
Towards Automatic Generation of
Short Summaries of Commits

Siyuan Jiang and Collin McMillan
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

Email: {sjiang1, cmc}@nd.edu

Abstract—Committing to a version control system means
submitting a software change to the system. Each commit can
have a message to describe the submission. Several approaches
have been proposed to automatically generate the content of such
messages. However, the quality of the automatically generated
messages falls far short of what humans write. In studying the
differences between auto-generated and human-written messages,
we found that 82% of the human-written messages have only one
sentence, while the automatically generated messages often have
multiple lines. Furthermore, we found that the commit messages
often begin with a verb followed by an direct object. This finding
inspired us to use a “verb+object” format in this paper to
generate short commit summaries. We split the approach into
two parts: verb generation and object generation. As our first
try, we trained a classifier to classify a diff to a verb. We are
seeking feedback from the community before we continue to work
on generating direct objects for the commits.

I. INTRODUCTION

A commit is the action of software developers submitting
a software change to a version control system. Commits can
have commit messages, which are often written by developers
to describe the changes. Commit messages are important
because developers use them to review, validate, and under-
stand the commits, but commit messages sometimes are non-
informative or even empty [1].

To address this problem, automatic commit message gener-
ation techniques have been proposed. They often use program
analysis and differencing techniques to generate summaries of
changes [1]–[4]. These summaries are much shorter than the
diff files (generated by differencing tools), but the summaries
still tend to have multiple lines. Other techniques generate
commit messages from other project documents. For exam-
ple, Rastkar and Murphy proposed to generate the commit
messages from user stories [5]. The summaries generated by
these techniques are useful, but what is still missing is one-
sentence summaries which convey the key ideas of commits.

The idea of generating one-sentence summaries is based
on our exploratory data analysis on the two million commit
messages that we present in this paper. We used natural
language processing (NLP) techniques to analyze the text
of the commit messages and found that the majority of the
commit messages are only one sentence long, and nearly
half of the commit messages begin with a verb followed
by a direct object. This finding inspired us to design a
method for generating commit summaries that are similar

An extended summary 
of the changes, such 
as the changed class 
names

Summary of related 
documents, such as 
user stories

One phrase summary

Content

Intention

Our approach

ChangeScribe,
DeltaDoc,

ARENA, etc.

Rastkar and 
Murphy’s 
approach

A commit message

A diff file
Text 

differencing 
techniques

Fig. 1. Existing techniques for commit message generation compared to our
approach

to what developers write: “verb + object”. These one-phrase
summaries can be the leading sentences or the topics of the
summaries generated by the existing techniques (Figure 1).

We divided our work into three parts: the exploratory data
analysis, the verb generation and the direct-object generation.
We summarized the exploratory data analysis in the previous
paragraph and describe it in Section IV. For the verb gener-
ation, we trained a Naive Bayes classifier to identify verbs
based on diff files that should be the key verbs in the commit
messages. We also conducted a preliminary evaluation of the
verb generation in Section V.

In this ERA paper, we present several open questions to the
community that we hope will guide our future work, and in
particular the generation of direct objects for the verbs.

Our contributions include:

• Using NLP techniques to analyze the commit messages,
which enable us to analyze a large set of the messages
(which we release in our online appendix)

• Discovery of a common phrase structure that is used by
software developers to write commit messages, and a
program that automatically extracts such phrase structure

• A proposal that aims to generate one-sentence commit
messages that convey the key ideas of commits

In the rest of this paper, we will present a motivational
example, the related work, the exploratory data analysis, the
verb generation technique, and the future work.

Online Appendix We put our scripts and results on our
online appendix: http://nd.edu/∼sjiang1/commitact



“change the producer info”

Diff file

DeltaDoc

Our approach

Fig. 2. The diff file, the commit message generated by DeltaDoc [2], and
the commit message that our approach aims to generate for Commit r3909 in
iText (Section II)

II. EXAMPLE

In this section, we borrow the example of Commit r3909 in
iText from the paper of DeltaDoc [2]. The diff file of r3909 and
the summary generated by DeltaDoc are shown in Figure 2.

The size of the generated document is about half of the
diff file, but it is still difficult to get the general idea at
the first glance. Similarly, Changescribe [4] also generates
messages that are several lines long. What is missing is a
leading sentence that summarizes all the changes in a commit.
Now consider the commit message that the developer wrote:
“Changing the producer info.” This phrase contains the action
of the commit, “change”, and what is the object of the action,
“the producer info”. The developer can skim this phrase and
understand what was changed in the commit.

Currently, our approach generates “change” for r3909, and
in the future, we will have an approach to generate “the
producer info”. The combination of the two approaches is
going to generate phrases like “change the producer info”.

III. RELATED WORK

Our project has two parts: exploratory data analysis and
commit message generation. Based on the two parts, we
separate the related work into three categories: empirical
studies about commit messages, empirical studies about diff
files, and techniques that generate commit messages.

A. Empirical Studies about Commit Messages

Several empirical studies about commits messages have
been conducted for commit classification and commit message
generation [2], [3], [6]–[8]. For example, Moreno et al. [3]

manually inspected the existing release notes before they
designed an approach to generate release notes automatically.
Buse and Weimer [2] conducted a similar manual inspection
for automatic commit message generation. Like these previous
studies, our exploratory data analysis aims to gain insights for
our approach of generating commit messages.

Different from the previous studies, we used natural lan-
guage processing (NLP) techniques, which help us to mine
information from the existing commit messages automatically
and confirm hypotheses on a large data set. Besides manual
inspection, the previous studies also computed the sizes of
commit messages and analyzed the messages as bags of
words [7], [8]. In contrast, we are able to conduct grammar
analysis on the commit messages. The grammar analysis
leaded to a key finding that shaped our approach.

B. Empirical Studies about Commit Changes

There are many empirical studies about the changes in
commits [6]–[9]. For example, Fluri et al. studied change types
based on their syntax differencing technique [9]. Currently, we
have not conducted an empirical study on the commit changes,
but we plan to study the content of the diff files in the future.
Instead of looking for change types, we will study whether
there are overlapped words in the commit messages and their
diff files and where we can locate the overlapped words in the
diff files.

C. Commit Message Generation Techniques

A common way to generate commit messages is summa-
rizing code changes of a commit [2]–[4]. Many techniques
use syntax differences to present code changes [2]–[4], [9].
Different from the existing techniques, we use diff files
(generated by git diff command) in our approach. Diff files
are textual differences and easy to obtain. On the other
hand, syntax differencing requires code parsing. Additionally,
syntax differencing includes only code changes, while diff files
contain other changes, such as comment and makefile changes.
While the two differencing types have their own advantages
and disadvantages, we chose to use the diff files as our first
try, because they are easier to obtain.

To include context information in a commit message, several
approaches consider the information outside the text or code
changes of a commit [3], [5], [10]. While we agree that
the context information is an important part of a commit
message, our approach is currently focusing on summarizing
text changes into a short sentence to increase readability and
interpretability of a commit message.

Our approach to generate a verb for a commit is similar
to the approach taken by Le et al. to link issue reports to
commits [10]. Le et al. conducted textual similarity analy-
sis between commit messages and issue reports where they
used term frequency-inverse document frequency (tf-idf) to
represent commit messages and issue reports. We also used
tf-idf, but tf-idf is used to represent the diff files instead of
the commit messages.



Fig. 3. Histogram of number of sentences in the commit messages

IV. EXPLORATORY DATA ANALYSIS

We conducted an exploratory data analysis that is similar
to the analysis done by Hattori and Lanza [7]. Hattori and
Lanza found that most commits include few files and very
few commits have hundreds of files. Likewise, we found that
most commit messages have few sentences and few commit
messages have more than ten sentences.

The Data Set First, we obtained 967 commits from the
work by Mauczka et al [11]. Second, we obtained all the
commits from the top 1,000 popular Java projects in Github
(due to space limit, we put the details on our online appendix,
Section I). Then, we filtered the commit messages that are
empty or have non-English letters. In the end, we obtained
2,027,734 commits.

Removing Special Commits We excluded the rollback and
merge commits from our analysis. Version control systems
often provide automatic commit messages for rollbacks and
merges, such as, “merge commits X and Y”. In the two million
commits, we removed nearly 400k rollbacks and merges
by checking whether the commit messages are begun with
“merge” or “rollback”.

Number of the Sentences In the remaining 1.6 million
commit messages, we counted the number of the sentences
in each commit message by using Stanford CoreNLP [12].
The majority of the commit messages have few sentences.
82% of the commit messages have only one sentence. Only
0.2% of the commit messages have more than ten sentences.
Figure 3 shows the histogram of the number of the sentences
in the commit messages (excluding the messages have more
than ten sentences due to space limit).

Grammar Analysis on the Commit Messages We took two
steps in the grammar analysis. First, we manually read 12
randomly-sampled commit messages from the commits we
obtained from Mauczka et al [11]. In this step, we formed the
hypothesis that “verb + object” is a common phrase structure
in the commit messages. Second, to confirm the hypothesis,
we used Stanford CoreNLP [12] to detect the verbs and their
direct objects in the first sentences of the commit messages. In
the 1.6 million messages, we found 763,826 messages (which
is 47% of the 1.6 million messages) where the first sentences
are begun with a verb and its direct object.

Fig. 4. Histogram of the verbs in commit messages

TABLE I
THE VERB GROUPS

Id Verb types Id Verb types Id Verb types
1 add, create, make, 6 move, change 12 allow

implement 7 prepare 13 set
2 fix 8 improve 14 revert
3 remove 9 ignore 15 replace
4 update, upgrade 10 handle
5 use 11 rename

V. CLASSIFYING DIFFS INTO VERB GROUPS

In this section, our goal is to generate a verb from a commit.
We used diff files (i.e., textual differences) to represent the
changes of commits because diff files can be easily obtained
by git diff command. Then we treated the problem of verb
generation as a multiclass classification problem—classifying
a diff file into one of the verb groups, where a verb group is
a group of verbs that have similar meanings. As the first step,
we define our verb groups in the following section.

A. Verb Groups
When we analyzed phrase structures of the commit mes-

sages (Section IV), we retrieved for each commit a verb
from the commit message. There are 763k verbs in total.
We transformed the verbs into their lemmas and we called
each distinct lemma a verb type. There are 4962 verb types
in the 763k verbs. Figure 4 shows the histogram of the 20
most frequent verb types. Alali et al. [6] has reported a list of
frequent words in commit messages, which overlap with our
frequent verb types.

From all the verb types, we considered only the 20 most
frequent word types, which cover 70% of the commit messages
(537k commit messages). We grouped similar word types
by using a word embedding tool1, which uses word2vec
method [13]. Finally we manually inspected the grouped verbs
and added “implement” to the group of “add”. There are 15
verb groups in total, which are shown in Table I. The first,
third, and fifth columns list the ids of the verb groups.

Labeling To label each diff file, we used the verb that we
extracted from the commit message, and we labeled the diff
file with the verb group id that includes the verb. The verb

1http://bionlp-www.utu.fi/wv demo/ On this webpage, we looked up the 20
nearest words for each verb type. Two verb types are grouped together if one
verb type is in the other verb type’s 20 nearest word list.



Classifier

Training 
Phase

Testing
Phase

Naive Bayes 
Classifier Learning

Ground Truth 
Verb Group 

Labels

Computing
tf-idf

Computing
tf-idf Classificationdiff files

(test set)

diff files
(training set)

Verb Group 
Labels

Ground Truth 
Verb Group 

Labels

Evaluation

Data
Legend Process Model

Fig. 5. The overall approach

groups only include the 20 most frequent verb types, in this
study, we excluded the diffs that have other verbs. In total, we
have 537k labeled diff files.

B. The Data Set

We removed the diff files that are larger than 1MB due
to space limit. We also removed the diff files that have non-
ascii codes. In the end, we have 509k labeled diff files. We
randomly selected 3k diff files as the test set and the rest of
the diff files are used for training.

C. Overall Approach

The overall approach is shown in Figure 5. We chose a
Naive Bayes classifier to classify the diff files into the verb
groups. Before we train the classifier on the diff files, we
computed tf-idf (term frequency-inverse document frequency)
for every word type (i.e., distinct word) as the features of the
diff files. Tf-idf is a common textual feature that evaluates the
importance of a word type by two factors: 1) the number of
times the word type occurs in a diff file divided by the total
number of words in the diff file, and 2) the number of times
the word type occurs in all the diff files [10].

D. Evaluation

The overall accuracy is 39%; the precision is 43%; and the
recall is 39%. The classifier works best for verb groups 1
and 9. The precision for verb group 1 is 38% and the recall
is 100%; the precision for verb group 9 is 100% and the
recall is 41%. Although we trained the classifier with 15 verb
groups, the classifier classified the test set into five verb groups
and was not able to detect any of the other ten verb groups.
We plan to improve our training approach by 1) trying other
machine learning techniques, such as random forests [10]; 2)
using SMOTE [14] to address the problem of the unbalanced
data set (most of the diffs are labeled with verb group 1).

VI. DISCUSSION AND FUTURE WORK

In the process of this project, we have formed several
potential research questions to be discussed in the conference.

We hope the conversions at the conference will help in
directing us towards answering these questions.

RQ1 What techniques are appropriate for generating direct
objects for the commits? We observed that the direct objects
often occur in the diff files. So one of our options is to
use extractive summarization techniques to extract the “direct
objects” from the diff files.

RQ2 What machine learning models and features suit
verb-generation task better? To improve our verb-generation
approach, we can try other classification methods, such as
decision trees. Feature-wise, diff files follow a certain format
and we can create some features to represent the characteristics
of a diff file, for example, the number of “+” in a diff file.

RQ3 To what extent are the short summaries useful? Al-
though we think the short summaries are useful based on
our experience, we need to conduct a study to confirm our
hypothesis. Our current assumption is that the short summaries
help developers understand a commit more quickly.

ACKNOWLEDGMENT

This work was partially supported by the NSF CCF-
1452959 and CNS-1510329 grants, and the Office of Naval
Research grant N000141410037. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

REFERENCES

[1] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in ICSE ’15, vol. 2, May 2015, pp. 709–712.

[2] R. P. Buse and W. R. Weimer, “Automatically documenting program
changes,” in ASE ’10, 2010, pp. 33–42.

[3] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings
of the 2014 FSE, pp. 484–495.

[4] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk,
“Changescribe: A tool for automatically generating commit messages,”
in 2015 IEEE/ACM 37th IEEE ICSE, vol. 2, pp. 709–712.

[5] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proceed-
ings of the 2013 ICSE, ser. ICSE ’13, 2013, pp. 1193–1196.

[6] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in 2008 16th
IEEE Intl. Conf. on Program Comprehension, pp. 182–191.

[7] L. P. Hattori and M. Lanza, “On the nature of commits,” in 2008 23rd
ASE - Workshops, pp. 63–71.

[8] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic
classication of large changes into maintenance categories,” in 2009 IEEE
17th ICPC, pp. 30–39.

[9] B. Fluri, M. Wuersch, M. PInzger, and H. Gall, “Change distilling:tree
differencing for fine-grained source code change extraction,” IEEE TSE,
vol. 33, no. 11, pp. 725–743, 2007.

[10] T. D. B. Le, M. Linares-Vasquez, D. Lo, and D. Poshyvanyk, “Rclinker:
Automated linking of issue reports and commits leveraging rich contex-
tual information,” in 2015 IEEE 23rd ICPC, pp. 36–47.

[11] A. Mauczka, F. Brosch, C. Schanes, and T. Grechenig, “Dataset of
developer-labeled commit messages,” ser. MSR ’15, pp. 490–493.

[12] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL System Demonstrations, 2014, pp. 55–60.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.


