Redacting Sensitive Information in Software Artifacts

Mark Grechanik
U. of lllinois at Chicago
Chicago, IL 60607, USA

drmark@uic.edu

Denys Poshyvanyk

College of William and Mary
Williamsburg, VA 23185, USA
denys@cs.wm.edu

ABSTRACT

In the past decade, there have been many well-publicized cases of
source code leaking from different well-known companies. These
leaks pose a serious problem when the source code contains sen-
sitive information encoded in its identifier names and comments.
Unfortunately, redacting the sensitive information requires obfus-
cating the identifiers, which will quickly interfere with program
comprehension. Program comprehension is key for programmers
in understanding the source code, so sensitive information is often
left un-redacted.

To address this problem, we offer a novel approach for REdact-
ing Sensitive Information in Software arTifacts (RESIST). RESIST
finds and replaces sensitive words in software artifacts in such a
way to reduce the impact on program comprehension. We eval-
uated RESIST experimentally using 57 professional programmers
from over a dozen different organizations. Our evaluation shows
that RESIST effectively redacts software artifacts, thereby mak-
ing it difficult for participants to infer sensitive information, while
maintaining a desired level of comprehension.

Categories and Subject Descriptors

D.2.5 [Software Engineering, Testing and Debugging]: Testing
tools; D.2.9 [Software Engineering, Management]: Productivity

General Terms

Algorithms, Experimentation, Documentation, Management

Keywords

privacy, redaction, associative rules, program comprehension

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICPC 14, June 2-3, 2014, Hyderabad, India

Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$5.00.

Collin McMillan
University of Notre Dame

Notre Dame, IN 46556, USA
cmc@nd.edu

Tathagata Dasgupta

U. of lllinois at Chicago
Chicago, IL 60607, USA
tdasgu2@uic.edu

Malcom Gethers
University of Maryland, Baltimore County

Baltimore, MD, 21250, USA
mgethers@umbc.edu

1. INTRODUCTION

Creating and maintaining software is beset by many challenges,
which include protecting sensitive information. Not only do recent
data protection laws and regulations around the world prohibit or-
ganizations from disclosing confidential data [51, 13, 56], but also
it is embarrassing for these organizations to accidentally release
sensitive information in software artifacts. In the past decade, there
have been many well-publicized cases of leaking source code that
contains sensitive information from different well-known compa-
nies including Cisco, Facebook, and Microsoft, Symantec [16, 34,
29, 50, 36, 35, 48, 62, 26]. In the latter case that is also the most
recent one, an anonymous hacker demanded that Symantec pay
$50,000 to prevent the release of the source code for PCAnywhere,
and when Symantec refused, the source code was released to open-
source repositories revealing sensitive information related to trade
and technical secrets. In case of Microsoft, sensitive information
about Microsoft partners was revealed in the leaked source code.
Clearly, sensitive information should be redacted in source code
and other software artifacts, however, doing it manually in more
than 28MLOC of Microsoft source code that was leaked is a very
difficult exercise. More importantly, blindly removing sensitive
information from software artifacts may severely reduce program
comprehensibility thereby aggravating different software mainte-
nance and evolution tasks.

1.1 Sensitive Information in Software Artifacts

To protect and hide sensitive information, many companies have
policies and rules about redacting sensitive information in business
documents — it is well-known problem, since one in three compa-
nies investigates breaches of sensitive data at least once a year [60].
For example, NASA published detailed instructions to its employ-
ees on removing sensitive information from Microsoft Word and
PDF documents [42]. Essentially, business analysts and security
experts redact business documents by identifying words that en-
able attackers to infer sensitive information and by replacing these
words with blanks or random characters. In this paper, we will
call these words sensitive words. Even though there are solutions
that partially automate the redaction process [18, 15, 52], sensitive
information is still leaked as the recent case with Transportation
Security Administration shows, where sensitive airport screening
procedures were leaked as a result of the failure to properly redact
documents [61]. As difficult as it is to redact plain text documents,

there are no solutions for redacting sensitive information in soft-
ware artifacts.

Redacting sensitive information in business documents is often
detrimental to software development. Removing sensitive words
from business and requirements documents leads to ambiguous and
misunderstood requirements, which often leads to project failures
[33, pages 365-394]. Software engineers need the all information
that they can get to create software applications, that is, to translate
information from these documents (i.e., the problem domain) into
the solution domain (i.e., the domain in which engineers use their
ingenuity to solve problems [31, pages 87,109]). If managers face
a chance that a software project may fail because engineers build
incorrect application due to redacting important information in doc-
uments, these managers eliminate this risk by giving software engi-
neers full access to all business documents. A standard procedure
is for all stakeholders to sign a non-disclosure agreement, which is
a legal document designed to prevent disclosure of sensitive infor-
mation under the threat of legal actions against violators.

Unfortunately, software engineers often encode sensitive words
from business and requirements documents into source code and
different design and testing artifacts. Four of the most common
reasons are that these engineers knowingly break compliance rules
to get their job done, meet a critical deadline, are unaware they were
breaking a compliance rule, or they do not care about compliance
rules [60]. One way or the other, software engineers encode sen-
sitive words into comments, the names of classes, fields, methods,
variables, and packages, program constants, configuration files, or
environment variables.

Since source code and other related software artifacts are con-
sidered intellectual property, it was not a problem for companies to
have sensitive information in these artifacts. However, this situa-
tion has radically changed in the past decade. Source code can now
be easily leaked by uploading it to an open-source software reposi-
tory, from where it can be downloaded and examined by hundreds
of thousands of software engineers from all over the world. Unau-
thorized disclosure of source code is embarrassing, and the damage
is multiplied when the code reveals sensitive information [35].

Moreover, organizations and companies that develop and own
applications often hire external service providers to provide various
services including but not limited to supporting customers who use
these applications, writing technical and user manuals, perform-
ing corrective and perfective maintenance of the source code, and
testing applications. Globally distributed software development is
common for the majority of software projects, where third party
service providers are hired to facilitate various project-related ac-
tivities.

It is only in the past decade that applications are increasingly
being tested by third-party specialized software service providers,
which are also called test centers. Numerous test centers have
emerged and often offer lower cost and higher quality when com-
pared to in-house testing. The test outsourcing market is worth
more than USD 25 billion and growing at 20% annually, making
it the fastest growing segment of the application services market
[4, 20]. In general, test centers are not authorized to access sen-
sitive information of their client companies. However, to perform
white and gray-box testing, these test centers must obtain access to
the source code, and having sensitive information in this code can
inadvertently result in violating different privacy laws as well as re-
vealing trade secrets. Outsourcing white-box and gray box testing
is a recent phenomenon, and many testing outsourcing companies

(e.g., STC Third Eye' and DeeCoup Solution?) provide these ser-
vices.

1.2 A Fundamental Problem

A fundamental problem at the intersection of software develop-
ment, distributed service providing, and data privacy is how to al-
low an application owner to release its source code and other soft-
ware artifacts to different service providers with guarantees that
sensitive information is removed from the source code and these
artifacts while preserving program comprehension, which is impor-
tant for the job functions of these service providers. Consider test
center engineers whose job is to construct acceptance tests to deter-
mine if programmers implemented requirements correctly. When
creating these tests using white and gray box testing, it is impor-
tant for test center engineers to understand the source code so that
they can determine how requirements are implemented. Otherwise,
if these engineers cannot understand the source code, they cannot
develop effective tests. Similar argument applies to other activities
of external service providers.

A brute-force solution to redacting sensitive information is to
replace all sensitive words in the source code with randomly gen-
erated strings. This approach has a major drawback — it replaces
meaningful and descriptive names that programmers choose with
random sets of characters thereby destroying program comprehen-
sibility. Descriptive names are crucial to understand code [49]; in
general, understanding code and determining how to use it, is a
manual and laborious process that takes anywhere from 50% to
80% of programmers’ time [17, 21]. This brute-force solution en-
sures full redaction of sensitive information, however, it destroys
program comprehension to a large degree. Finding a solution that
balances the goals of privacy and program comprehension by ob-
fuscating sensitive information is a goal of this paper.

Naturally, different applications have different privacy goals and
levels of data sensitivity — privacy goals are more relaxed for ap-
plications that manage movie ticket databases than for applications
that are used within banks or government security agencies. Ap-
plying more relaxed redaction to applications is likely to result in
greater program comprehension since fewer sensitive words are re-
placed; conversely, stricter protection makes it more difficult for
service providers to do their job that requires good program com-
prehension. The latter is the result of two conflicting goals: leaving
programmers’ intent as transparent as possible and hiding sensi-
tive information from external parties (i.e., attackers) who need this
transparency to accomplish their jobs. Balancing these goals, i.e.,
to redact sensitive information while preserving program compre-
hensibility is emerging to be an important problem.

1.3 Our Contributions

To address this issue, we offer a novel approach for automati-
cally REdacting Sensitive Information in Software arTifacts (RE-
SIST) that combines an entropy-based data privacy metric, asso-
ciative rule mining for finding replacement words that can con-
ceal sensitive information, program comprehension metrics that are
based on the notions of conceptual cohesion and coupling [41, 46],
and a sound renaming algorithm for Java programs [49]. With RE-
SIST, organizations can balance the goals of preserving program
comprehensibility while releasing applications to external service
providers with a controlled disclosure of sensitive information. A
movie showing how to use RESIST is also available. Our work is

Uhttp://www.stcthirdeye.com/white-box-testing.htm
Zhttp://www.deecoup.com/solutions/testing-outsourcing
3http://www.youtube.com/watch?v=FuARbg_4ACM

Set orderltemSeqldCompleted = FastSet.newlnstance (); //for items .
Set workEffortldCompleted = FastSet.newlnstance (); //for work efforts

after invoicing
after invoicing
//(this service supports outsourced tasks)

Figure 1: A motivating example that shows how sensitive information about outsourcing manufacturing is encoded in the source
code of Opentaps in the method invoiceSuppliesOrWorkEffortOrderItems of the class InvoiceServices in line 2276.

<target name="create —admin—user—login"

description="Prompts_for_a_user_name, then _creates_a,_user_with_admin_privileges and

s

teooatemporary password_equal_to_ ofbiz
prompted _for_a_new_password.">

[ENTRTRNT

;after_a_succesful_login_the_user_will_be

<input addproperty="userLoginld" message="Enter_user_name_(log_in_with

the _temporary_password_’ofbiz ’):"/>
<antcall target="load—admin—user—login"/>
</target>

[ENTRTRNT

Figure 2: A motivating example that shows how default login information is left in a configuration build artifact build.xml.

unique; to the best of our knowledge, there exists no prior approach
that addresses the problem that we pose in this paper. In summary,
we make the following main contributions:

e We create a new data privacy and program comprehension
framework (described in Section 4) that includes a novel
combination of an entropy-based privacy metric with pro-
gram comprehension metrics to enable organizations to de-
termine how to balance the goal of redacting sensitive infor-
mation in software artifacts with a goal of preserving pro-
gram comprehension.

We design and implement an algorithm using associative rule
mining for determining candidate words that should replace
sensitive words when redacting software artifacts.

We combine our privacy framework with this algorithm and a
sound renaming algorithm in RESIST to automatically redact
sensitive words in software artifacts.

We evaluated our data privacy and program comprehension
framework experimentally using 57 professional program-
mers from over a dozen different organizations. Our evalua-
tion shows that RESIST effectively redacts software artifacts
thereby making it difficult for participants to infer sensitive
information while maintaining program comprehension at a
desired level.

We evaluated performance of RESIST using three open-source
Java applications and one commercial Java application rang-
ing from 10 kLOC to 500 kLOC. We show that RESIST is
lightweight and can be used for redacting sensitive informa-
tion in large-scale software.

2. A MOTIVATING EXAMPLE

We use a motivating example from Opentaps®, a large-scale open
source integrated application suite that combines customer relation-
ship management, warehouse and inventory management, supply
chain management, and financial management with business intel-
ligence and mobility integration for different enterprises. Opentaps
is typical of enterprise-level commercial applications, and since we
cannot use motivating examples in this paper that involve sensitive
information from internal commercial applications, Opentaps pro-
vides a close equivalent of examples that we observed in different

“http://www.opentaps.org, last checked March 19, 2013

commercial applications. That is, in this paper, we treat Open-
taps as if it was a proprietary commercial application. Opentaps is
distributed along with its business documentation that is available
from the website>.

Many companies consider any information as sensitive if it is re-
lated to trade secrets and disclosing it may help competitors to gain
cost-saving advantage. An example of sensitive information is that
a company outsources manufacturing of some products or compo-
nents to external vendors [8, 32]. Opentaps documentation contains
a section that describes a procedure for outsourcing manufacturing
tasks®. Sensitive information about outsourcing manufacturing can
be redacted in this documentation; however, the question is if it is
possible to infer this sensitive information from the source code of
Opentaps.

Consider a motivating example that is shown in Figure 1. As
it turns out, programmes encoded sensitive information about out-
sourcing manufacturing in the source code of Opentaps in the method
invoiceSuppliesOrWorkEffortOrderItems of the class
InvoiceServices in lines 2276-2277. These two lines of
the source code contain plenty of clues for an attacker to infer
the sensitive information that the company that owns this appli-
cation outsources manufacturing. First, the word “outsourced”
is present in the comment. Second, words “work effort” are
highly correlated with outsourcing both in the documentation and
on the Web, especially when used in conjunction with the word
“invoicing.” The identifier workEffort IdCompleted has
a very descriptive name that reveals a part of the implemented re-
quirement, and this identifier is defined and used in the source code
in different contexts, which contain additional clues that reveal sen-
sitive information about outsourcing manufacturing.

The other example shows how sensitive information is left in
software artifacts that are not the source code. An Opentaps doc-
ument on security controls contains sensitive information for sys-
tem administrators on passwords and login names’. Suppose that
a business analyst redacts this documentation to remove the con-
tent of the section that contains default login names and passwords.
However, this is not enough — a simple attack can reveal login name
and password from a software artifact.

Shttp://www.opentaps.org/docs/index.php/Main_Page
Ohttp://www.opentaps.org/docs/index.php/
Outsourcing_Manufacturing

http://www.opentaps.org/docs/index.php/
Introduction_to_opentaps_Security_Controls

This attack can be carried out as follows. First, an attacker
searches for common administrator login names on the Web. The
first top five results from Google reveals that the name “admin”
is common for different applications. After searching the source
code for the word “admin” the attacker find a build configuration
file called build.xml in the root of the project tree. This file
contains complete login information (i.e., user name is admin and
the password is ofbiz), and the fragment of this file is shown
in Figure 2. A lesson from these motivating examples is that it
is not enough to redact sensitive information from business and
requirements documents, since source code and software artifacts
contains this sensitive information. These motivating examples are
quite representative of the widespread privacy problems, as we con-
firmed it during interviews with security experts at Accenture and
a major bank. Attackers can easily infer sensitive information from
software artifacts, and there is no approach that enables business
analysts to address the problems of redacting sensitive information
in these artifacts while balancing program comprehension.

3. THE RESIST APPROACH

In this section we explain the problem of balancing utility and
privacy, present the gist our approach, describe the architecture of
RESIST, and provide an overview of how RESIST is used.

3.1 The Attacker Model

Attacker models in privacy are fundamentally different from at-
tacker models in secrecy. The latter involves a sender who transmits
a message to a recipient, and an attacker attempts to block, imper-
sonate, or tamper with the message to change its content to achieve
some malicious goal. In this model for secrecy, the sender must
share messages with the recipient and cryptographic protocols that
usually use encryption are used to protect these messages from the
attacker. Thus, a fundamental property of the model for secrecy is
sharing messages between the sender and the recipient.

Contrary to this model, a fundamental property of the model
for privacy is that sensitive information cannot be shared at all. It
should be impossible to infer sensitive information about a partici-
pant or an entity in a privacy model. In this respect, everyone is an
attacker from the perspective of the owner of sensitive information,
even if these attackers do not intend to use sensitive information in
any malicious way. Moreover, the notion of sensitive information
is subjective — what is considered sensitive for one “attacker” may
not be interesting at all for some other “attacker.” Because of this
subjectivity, it is difficult for stakeholders to properly redact doc-
uments, not to mention the source code of applications. This sub-
jectivity also makes it difficult to evaluate approaches that redact
sensitive information in documents.

3.2 Balancing Utility And Privacy

Utility of anonymized data is measured in terms of usefulness of
this data for computational tasks when compared with how useful
the original data is for the same tasks. Consider an example of
the utility of calculating average salaries of employees. Adding
random noise to protect salary information will most likely result in
computing incorrect values of average salaries, thereby destroying
utility of this computation. Recent cases with U.S. Census show
that applying data privacy leads to incorrect results [2, 6]. Multiple
studies demonstrate that even modest privacy gains require almost
complete destruction of the data-mining utility [1, 10, 24, 25, 37].

We consider program comprehension as a utility of software arti-
facts, which can be reduced if sensitive words are replaced. Replac-
ing all sensitive words with blanks or randomly generated charac-
ters increases the privacy of software artifacts, however, it destroys

the utility of program comprehension. Our goal is to enable stake-
holders to balance privacy and utility goals, i.e., to choose appro-
priate levels of privacy that will guarantee certain level of program
comprehension.

Consider a graph where the horizontal axis shows the values of
privacy, P, and the vertical axis shows the values of program com-
prehension, C. We normalize these values to lie between zero and
one. For P =0,C = 1 meaning that if no sensitive words are re-
placed in software artifacts, the level of privacy is zero and the level
of program comprehension is the same as it was before, we say that
the highest and equal to one. Conversely, P = 1,C — 0 means that
if all sensitive words are replaced with blank or random characters,
the level of privacy is one meaning that we achieved full privacy
and the level of program comprehension is reaching zero in the
limit. We call this graph a PC—graph, and computing this graph
enables stakeholders to balance privacy and utility goals, i.e., to
choose appropriate levels of privacy that will guarantee certain lev-
els of program comprehension.

We need intermediate levels of privacy. Most existing privacy
approaches achieve full privacy w.r.t. some privacy metric, and it is
considered too inflexible. Guessing anonymity and computational
differential privacy are examples of some approaches that achieve
intermediate results where some privacy is lost to achieve better
utility. This is the approach that we take in this paper.

3.3 The Gist of RESIST

The gist of our approach is twofold. First, RESIST determines
automatically how to find words in software artifacts that may en-
able attackers to infer sensitive information. Specifically, RESIST
does not specify what sensitive information is — in fact, only busi-
ness analysts and security experts can decide what constitutes sen-
sitive information. That is, business analysts and security experts
redact sensitive information from business and requirements docu-
ments by specifying sensitive words. Once this redaction is com-
pleted, RESIST uses these sensitive words and other words that
co-occur with sensitive words in given contexts to infer other re-
lated words that will help attackers infer sensitive information.
That is, in the motivating example, RESIST will determine that
the words “work effort” and “invoice” are related to out-
sourcing manufacturing.

Second, RESIST finds automatically a list of candidate words
that can replace sensitive words. To do that, it can use business
documents and the Web, and in our experiments we used Wordnet®.
For each word RESIST learns an associative rule that shows with
what level of confidence a candidate word can replace some sensi-
tive word. In addition, RESIST determines how program compre-
hension will change for the application if candidate words replace
sensitive words. RESIST will also use its privacy metric to deter-
mine how well sensitive information is protected if certain candi-
date words are chosen for replacement. In the end, it is helping
analysis to choose the right balance between the privacy level and
program comprehension.

To illustrate the second part of RESIST, consider a situation
where sets of words S| ={“transaction”, “bil11”} and S, =
{“task”, “report”} are considered as candidates to replace sen-
sitive words “work effort” and “invoice” in our motivat-
ing example. These sets of words are found by analyzing co-
occurrences and their frequencies with the sensitive words on the
Web. Words from the set S; co-occur with the sensitive words
much more frequently in the context of outsourcing manufacturing
than the words from the set S, making it easier for the attacker to

8http://wordnet.princeton.edu

infer sensitive information. However, using the words from the set
S> makes it more difficult for personnel to relate the code that is
shown in Figure 1 to the specific requirement, thereby complicat-
ing tasks for which this personnel is hired. The ultimate decision
is made by business analysts and security experts who determine a
proper balance.

3.4 RESIST Architecture And Workflow

The architecture of RESIST is shown in Figure 3. Arrows show
command and data flows between components, and numbers in cir-
cles indicate the sequence of operations in the workflow. The be-
ginning of the workflow is shown with the dotted arrows labeled
(1) that indicates that input to RESIST is the source code and the
set of business documents and requirements with sensitive words
marked by business analysts and security experts. The workflow
end is shown with the fat solid arrow labeled (10) that indicates
the output of RESIST is the sanitized source code.

In step (1), the Context Term locator analyzes the source code
and the set of business documents and requirements with marked
sensitive words (also called terms), and it outputs (2) term/code
references that specify terms that co-occur with sensitive words in
the same contexts and their locations in the source code and other
software artifacts. In this paper, we call context a unit of cohesive
information, which we choose to coincide with a paragraph.

The next step is to determine a list of candidate words that can
replace sensitive words and words that frequently co-occur with
sensitive words. To do that, we approximate the universal word
reference corpus with the Web, which has been successfully used
to represent the adversary’s knowledge [15, 53]. To determine re-
placement words, we obtain association rules that in general de-
scribe relations between different elements as implication expres-
sions Ay AAy A ... NA; = C1VC V...V Cj, were A and C are dis-
joint itemsets, that is ANC = 0 [54, pages 327-332]. There are dif-
ferent algorithms for extracting association rules from documents,
and the quality metrics for extracted rules are support and confi-
dence. Support measures the applicability of an association rule
to a dataset, and confidence estimates the frequency with which
items in C also appear in query results that contain A. Support,
s, and confidence, ¢ are calculated using the following formulae:

s(A=C) = % and c(A=C) = 0%)’ where G is the sup-
port count and N is the total number of results.

Then, both term/code references and the Web are the input (3)
to the Associative Rule Mining Algorithm that outputs (4) the set
of associative rules with confidence and support rankings. These
rules describe candidate words that can be used to replace sensitive
words from term/code references. In addition, if these rules show
that a sensitive word is uniquely defined by some candidate word,
then this candidate word is added to the list of sensitive words.
Searching for replacement words is done using either the Web or a
local collection of documents. A study was carried out for learn-
ing association rules both using the Web and local collections of
documents[15], and we extend this previous work in RESIST.

Associative rules are analyzed (5) by the Replacement Term
Finder that outputs (6) the List of candidate Terms for Replace-
ment of sensitive words. Given that many associative rules can
be obtained in step (5), it is necessary to select a subset of them
that offer viable alternatives for sensitive words. The selection is
dictated by the level of privacy as well as the need to retain a de-
sired level of program comprehension. The list of candidate term
replacements is inputted (7) to the Privacy/Comprehension Algo-
rithm along with the original source code, and this algorithm de-
termines (8) Replacement Strategies, which is the ordered list of
terms that should replace words or parts of identifiers in the source

Context Term| @ | Term/Code Associative | (@ [Associative
Marked [11-=* Locator References| | Rule Mining Rule§ With
BizDocs I @ = ® Algorithm Confidence
- i And

Support

List of Terms for|
Replacement

Privacy/

.-|_—'_E|—‘ Comprehension <—I®—

Algorithm

Original
Source

Source Code
Code Refactoring

‘/I/ [—' Engine

Figure 3: The architecture and the workflow for RESIST.

Sanitized
Source
Code

Replacement
Strategies

Replacement
Term Finder

code. Sometime, it may not be possible to use a given term for
replacement due to naming conflicts or constraints of the given lan-
guage. This is why different alternatives should be given (9) as
the input to the Source Code Refactoring Engine that makes actual
replacements.

We select a name replacement algorithm that lead to sound bind-
ing of names to declarations in Java [49]. In general, RESIST can
work with applications that are written in different languages as
long as sound renaming approaches can be plugged into the RE-
SIST architecture [43, 57, 28]. The refactoring engine outputs
(10) Sanitized Source Code, and this step completes the work-
flow of RESIST.

3.5 Using RESIST

RESIST can be used in two modes: the batch mode for com-
puting a PC—graph, and the interactive mode for users to sanitize
software artifacts by replacing selected sensitive words. A goal of
the batch mode is to determine the distribution of PC values for dif-
ferent replacements of different sensitive words. Knowing this dis-
tribution is important for stakeholders who need to understand how
redacting documents and software artifacts will affect the balance
between privacy and program comprehension. The batch mode is
fully automatic, where sets of sensitive words are selected at ran-
dom from documents, and for each set RESIST computes the PC
values that are put as a dot on the PC—graph. As a result, stakehold-
ers obtain a quantitative way to reason about the effect of choosing
different words as sensitive on the values of privacy and compre-
hension.

The interactive mode enables stakeholders to redact software ar-
tifacts by studying the effects of sanitizing these artifacts by replac-
ing sensitive words. Initially, stakeholders determine the ranges of
values for privacy and program comprehension that they want to
achieve. After they produce the PC—graph, the stakeholders can
zoom in into the region of the graph with the desired ranges of pri-
vacy and comprehension values. The zoomed-in region contains a
number of points that are computed for different sensitive words
and their replacement values. Stakeholders review these sensitive
words and determine which ones should be redacted and how they
affect program comprehension and privacy values. The interac-
tive mode also allows stakeholders to select different replacement
words and study their effect on the PC metric. Once the final selec-
tion of sensitive words and their replacement words is done, RE-
SIST will sanitize software artifacts automatically by refactoring
source code of these artifacts.

4. THE FRAMEWORK

In this section, we discuss the privacy and comprehension met-
rics (PCM) as a single framework for quantifying the amount of
sensitive information that is released to third parties when applica-
tion’s source code is revealed.

4.1 Constraints and Goals

A purpose of this paper is to offer a joint privacy and com-
prehension metrics (PCM) in a single framework for quantifying
the amount of sensitive information that is released to third par-
ties when application’s source code is revealed. Several constraints
affect the choice of PCM: simplicity, language-neutrality, and flex-
ibility to be used at different levels of module granularity. Specif-
ically, computing PCM should not require too much time or a sig-
nificant amount of resources, and this objective can be achieved
by simplifying the logic and subsequently the computation of the
PCM. In addition, PCM should scale to handle a large number
of sensitive as well as non-sensitive words from the application’s
source code.

Language neutrality is achieved by dealing with plain text words
that are extracted from the application’s source code, that is the
source code is preprocessed to extract the names of identifiers and
words from comments. Finally, the flexibility to deal with different
granularities of programming modules enables variations of com-
prehension metric algorithms, which are sensitive to the granular-
ities of the modules and dependencies among them. These con-
straints dictate the design of the proposed PCM and make it difficult
to select off-the-shelf anonymization algorithms that may violate
some of these constraints.

4.2 The Privacy Metric

In this section, we describe the privacy metric that we developed
for RESIST.

4.2.1 Privacy As A Model of Attacker

Recall from Section 3.1 that from the perspective of the owner,
everyone else is an attacker who try to guess sensitive information
from sanitized documents. Therefore, to measure privacy of a doc-
ument means to measure the difficulty that it takes for an attacker to
guess sensitive information given the information in sanitized doc-
uments. That is, the attacker attempts to reverse engineer sensitive
word replacements using different techniques, including but not
limited to pure guessing strategies based on available non-redacted
information in documents. The difficulty that the attacker expe-
riences when reverse engineering sensitive information is directly
proportional to the closeness or support for replacement words with
respect to their corresponding sensitive words. That is, reverse en-
gineering a sensitive word from a random replacement string is
much more difficult when compared to doing it from a semanti-
cally close replacement word (e.g., reverse engineering the sensi-
tive word HIV from the replacement word antiretroviral).
Thus, a privacy measure should reflect this difficulty and this mea-
sure could be normalized between zero and one, that is, between
original sensitive words remaining in the document to complete
random replacements.

4.2.2 Entropy Is A Measure of Privacy

Suppose that the set of events, E = (ey,...,e,) has the set of
probabilities associated with each event, P = (py,...,p,). Shan-
non’s definition of the entropy is E(P) = — Y., p;-log p;. Entropy
is equated with the average amount of information of some random
process, which in our case is replacing sensitive words with re-
placement words whose support is used as the probability of guess-
ing the sensitive words by analyzing their respective replacement
words. The probabilities are normalized over the event space, so
that their sum is equal to one.

Entropy-based privacy loss is a well-known metric that is used in
statistical databases [59, pages 76—85]. The main idea for this met-
ric is that when some statistical information is released about data

in a database (e.g., the average salary of employees), the entropy of
each record in this database changes, since certain information is
released. Suppose that E(R) is the entropy of a record in the data-
base prior to the release of the information, and E’(R) is the entropy
of arecord in the database after the release of the information. Then
the privacy loss, APL is computed as APL = . We can

compute PM =1 — APL.

We chose an entropy-based privacy metric (EPM) for a num-
ber of reasons [59, page 76]. EPM can be universally applied to
any statistical disclosure and it does not depend on specific data
types, or formats of data structures, or languages in which this data
is defined. More importantly, EPM enables easy comparability of
different transformational techniques applied to documents such as
code refactoring that we use in this paper. Easy comparability of
different EPMs is important, since RESIST is extensible to incorpo-
rating and evaluating other techniques in the future, thereby allow-
ing researchers to determine different trade-offs between different
techniques and measures.

TER)

4.2.3 Entropy-Based PM For RESIST

In order to compute PM for RESIST, the entropy E(M) should
be computed respectively for the source code module, M, where
sensitive words are replaced with words (replacement words) to
protect privacy. Each module contains the collection of sensitive

words, S = {s1,...,s, }, and non-sensitive words, C = {cy,...,cn }-
For each sensitive word, s;, there is a set of replacement words,
R={(r1,Py),...,(rg,Pr,) }, where ry is a replacement word and

Py, is the support calculated for this replacement word and its cor-
responding sensitive word, sy.

The minimum entropy E,;,(M) shows the level of information
that is contained in the original source code module, M. It is mea-
sured by quantifying the relationship between sensitive and non-
sensitive words in this module. That is, each sensitive word, s
is related to each of the non-sensitive words in C, and this rela-
tionship is measured by the support between sensitive and non-
sensitive terms. For example, if the word “HIV” is the sensitive
word that is used to name an identifier, removing it will not change
the fact that the information about HIV can be uniquely identified
by the non-sensitive word “Prezista,” which is a drug used in
HIV treatment. To compute the entropy Ep;,(M), we first obtain
the matrix Vj,; = ||C x S|| whose cells contain normalized con-
fidence values between each non-sensitive and sensitive terms as
the probabilities whose sum is equal to one. Using this matrix,
Emin(M) = — X7 XLy Vii-logVji.

The maximum entropy, Epq(M), can be calculated in docu-
ments where all sensitive words are replaced with random strings,
that is the information loss is maximum. For computing Epqx(M)
we use the same formula on the matrix Ve = ||C x G||, where
cells hold confidence values between non-sensitive terms and ran-
dom string replacements, G. The difference between Ej (M) —
Enin(M) specifies the range of entropy values that the document
can have after sensitive words are replaced with replacement words.

Once a set of replacement words are selected, that is RS = (s,77),
.+, (S, rv), and the matrix V = ||CUS x RS||, where cells hold con-
fidence values between all terms and replacement words. we com-

|RS| E' (M)~ Epin

pute E,(M) = _ZIZI Prk -logPrk. Finally, E(M) = m

4.3 The Comprehension Metrics

Early work on program comprehension [44, 58] highlighted the
significance of textual information to capture and encode the knowl-
edge of the software developers. Identifiers used by programmers
as names for classes, methods, or attributes in source code or other

Table 1: Characteristics of the subject applications and their documents. App = application code size(.java files), Docs = size of
documentation, WD = total words in documents, W] = total words in java files, MW = words in docs that match words in source, CW
= total words from documentation found in Java comments, SI = total words from documentation found concatenated in identifier

names.
Subject App Docs WD WwJ MW Cw SI
Application [LOC] [MB]
The Cobalt Group PersonalPages 9,502 0.226 17,191 29,070 767 627 614
Onebook 15,775 0.21 31,304 71,570 1,466 1,343 NA
Imagel 97,892 12 853,733 366,856 11,442 6,279 17,782
Opentaps 500,603 82 5,194,037 2,259,586 10,980 8,500 NA

artifacts contain important information [39, 3] and account approx-
imately for more than a half of the source code in software [23].
These names are often used in solutions to many program com-
prehension tasks [12], since these names reflect the concepts that
programmers encode [3]. Capturing conceptual relations between
names of different identifiers is the essence of the comprehension
metric that we use in this paper.

In this paper, we use Conceptual Cohesion of Classes (C3) and
Conceptual Coupling of a Class (CoCC), which capture the con-
ceptual aspects of class cohesion and coupling, as they measure
how strongly the methods of classes relate to each other concep-
tually. The conceptual relation between methods is based on the
principle of textual coherence in cognitive psychology and compu-
tational linguistics [38], and we utilize this principle in these com-
prehension metrics that have been successfully used and evaluated
by Poshyvanyk and Marcus [40, 45]. Also, the conceptual met-
rics have been previously evaluated in a user study with software
developers [47]. The results indicate that the conceptual coupling
metrics at the feature level align with developers’ opinions of fea-
ture coupling. We do not include complete definitions and formulas
for C3 and CoCC metrics for space limitation reasons, however, the
complete details behind the metrics, necessary to reproduce the re-
sults based on these measures can be obtained from our preliminary
work [40, 45].

C3 and CoCC are based on the analysis of textual information in
source code, expressed in comments and identifiers. Latent Seman-
tic Indexing (LSI) is used to analyze the textual information from
source code [22]. C3 and CoCC can be interpreted as measures
of the textual coherence of classes within the context of the entire
system, and cohesion and coupling ultimately affects comprehen-
sibility of source code. That is, to easily understand source code, it
has to have a clear implementation logic (i.e., design) and it has to
be easy to read (i.e., good and consistent use of identifiers). These
two properties are captured by conceptual cohesion and coupling
metrics, respectively.

The nature of the metrics C3 and CoCC is that they provide
insight into the change in conceptual relationships between pro-
gram entities before and after redaction of sensitive information
in source code. When replacing sensitive terms the change is in-
duced in conceptual relationships between source code entities that
serves as an indicator of change in program comprehension. For
instance, consider a software system which contains the methods
LoadHIVPatientList and SaveHIVPatientList. In this
example, the term “HIV” is sensitive and all occurrences are re-
placed after redacting sensitive words in the source code. Thus,
replacements could produce the names LoadSickPatentList
and SaveAilingPatentList, where “HIV” is replaced by
“S1ick” for one occurrence and “Ai1ing” for the other. The rela-
tionship between the methods Load and Save may not be obvious
to stakeholders anymore. As a result, stakeholders spend additional

effort to identify the relationship between these two methods when
comprehending the source code. For the specified example, C3 de-
creases as a result of modifying the source code because of the lack
of consistency in using terms. The conceptual metrics provide a
mechanism to capture these conceptual changes between methods
and classes based on the analysis of identifiers and comments in the
source code.

A goal of RESIST is to protect and hide sensitive information in
source code. Sensitive words are identified and replaced with al-
ternative words. In doing so, it is possible that performed replace-
ments may impact program comprehension in underlying modules.
This is because altering terms in the source code may impact con-
ceptual relationships which developers use during program com-
prehension activities.

5. EXPERIMENTAL EVALUATION

In this section, we pose research questions (RQs), describe the
methodology for experimental evaluation to answer these RQs and
subject applications, discuss threats to validity, and analyze the re-
sults of this evaluation.

5.1 Research Questions

In this paper, we seek to answer the following research questions.

RQ1: How does redaction of sensitive information impact pro-
gram comprehension? More specifically, does redacting sen-
sitive information in software artifacts make it more difficult
to correctly guess sensitive information from sanitized arti-
facts?

RQ2: How effective is RESIST in computing different levels of
data privacy for different levels of program comprehension?

With RQI, we seek to answer the observational/relational ques-
tion that determining how levels of privacy affect program compre-
hension. We hypothesize in this paper that achieving higher pri-
vacy negatively affects program comprehension, however, we need
to test this hypothesis on subject applications. This RQ is impor-
tant to show that with RESIST, the privacy metric is linked directly
to program comprehension and vice versa; in other words, guar-
anteeing a certain level of program comprehension should allow
stakeholders to calculate bounds of the privacy level.

With RQ2, we address our claim that using different levels of pri-
vacy enables stakeholders to make trade-off decisions about privacy
and utility in acceptable period of time with the acceptable use of
resources. Since RESIST helps stakeholders to make business deci-
sions, the tool should be lightweight and not resource-demanding,
making it effective for this task without requiring significant invest-
ment.

5.2 Experimental Methodology For RQ1

We used a standard experimental design in a cohort of 57 par-
ticipants who were randomly divided into control and treatment
groups. The experiment was carried out using the Internet®. The
control group was given original software artifacts and the treat-
ment group was assigned redacted Java source code files from dif-
ferent projects, specifically, from the released source code of the
tool PCAnywhere by Symantec, from Mozilla, and from Opentaps.
The authors of this paper selected sensitive words in the selected
files and formulated questions, answers to which required under-
standing of the source code and knowing the meaning of the sensi-
tive words. Replacement words were chosen automatically and the
code was refactored accordingly using RESIST. Below are example
questions that the participants were asked to answer after studying
the original or redacted source code.

1. Is getting permission for access to swap files linked to ob-
taining privileges for a cache file?

2. This file is from the source code of a product by Symantec.
Is there evidence of external collaboration with Novell?

3. Do we have any evidence of ThinHost logon failing for lower
case usernames?

The fact that the authors of this paper selected sensitive words
does not imply bias in the experimental methodology. Consider
the fact that identifying sensitive information is subjective, and any
word besides obvious common English words and articles (e.g.,
the, get, or go) can serve as a sensitive word. The notion of a “sen-
sitive” word is highly subjective, and only business analysts and
security experts can make decisions what words are sensitive for
given domains. Therefore, any stakeholder can identify sensitive
words based on business or security rationale. What we evaluate
in this experiment is how RESIST redacts sensitive information in
software artifacts, and RESIST accomplishes redaction without any
interference from the authors of this paper.

In the course of the experiment, Java source code files were
redacted to achieve the level of privacy 0.5. Different comprehen-
sion levels were achieved for different replacements for different
files. Participants answered questions based on their understanding
of the source code of the files, and each participant accomplished
this step individually, assigning a confidence level, C, to the ex-
amined code using the five-level Likert scale from the following
guidelines.

1. I can easily find the sensitive information in the software ar-
tifact. The score for this answer is four.

2. Icaninfer the sensitive information from the software artifact
with some effort. The score for this answer is three.

3. I am likelier to infer from the software artifact the opposite
of the statement that defines sensitive information. The score
for this answer is two.

4. Icaninfer from the software artifact the opposite of the state-
ment that defines sensitive information. The score for this
answer is one.

5. I cannot infer the sensitive information from the software ar-
tifact at all. The score for this answer is zero.

http://www.cs.wm.edu/semeru/resist

Fifty seven participants are from a dozen of different organi-
zations that include six graduate students from the University of
[llinois at Chicago, seven graduate students from the College of
William and Mary, eight Accenture employees who work on con-
sulting engagements as professional programmers for different client
companies, and the rest of participants are professional program-
mers from different software companies. All participants have at
least one year of Java experience. Participants have different back-
grounds, experience, and belong to different companies that build
software for different domains. A majority of participants are mem-
bers of the ACM SigSoft group on Linkedin.

40 —_—

35

30| —

05}

0.0

Qriginal Redacted

Figure 4: Statistical summary of the results of the experi-
ment for the confidence level, C, of the participants who iden-
tified sensitive information in software artifacts, original and
redacted.The central box represents the values from the lower to up-
per quartile (25 to 75 percentile). The middle line represents the me-
dian. The thicker vertical line extends from the minimum to the maxi-
mum value. The filled-out box represents the values from the minimum
to the mean, and the thinner vertical line extends from the quarter be-
low the mean to the quarter above the mean.

5.3 Subject Applications

We evaluate the performance of RESIST for answering RQ2
with three open-source and one commercial Java applications that
belong to different domains. Our selection of subject applications
is influenced by several factors: size of the documentation, size of
the source code, popularity of the application, how an application
is representative of other applications.

Opentaps is an application that we use as motivating example
throughout this paper. Onebook is a Web-based application which
allows students and teachers to share information.!?. Personal-
Pages is a commercial application that enables auto dealerships
to manage customer data. Finally, ImageJ is a Java image pro-
cessing and analysis application.!!

Table 1 contains characteristics of the subject programs, with the
first column showing the names followed by other columns with
different characteristics of these applications as specified in the
caption. The source code of the project ranges from less than 10
kLOC to over 500 kLOC. Documentation for these subject appli-

10http://onebook.sourceforge.net as of Sept 20, 2011.
Uhttp://rsbweb.nih.gov/ij/index.html as of Sept 20, 2011.

Table 2: Results of the experiment with participants for original (O) and redacted (R) documents with the privacy value 0.5. Avg-
O stands for the average results for the Original artifacts Avg-R stands for Redacted artifacts. % R/O shows the percentage difference between
the corresponding values for Redacted and Original artifacts. The last column shows the combined values of cohesion and coupling for program

comprehension.
Survey Responses Cohesion Coupling Comprehension
File Avg-O Avg-R % R/O| O R % RIO | O R % RIO | O R % R/IO
NetscapeSecurity.java 2.32 1.50 -354% | 1.00 1.00 0.0% |0.79 0.78 -12% | 090 0.89 -0.5%
RegistryUserManager.java | 2.53 1.85 -268% | 0.26 0.22 -133% | 0.81 0.76 -62% | 053 049 -7.9%
Secret.java 3.13 213 -319% | 027 022 -17.7% | 0.80 0.78 -2.6% | 0.53 0.50 -6.4%
NetworkIO.java 2.57 .15 -553% | 0.16 0.16 -02% | 0.77 072 -7.0% | 047 044 -58%
SecurityDialog.java 3.43 265 -228% | 012 0.12 00% | 0.79 074 -63% | 045 043 -55%
GWPassword.java 3.20 3.18 -0.6% | 020 020 0.0% | 0.80 0.78 -32% | 050 049 -2.6%

cations came from different sources including manuals and original
requirements that are available along with the source code of these
subject applications.

5.3.1 Variables

Two main independent variables are selecting sensitive words
and selecting replacement words. The latter has a confounded vari-
able, i.e., confidence of the replacement word with respect to its
corresponding sensitive word. Since RQ1 is to determine how
program comprehension depends on privacy, selecting replacement
values with lower confidence values should lead to lower levels of
program comprehension, which is our hypothesis. A dependent
variable is the confidence level, C. We report these variables in this
section. The effects of other variables (question description length,
prior knowledge) are minimized by the design of this experiment.

The main response variables are the values of privacy and pro-
gram comprehension for PC—graphs, on which we perform trend
analysis for RQ2. Additional response variables are time and mem-
ory consumption that it takes to computer PC—graph to answer
RQ2.

5.3.2 The Structure of the Experiment for RQ2

To evaluate the performance of RESIST for answering RQ2, we
select statistically representative samples as subsets of sensitive
words by randomly choosing them from the sets of all words. For
the experiments, we select as potential sensitive words all non-stop
words in documents, giving preference to those words that have
matches in software artifacts of the corresponding subject appli-
cations. It is physically not possible to carry out an experiment
using all possible subsets of the powerset of words in documents
as sensitive words. Given that documents of the subject applica-
tions contain tens of thousands of words, it is challenging to select
a large number of subsets of them as sensitive words, so in this ex-
periment we randomly sampled the entire space of words. Our goal
is to run experiments for different sensitive words and for different
replacement words for these sensitive words with different values
of confidence, and report the effects these values on the dependent
variables.

5.4 Threats to Validity

A threat to the validity of this experimental evaluation is that our
subject programs are of small to moderate size because it is difficult
to find a large number of open-source programs that contain suffi-
cient documentation. Large applications that have millions of lines
of code and have different documents whose sizes are measured
in hundreds of thousands of words may have different character-
istics compared to our small to medium size subject applications.
Increasing the size of applications to millions of lines of code may

lead to a nonlinear increase in the analysis time and space for RE-
SIST. Future work could focus on making RESIST more scalable.

Another threat to validity is that for open-source applications,
documents are mostly user manuals, and it is likely that these doc-
uments were created after the source code of subject applications
was written. It may mean that programmers did not encode sen-
sitive words in software artifacts, however, it should not affect the
results of our experiments for two reasons. First, the notion of a
sensitive word is highly subjective and a word that is considered
sensitive by one stakeholder at one time may not be considered sen-
sitive by a different stakeholder or even by the same stakeholder at
a different time, since the notion of trade secret, for example, is
time-sensitive. Second, we also use a commercial application in
our evaluation with documents that guided programmers in writing
software artifacts, and after qualitatively comparing results from
open-source and this commercial applications, we see that they are
fundamentally the same.

5.5 Results

The results of the experiment to answer RQ1 are shown in Ta-
ble 2. We carry out experiments with the participants for answering
RQI using different Java source code files from different projects,
some of which were leaked on the Internet. The summary graph
for the levels of confidence is shown in Figure 4, and after ap-
plying statistical t-tests and z-tests to compare confidence values,
we obtained statistically significant difference (p < 0.05) that par-
ticipants showed better comprehension for original software when
compared with redacted one.

The results of the experiments conducted to address RQ?2 are
shown in Figure 5 as PC—graphs for three subject applications out
of four due to space limitation. The PC—graphs for all subject ap-
plications exhibit the same pattern, where there is a vertical line
composed of different dots at some privacy value, and different ho-
risontal lines of different lengths for different P levels. It is surpris-
ing that the same pattern emerged for all of the applications.

We explain the horizontal lines in the pattern as a result of im-
plementation of different requirement topics. For example, replac-
ing some sensitive words may destroy one topic while preserving
others, thereby making the application sensitive to joint distribu-
tions of sensitive words that may be destroyed by using replace-
ment words. We also observe that the contents of the PC—graphs
show both gradual distributions of dots in some regions as well as
tightly clustered groupings. This variety makes it easier for stake-
holders to balance privacy and program comprehension on a con-
tinuous scale.

We ran full experiments to select 16 sensitive words (a number
of sensitive words was chosen experimentally), find a list of ten
alternative words for each sensitive word, replace these words with

—— e

08 i 1
- [
. ' w0 s aroas am g ittt o] onn me o
o ¥ wa
e
07
o8 -
L]
os H
.
04 O ——— S ¥ tus . u
+ s
03 '}
- .
[s)8 P
.., deen o . -
- oo ts = o " :
F 3 -
] , ’;

(a) Personal Pages.

(b) Onebook.

(c) Imagel.

Figure 5: Experimental results for three subject applications. All PC-graphs show the dependence on the privacy level that is assigned to the

horizontal axis. The vertical axis designates program comprehension metric.

combinations of alternative words, and compute P and C values.
Experiments were carried out on Intel Xeon CPU E5620, 2.40GHz
and 1.3Gb RAM CentOS release 5.7. The elapsed execution time
ranges between 102 minutes to 626 minutes for selecting sensitive
words; from 33 minutes to 3,481 minutes for find alternative word
replacements. Total elapsed execution time for applying RESIST
to compute PC—graphs for four subject applications for 100 points
for each graph ranges from 436 minutes for Personal Pages to 4,290
minutes for Opentaps.

These results are encouraging especially considering the lim-
ited resources that we allocated, since RESIST’s replacement word
finder slowed down execution and increased memory consumption
when using the Web as a source of replacement words. This is
significant, but we expect future versions of the RESIST imple-
mentation to reduce this overhead by caching data from the Web
resources.

Result summary. These results suggest that RESIST helps stake-
holders to effectively quantify the trade-off between program com-
prehension and privacy when redacting sensitive information in
software artifacts for subject applications, thereby addressing RQ1.
The results also suggest that RESIST is effective in helping stake-
holders balance program comprehension and privacy since it is
lightweight and does not require significant resources, thereby ad-
dressing RQ2.

Recall that selecting sensitive words is a subjective process —
what is sensitive for one individual or organization may not be sen-
sitive to another. Since ours is the first approach that addresses
a new problem of redacting sensitive information in software arti-
facts, our goal is to conduct a qualitative evaluation of determining
if this approach leaves sufficient choices to stakeholders. In this pa-
per, we focus on an exploratory case study in which we evaluate the
tradeoff of privacy, P versus comprehension, C. The metric, C cap-
tures how meaningful the replacements are in that if we insert non-
sensical replacements, C will be reduced. In our study, we found
sets of replacements for which C is equivalent to when the original
words are used, while P is increased. In other words, we can in-
crease privacy without substantially decreasing comprehension (at
least for our subject applications). This finding already presents a
strong accomplishment and another starting point for future work.

6. RELATED WORK

Our work is related to program comprehension, since RESIST
is used to assess the impact of privacy on program comprehension.

One of the goals of software design is to create applications whose
classes have high cohesion and low coupling. Software cohesion
can be defined as a measure of the degree to which elements of a
module belong together [7]. Proposals of measures and metrics for
cohesion and coupling are abound in literature, as these software
metrics proved useful in different tasks [19] including, but not lim-
ited to, assessment of design quality [5, 9], productivity, design
and reuse effort [14], modularization of software [39], and identifi-
cation of reusable components [27]. However, no work addressed
the question of how program comprehension is affected by data
privacy.

Related to RESIST are approaches for balancing test coverage
and data privacy, specifically, PRIEST [55] and TADA [30] as well
as kb—anonymity model that enables stakeholders to release pri-
vate data for testing and debugging by combining the k—anonymity
with the concept of program behavior preservation [11]. Unlike
RESIST, these approaches are not related to program comprehen-
sion, and they replace some information in the original data to en-
sure privacy preservation so that the replaced data can be released
to third-party testers and developers. RESIST and testing-related
approaches are related in the idea of using different privacy mecha-
nisms to preserve original data thereby improving its testing utility.

7. CONCLUSION

We created a novel approach for automatically REdacting Sen-
sitive Information in Software arTifacts (RESIST) that combines
a data privacy metric, associative rule mining for finding sensi-
tive and replacement words, program comprehension metrics, and
a sound renaming algorithm for Java programs. We have built a
tool for our approach, applied it to nontrivial Java applications, and
evaluated it with professional programmers and students. Our re-
sults suggest that with RESIST, effective quantification of trade-
oft is possible between program comprehension and privacy when
redacting sensitive information in software artifacts.

8. ACKNOWLEDGMENTS

We warmly thank the anonymous reviewers for their comments
and suggestions that helped us in improving the quality of this pa-
per. This material is based upon work supported by the National
Science Foundation under Grants No. 1217928, 1017633, 1016868
and Microsoft Research SEIF program. We also thank Xiangli
Chen, a graduate student at UIC for participating in the early work
on this paper.

9. REFERENCES

[1] C.C. Aggarwal. On k-anonymity and the curse of
dimensionality. In VLDB *05, pages 901-909. VLDB
Endowment, 2005.

[2] J. T. Alexander, M. Davern, and B. Stevenson. Inaccurate age
and sex data in the census pums files: Evidence and
implications. Working Paper 15703, National Bureau of
Economic Research, January 2010.

[3] G. Antoniol, Y.-G. Gueheneuc, E. Merlo, and P. Tonella.
Mining the lexicon used by programmers during software
evolution. In ICSM’07, pages 14-23, Paris, France, 2007.
IEEE Computer Society Press.

[4] W. Aspray, F. Mayades, and M. Vardi. Globalization and
Offshoring of Software. ACM, 2006.

[5] J. Bansiya and C. Davis. A hierarchical model for
object-oriented design quality assessment. IEEE TSE,
28(1):4-17, 2002.

[6] C. Bialik. Census bureau obscured personal data — too well,
some say. The Wall Street Journal, Feb. 2010.

[7] J. Bieman and B.-K. Kang. Cohesion and reuse in an
object-oriented system. In ACM SSR’95, pages 259-262,
1995.

[8] S. M. Bragg. Outsourcing: A Guide to Selecting the Correct
Business Unit, Negotiating the Contract, Maintaining
Control of the Process. John Wiley & Sons, Inc., New York,
NY, USA, 2006.

[9] L. C. Briand, J. Wi£;jst, J. W. Daly, and V. D. Porter.
Exploring the relationship between design measures and
software quality in object-oriented systems. Journal of
System and Software, 51(3):245-273, 2000.

[10] J. Brickell and V. Shmatikov. The cost of privacy: destruction
of data-mining utility in anonymized data publishing. In
KDD 08, pages 70-78, New York, NY, USA, 2008. ACM.

[11] A.Budi, D. Lo, L. Jiang, and Lucia. b-anonymity: a model
for anonymized behaviour-preserving test and debugging
data. In PLDI, pages 447-457, 2011.

[12] C. Caprile and P. Tonella. Nomen est omen: Analyzing the
language of function identifiers. In WCRE’99, pages
112-122, Atlanta, Georgia, USA, 1999.

[13] C. Casper. Roundup of privacy research, 4q10.
http://www.gartner.com/DisplayDocument?id=14976 14,
Dec. 2010.

[14] S. Chidamber, D. Darcy, and C. Kemerer. Managerial use of
metrics for object-oriented software: An exploratory
analysis. I[EEE TSE, 24(8):629-639, 1998.

[15] R. Chow, P. Golle, and J. Staddon. Detecting privacy leaks
using corpus-based association rules. In KDD ’08, pages
893-901, New York, NY, USA, 2008. ACM.

[16] L. Constantin. Kaspersky confirms source code leak,
threatens legal action against downloaders.
http://news.softpedia.com/news/Kaspersky-Anti-Virus-
Source-Code-Leaked-Online-181297.shtml, Jan.

2011.

[17] T. A. Corbi. Program understanding: Challenge for the
1990s. IBM Systems Journal, 28(2):294-306, 1989.

[18] C. M. Cumby. Protecting sensitive topics in text documents
with protextor. In ECML/PKDD (2), pages 714-717, 2009.

[19] D. Darcy and C. Kemerer. Oo metrics in practice. [EEE
Software, 22(6):17-19, 2005.

[20] Datamonitor. Application testing services: global market
forecast model. Datamonitor Research Store, Aug. 2007.

[21] J. W. Davison, D. Mancl, and W. F. Opdyke. Understanding
and addressing the essential costs of evolving systems. Bell
Labs Technical Journal, 5(2):44-54, 2000.

[22] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science,
41:391-407, 1990.

[23] F. Deissenboeck and M. Pizka. Concise and consistent
naming. In IWPC’05, pages 97-106, St. Louis, Missouri,
USA, 2005.

[24] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS ’03, pages 202-210, New York,
NY, USA, 2003. ACM.

[25] J. Domingo-Ferrer and D. Rebollo-Monedero. Measuring
risk and utility of anonymized data using information theory.
In EDBT/ICDT 09, pages 126-130, New York, NY, USA,
2009. ACM.

[26] T. Espiner. Extortion failed - anonymous posts symantec
source code. http://www.shacknews.com/article/28619/half-
life-2-source-leak, Feb.

2012.

[27] L. H. Etzkorn and C. G. Davis. Automatically identifying
reusable oo legacy code. IEEE Computer, 30(10):66-72,
1997.

[28] A. Garrido and J. Meseguer. Formal specification and
verification of java refactorings. In SCAM 06, pages
165-174, Washington, DC, USA, 2006. IEEE Computer
Society.

[29] S. Gibson. Half-life 2 source leak.
http://www.shacknews.com/article/28619/half-life-2-source-
leak, Oct.

2003.

[30] M. Grechanik, C. Csallner, C. Fu, and Q. Xie. Is data privacy
always good for software testing? In ISSRE, pages 368-377,
2010.

[31] E. Hull, K. Jackson, and J. Dick. Requirements Engineering.
SpringerVerlag, 2004.

[32] M. Jesper. Framework for outsourcing manufacturing:
strategic and operational implications. Comput. Ind.,
49:59-75, September 2002.

[33] T. C. Jones. Estimating Software Costs. McGraw-Hill, Inc.,
New York, NY, USA, 2 edition, 2007.

[34] M. Klum. Eve online source code leaked.
http://www.neowin.net/news/eve-online-source-code-leaked,
Apr. 2008.

[35] J. Legon. Profanity, partner’s name hidden in leaked
microsoft code. http.://articles.cnn.com/2004-02-
13/tech/microsoft.source_I_mike-gullard-windows-code-
source-code?_s=PM:TECH, Feb.

2004.

[36] R. Lemos. Cisco investigates source code leak.
http://www.techrepublic.com/article/cisco-investigates-
source-code-leak/5213772, May
2004.

[37] T.Liand N. Li. On the tradeoff between privacy and utility
in data publishing. In KDD ’09, pages 517-526, New York,
NY, USA, 2009. ACM.

[38] R. FE. Lorch and E. J. Oi£;Brien, editors. Sources of
coherence in reading. Erlbaum, Hillsdale, NJ, 1995.

[39] J. I. Maletic and A. Marcus. Supporting program
comprehension using semantic and structural information. In

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

ICSE’01, pages 103—112, Toronto, Ontario, Canada, 2001.
IEEE.

A. Marcus and D. Poshyvanyk. The conceptual cohesion of
classes. In ICSM’05, pages 133—142, Washington, DC, USA,
2005. IEEE Computer Society.

A. Marcus, D. Poshyvanyk, and R. Ferenc. Using the
conceptual cohesion of classes for fault prediction in
object-oriented systems. /EEE Trans. Softw. Eng.,
34:287-300, March 2008.

NASA. Redaction of confidential information in electronic
documents. http://www.sti.nasa.gov/publish/redaction.pdf,
Mar. 2011.

W. E. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, UIUC, Champaign, IL, USA, 1992. UMI Order No.
GAX93-05645.

N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, 19:295-341, 1987.

D. Poshyvanyk and A. Marcus. The conceptual coupling
metrics for object-oriented systems. In 22nd IEEE ICSM,
pages 469-478, Washington, DC, USA, 2006. IEEE
Computer Society.

D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimoéthy.
Using information retrieval based coupling measures for
impact analysis. Empirical Softw. Engg., 14:5-32, February
20009.

M. Revelle, M. Gethers, and D. Poshyvanyk. Using structural
and textual information to capture feature coupling in
object-oriented software. Empirical Software Engineering,
16(6):773-811, 2011.

J. Richards. Facebook source code leaked onto internet.
http://www.foxnews.com/story/0,2933,293115,00.html, June
2008.

M. Schifer, T. Ekman, and O. de Moor. Sound and extensible
renaming for java. In OOPSLA ’08, pages 277-294, New
York, NY, USA, 2008. ACM.

L. Seltzer. Source code leak offers novel security test.
http://www.eweek.com/c/a/Security/Source-Code-Leak-
Offers-Novel-Security-Test, Feb.

2004.

L. Shield. International data privacy laws.

[52]

[53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

http://www.informationshield.com/intprivacylaws.html,
2010.

M. Sokolova, K. El Emam, S. Rose, S. Chowdhury, E. Neri,
E. Jonker, and L. Peyton. Personal health information leak
prevention in heterogeneous texts. In AdaptLRTtoND ’09,
pages 58-69, Stroudsburg, PA, USA, 2009. ACL.

J. Staddon, P. Golle, and B. Zimny. Web-based inference
detection. In 16th USENIX Security Symposium, pages
6:1-6:16, Berkeley, CA, USA, 2007. USENIX Association.
P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

K. Taneja, M. Grechanik, R. Ghani, and T. Xie. Testing
software in age of data privacy: a balancing act. In SIGSOFT
FSE, pages 201-211, NY, NY, USA, 2011. ACM.

B. G. Thompson. H.R.6423: Homeland Security Cyber and
Physical Infrastructure Protection Act of 2010. U.S.House,
111th Congress, Nov. 2010.

F. Tip, A. Kiezun, and D. Biumer. Refactoring for
generalization using type constraints. In OOPSLA ’03, pages
13-26, New York, NY, USA, 2003. ACM.

A. Von Mayrhauser and A. Vans. Program understanding - a
survey. Technical Report CS-94-120, Department of
Computer Science, Colorado State University, August 23
1994. .pdf.

L. Willenborg and T. d. Waal. Elements of Statistical
Disclosure Control. Springer, NY, NY, USA, 2001.

U. Yair. Five tips that can protect your company from an
embarrassing leak of confidential information.
http://www.gtbtechnologies.com/Downloads/5_tips_for_
protecting_data.pdf, Mar. 2011.

K. Zetter. Security breach: Tsa leaks sensitive airport
screening procedure by failing to properly redact pdf.
http://www.portfolio.com/business-travel/2009/12/08/tsa-
leaks-sensitive-airport-screening-manual, Dec.

20009.

K. Zetter. Goldman sachs programmer sentenced to 8 years
in prison for code theft.
http://www.wired.com/threatlevel/2011/03/aleynikov-
sentencing, Mar.

2011.

