

S/d

Wilson Coefficients

S/d

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

C_i i=1,2 current-current, i=3-6 gluonic penguins i=7-10 Electroweak Penguins C_i calculated at μ =M_w and evolved down to μ =m_b.

Matrix Elements

S/d

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

<X|Q|B> are long distance (low-energy) non-perturbative component

If X is exclusive state e.g $| K^*\gamma > two possibilities$

1. Lattice QCD: Lattice spacing >> compton wavelength of b -> Large errors

2. QCD sum rules: Relates resonances to vacuum structure of QCD

Neither approach gives precise estimates - limits exclusive physics. Uncertainties cancel in ratios of modes or asymmetries.

Inclusive Matrix Elements

S/d

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

If X is an inclusive state

$$\langle X|Q|B\rangle = 1 + O(\frac{1}{m_b}) + O(\frac{1}{m_b^2}) + \dots$$

 \bigcap

Leading term is short distance quark contribution and nonperturbative effects appears at $1/m_b^2$ -i.e (O(1%)) corrections

Inclusive measurements are much more sensitive to new physics

General Considerations

	Exclusive		Inclusive
Mode (#Events in~400fb-1)	B->K*γ O(1000)	Β->ρ/ωγ Ο(100)	B->X _s γ O(10000)
Backgrounds	Small	Large	Large
Theory Uncertainty	Large 30-50%	Medium (in ratios) 15%	Small 7%

Contents

- 1. Motivations for studying radiative decays
- 2. Brief Theoretical overview
- 3. Experimental considerations
- 4. Measurements of exclusive modes
- 5. Measurements of inclusive modes
- 6. Conclusions

B factories: $e+e- \rightarrow Y(4S) \rightarrow BB$

B factories operate at the Y(4S) resonance (10.58 GeV)

hadronic cross-sections: udsc:bb = 3.4:1.1 nb

in the Y(4S) frame the B mesons are practically at rest

→ PEP-II is an asymmetric collider 9.0 GeV electrons vs 3.1 GeV positrons

14

PEP-II and BaBar at SLAC

The BaBar Dataset

BaBar collected 468 M BB pairs between 2000-2007 and 54 fb⁻¹ offresonance data (8%). This yields about 1 Billion B meson decays

Colin Jessop at Heavy Quarks and Leptons

Other B meson experiments

CLEO did much of the pioneering work. Stopped in 2001

BaBar forced to shut down for a year in 2004-2005 by DOE safety after accident then cancelled in 2006

Though BELLE has larger datasets BaBar remains competitive Particularly in systematics dominated measurements

When it was cancelled BaBar was performing at 7 times design Luminosity and had produced over 350 publications. One of which 17 led to the award of the 2008 Nobel prize (to KM of CKM)

Contents

- 1. Motivations for studying radiative decays
- 2. Brief Theoretical overview
- 3. Experimental considerations
- 4. Measurements of exclusive modes
- 5. Measurements of inclusive modes
- 6. Conclusions

Radiative penguin decays of *B* mesons

Continuum Backgrounds

and τ pairs underneath Y(4s) 25 Υ(1S) \rightarrow Hadrons)(nb) 20 15 Υ(2S) 10 Υ(3S) **'**0 Υ(4S) d (e⁺ 5 9.44 9.46 10.00 10.02 10.34 10.37 10.54 10.58 10.62 Mass (GeV/c^2)

Production of u,d,s,c quark

Lorentz boost makes a jet-like topology

Event Shape Variables

Construct "Shape" variables to distinguish between isotropy and jets

Angle between thrust and photon

Neural net combination of suite of topology variables effective with multicomponent background

Signal Variables for Exclusive Reconstruction analyses

Beam Constrained Mass

Reconstructed Energy - beam Energy

Sensitivity can be enhanced by performing two dimensional likelihood fits to signal and background.

Average of Belle & BaBar: $B(B \rightarrow K^*\gamma) = (4.16 \pm 0.17) \times 10^{-5}$

Theory $6.0 \pm 3.0 \times 10^{-5}$

<mark>2</mark>4

A Colony of Penguins

Search for $B^0 \rightarrow \gamma \gamma$

SM: Expect $B(B^0 \rightarrow \gamma \gamma) \sim 3 \times 10^{-8}$ (Bosch and Buchalla, JHEP 0208:054 (2002))

But could be enhanced by x10 by SUSY given $b > d\gamma$ constraints (Aliev and Turin, PRD 58 095014)

The unitarity triangle

Measurement of $b \rightarrow d\gamma$ and Extraction of $|V_{td}/V_{ts}|$

Measurement of $b \rightarrow d \gamma$ Branching Fractions $B^0 \rightarrow \rho^0 \gamma$

$|V_{td}/V_{ts}|$ from penguins and B_s mixing

Contents

- 1. Motivations for studying radiative decays
- 2. Brief Theoretical overview
- 3. Experimental considerations
- 4. Measurements of exclusive modes
- 5. Measurements of inclusive modes
- 6. Conclusions

Inclusive Penguins: $\Gamma(B-Xs\gamma)$

$$\Gamma(B \to X_s \gamma) = \Gamma(b \to s \gamma) + \Delta^{non-pert}$$

Quark-hadron duality

The non-perturbative corrections are a few percent.

NNLO calculation for $B(B -> X_{s\gamma})$

$$B(B \rightarrow X_s \gamma) = 3.15 \pm 0.23 \times 10^{-2}$$

(Misiak, Asatrian, Bieri, Czakon, Czarnecki, Ewerth, Ferroglia, Gambino Gorbahn, Greub, Haisch, Hovhannisyan, Hurth, Mitov, Poghosyan, Slusarczyh)

Major undertaking involving thousands of diagrams. New precise Calculation has renewed interest in the field

Compare to NLO: $B(B \rightarrow X_s \gamma) = 3.61 \pm 0.43 \times 10^{-4}$

Theory Errors on $B(B - Xs\gamma)$

10

3.6

3.4

3.2

IO

NNLO

μc (GeV)

8

At NLO the choice of charm quark renormalization scale had been a Problem.

Scale dependence on µb

New calculation resolves this issue and errors are now understood³⁴

Quark-Hadron duality

Inclusive Photon Spectrum

Information about motion of b-quark should be universal - i.e like a structure function and so can be applied to other inclusive processes

Experimental Challenge

Monte Carlo : Just require γ

y Model Dependence

Note additional BB background

To reduce large backgrounds without cutting on γ or Xs i.e a fully inclusive measurement

Two Methods for inclusive $B \rightarrow X_s \gamma$

Differ in treatment of Xs

Method	Advantages	Disadvantages		
Fully inclusive don't reconstruct X _s	Closest correspondence to inclusive $B(B \rightarrow X_s \gamma)$.	More Backgrounds		
Sum of exclusive $B \rightarrow K n(\pi) \gamma$	Less background due to additional kinematic constraints. Better E_{γ} resolution.	More model dependence due to finite set of explicitly reconstructed $B \rightarrow X_{s} \gamma_{40}$ decays.		

Technique II "Fully Inclusive": $B \rightarrow X_{s\gamma}$

Suppress continuum background by requiring a "lepton tag" from recoiling B (5% Efficiency for x1200 reduction in background)

42

Remaining continuum subtracted with off-resonance data -> statistical uncertainy

Note this can be done untagged (CLEO and BELLE do this)

Experimental History of B ->X_sγ

1995: First Measurement from CLEO

Experimental History of $B \rightarrow X_s \gamma$

$\mathcal{B}(B \rightarrow X_s \gamma)$ Measurements

45

After Pre-cuts (trigger+skim)

2

2.2

2.4

2.6

2.8

 E_{γ}^{*} (GeV)

3

1.6

1.8

Continuum Subtraction

After all selection cuts

Spectrum after Continuum Subtraction

After all selection cuts

After continuum subtraction

Spectrum after Continuum Subtraction

After all selection cuts

After continuum subtraction

Subtracting BB background requires extensive comparisons between Data and MC for the various BB backgrounds.

For each significant BB background, we derive a Data/MC correction factor which is applied to MC.

1/4/11

BB Background Components

Breakdown BB background according to MC

Process	$1.53 < E_{\gamma}^* < 1.8 \text{ GeV}$	$1.8 < E_{\gamma}^* < 2.7 { m GeV}$
$B \to X \pi^0$	0.539	0.613
$B \to X\eta$	0.206	0.192
$B \to X e(\gamma)$	0.097	0.062
$B \to X \omega$	0.039	0.027
$B \to X \eta'$	0.011	0.008
Fake γ : e^{\pm}	0.041	0.033
Fake γ : \overline{n}	0.017	0.024
Out-of-Time Cluster	0.002	0.008
Total	0.951	0.898
Other	0.049	0.033

95 – 97% of BB background is data-corrected.

1/4/11

ata/MC corrected

BB Background Components

Breakdown BB background according to MC

Process	$1.53 < E_{\gamma}^* < 1.8 \text{ GeV}$	$1.8 < E_{\gamma}^* < 2.7 { m GeV}$
$B \to X \pi^0$	0.539	0.613
$B \to X\eta$	0.206	0.192
$B \to X e(\gamma)$	0.097	0.062
$B \to X \omega$	0.039	0.027
$B \to X \eta'$	0.011	0.008
Fake γ : e^{\pm}	0.041	0.033
Fake γ : \overline{n}	0.017	0.024
Out-of-Time Cluster	0.002	0.008
Total	0.951	0.898
Other	0.049	0.033

95 – 97% of BB background is data-corrected.

1/4/11

ata/MC corrected

Background is from electron track mis-id which gives fake g Use J/psi to e+e- from $B \rightarrow X \varphi$. Look for one leg of decay to be a tracked

Reconstruct other leg from either good electron or one where the track has Been missed to just leave a cluster

1/4/11

Fake e -> γ background from $B \rightarrow X \varphi$

$\psi(e_{track}^+e_{cluster}^-)$

 $\psi(e_{track}^+e_{track}^-)$

Overall **BB** Corrections

 All applied corrections to BB 	E_{γ}^* (GeV)	$lpha_{all}$
background simulation	1.53 - 1.6	0.999 ± 0.027
 Π^v/η Corrections ω Corrections 	1.6 - 1.7	0.988 ± 0.028
 a Corrections n' Corrections 	1.7 - 1.8	0.992 ± 0.029
Electron Corrections	1.8 - 1.9	0.999 ± 0.031
Antineutron Corrections	1.9 - 2.0	1.004 ± 0.030
 Semi-leptonic Corrections Particle ID Corrections 	2.0 - 2.1	0.997 ± 0.028
Out-of-Time Cluster	2.1 - 2.2	1.004 ± 0.032
Corrections Veto Corrections	2.2 - 2.3	0.990 ± 0.042
 Measurement is done in 	2.3 - 2.4	0.978 ± 0.062
bins of photon energy.	2.4 - 2.5	1.250 ± 0.158
Convert to overall BB	2.5 - 2.6	1.128 ± 0.158
enerav bins.	2.6 - 2.7	1.165 ± 0.232
	2.7 - 2.8	0.497 ± 0.092

1/4/11

Control Region Check

Unblinding the Spectrum

Systematics Summary			
Effect	Value		
$HE\gamma$ Efficiency	0.991	\pm	0.0067
$HE\gamma$ Energy Scale	1.0	\pm	0.0025
$\mathrm{HE}\gamma$ Resolution	1.0	\pm	0.001
$\mathrm{HE}\gamma$ Lateral Moment Cut	1.0	\pm	0.003
Bump Isolation Cut	1.0	\pm	0.020
τ^0 and η Vetoes	0.996	\pm	0.002
Lepton Particle ID	0.989	\pm	0.004
Semi-leptonic Correction	1.047	\pm	0.013
Neural Network	1.0	\pm	0.012

Neural Network 1.0 \pm Fragmentation Model 1.0 \pm Combined 1.022 \pm

0.008

0.029

Removing the $B \rightarrow X_d \gamma$ Contribution Event selection is insensitive to hadronic final state—must remove $B \rightarrow$ $X_d \gamma$ contribution. $\mathcal{B}(B \to X_{s+d}\gamma)_{E_{\gamma} > 1.6 \text{ GeV}} \to \mathcal{B}(B \to X_s\gamma)_{E_{\gamma} > 1.6 \text{ GeV}}$ • Assume $B \rightarrow X_s \gamma$ and $B \rightarrow X_d \gamma$ spectra are similar. • Subtract $B \rightarrow X_d \gamma$ contribution by simple correction (1 - $|V_{td}/V_{ts}|^2$), where $|V_{td}/V_{ts}| =$ 0.209 ± 0.006

 $\mathcal{B}(B \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}} = (3.28 \pm 0.16 \pm 0.28 \pm 0.10) \times 10^{-4}$

1/4/11

Dissertation Defense

Result vs. Other Measurements

$B(B-X_{s\gamma})$ constraints many models

Direct CP Asymmetry in $B \rightarrow X_s \gamma$

$$A_{CP}(B \to X_{s+d}\gamma) = \frac{\Gamma(B \to X_{s+d}\gamma) - \Gamma(B \to X_{s+d}\gamma)}{\Gamma(\overline{B} \to \overline{X}_{s+d}\gamma) + \Gamma(B \to X_{s+d}\gamma)}$$
$$A_{CP}^{SM}(B \to X_{s+d}\gamma) \sim 10^{-6}$$

In SM is CKM and GIM suppressed. Non MFV SUSY could enhance Dramatically.

Use lepton tag charge to tag flavor

$$A_{CP}(B \to X_{s+d}\gamma) = \frac{1}{1 - 2\omega} A_{CP}^{\text{meas}}(B \to X_{s+d}\gamma)$$

$$\omega = \frac{\chi d}{2} + \omega_{\text{cascade}} + \omega_{\text{mis-II}}$$

67

Conclusions

Radiative Decays are a powerful tool in the indirect search for new physics.

An extensive program of study at BaBar is nearing completion (it will be continued by Super BELLE and possibly superB)

No evidence of new physics has been found but significant constraints Are placed on beyond SM physics.