TraceLab Components for Generating Extractive
Summaries of User Stories

Rrezarta Krasniqi, Siyuan Jiang, and Collin McMillan
Dept. of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
{rkrasniq, sjiangl, cmc}@nd.edu

Abstract—This artifact is a reproducibility package for ex-
periments in user stories summarization. We implemented and
packaged the artifact as a set of reusable TraceLab components.
The existing implementation of the artifact was relatively difficult
to use because it required the user to coordinate several different
programming languages and dependencies. This artifact, avail-
able via our online appendix, provides the components, a detailed
tutorial with screenshots that show exactly where to click and
what to enter, and an example virtual machine image.

I. INTRODUCTION / BACKGROUND

User stories are short descriptions of software features told
from the user perspective. In general, a user story consists of
a role, function, and rationale, in the format “As a <role>,
I want to <function>, so that I can <rationale>.” In work
published at ICSE 2017, we presented a technique that aims
to generate user stories automatically from recorded transcripts
of conversations between customers and developers [2]. The
input to our approach is a transcript of a customer-developer
conversation, and the output is a list of “speech turns” in the
conversation that include role, function, and rationale data (a
speech turn is a section of speech by one member of the
conversation, during which others are quiet). The automatic
generation of extractive summaries for user stories is a new
research area, and working implementations are rare. This
artifact is a set of reproducible TraceLab components that
implement our technique. The benefit to using TraceLab
components is that our approach is not only reusable but
relatively easy to modify, so that future researchers can build
improvements and test them against our approach.

II. THE ARTIFACT

In this artifact we include two “teml” files and 28 “compo-
nents.” The teml file describes an experiment in the TraceLab
workbench[1]]. This experiment provides a prepackaged work-
ing implementation of a research artifact and describes the
input/output to the artifact. The implementation is composed
from a set of executable components and decision nodes all
of which are managed by the teml file. In Tracelab, a user can
retrieve an existing experiment or create one from scratch.
A new experiment can be created in three steps: (1) load a
teml file, (2) configure the input/output parameters of each
component and (3) execute the teml file. The results are then
displayed in the Tracelab’s workspace. The teml file that we
built, implements Rodeghero et al. [2] extractive technique.

We also include an alternative teml file for the “attribute
components.” The attribute components represent the details
of developer/customer conversations, such as: their turns,
the duration of conversation including structure and lexical
information. In the first teml file, “AttributeCalculations”
component considers all attributes combined. The second
teml file, is more flexible in that, it gives the researchers
the ability to pick attributes. We did so to accomodate custom
researcher requirements. While the existing implementation of
the Rodeghero et al. [2] is available, it is relatively difficult
to use because the user has to refer to various languages
and manage their dependencies. We improve on this approach
by implementing our artifact on one language (Java) and
managing its dependencies through TraceLab. The figures
below, show the experiment and the collocated 28 components
in TraceLab:

On the left are the five components of the experiment [2]:
Transc. Conv.Reader. loads the transcripts into the database.
Attribute Calc. calculates the attributes of each turn in a conv.
SMOTE detemines the path to either of the two training models.
SVM-RBF trains LIB-SVM model.

Logistic Regression trains LIB-LINEAR model.

On the right are the 23 components, the teml file extension
of AttributeCalculations component.

The experiment, components, detailed tutorial with screen-
shots, and an example virtual machine image are available via:

http://www3.nd.edu/~rkrasnig/tracelab/icsmel7/

Acknowledgment: This work is supported in part by the NSF
CCF-1452959 and CNS-1510329 grants. Any opinions, findings, and
conclusions expressed herein are the authors and do not necessarily
reflect those of the sponsors.

REFERENCES

[1] J. Cleland-Huang. Tracelab. http://www.coest.org.

[2] P. Rodeghero, S. Jiang, A. Armaly, and C. McMillan. Detecting user
story information in developer-client conversations to generate extractive
summaries. In Proc. of the 39th ACM/IEEE International Conference on
Software Eng, volume 1, Buenos Aires, Argentina, May 20-28 2017.


http://www3.nd.edu/~rkrasniq/tracelab/icsme17/

	Introduction / Background
	The Artifact
	References

