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Abstract—User stories are descriptions of functionality that a
software user needs. They play an important role in determining
which software requirements and bug fixes should be handled
and in what order. Developers elicit user stories through meetings
with customers. But user story elicitation is complex, and involves
many passes to accommodate shifting and unclear customer
needs. The result is that developers must take detailed notes
during meetings or risk missing important information. Ideally,
developers would be freed of the need to take notes themselves,
and instead speak naturally with their customers. This paper is a
step towards that ideal. We present a technique for automatically
extracting information relevant to user stories from recorded
conversations between customers and developers. We perform
a qualitative study to demonstrate that user story information
exists in these conversations in a sufficient quantity to extract
automatically. From this, we found that roughly 10.2% of these
conversations contained user story information. Then, we test
our technique in a quantitative study to determine the degree
to which our technique can extract user story information. In
our experiment, our process obtained about 70.8% precision and
18.3% recall on the information.

I. INTRODUCTION

A user story is a description of software functionality from
the perspective of the software’s user [1]. User story manage-
ment is under the umbrella of requirements engineering, but
a user story is different from a requirement in the traditional
sense, because a story usually contains no information about
how the software should be implemented. Instead, the story
focuses on user experience, including the role, function, and
rationale behind the user’s objective in the format “as a ¡role¿,
I want to ¡function¿, so that I can ¡rationale¿.” For example,
instead of a requirement “the system shall use a SQL database
to store recently sold home prices”, a user story might say “as
a homebuyer, I want to search for recently sold homes, so I
can estimate prices in my area.”

Cohn [1] points out that the typical source of user stories
is careful analysis of the conversations between programmers
and customers. Since user stories do not contain implemen-
tation details, conversations with customers are an effective
place to search for user stories. Developers are advised to
take notes during conversations and reread these notes to write
user stories by hand. This process is important because stories

play a crucial role in Agile development, where release cycles
are often short to accomodate the constantly-evolving needs
of customers. The result is that developers are in a constant
process of user story elicitation, as stories appear, mature, and
are removed [2].

While there is an emphasis on by-hand effort for writ-
ing user stories in practice, software engineering literature
describes automated summarization techniques for knowl-
edge extraction from software artifacts. Notably, Rastkar et
al. [3], [4] (ICSE 2010) built an algorithm for summarizing
software artifacts, and tested the algorithm on a corpus of
bug reports. That approach was based on earlier work by
Murray and Carenini [5] designed to summarize emails and
conversations. In a nutshell, these approaches are machine
learning classifiers that are trained to recognize sentences
in documents that are likely to contain certain types of
information important to the summary. The performance was
considered reasonable by human evaluators, at approximately
50% precision and 30% recall (see Section II-D for a more
detailed discussion).

In this paper, we automatically extract data for writing user
stories from records of conversations between developers and
customers. Specifically, we 1) perform a qualitative study to
test the hypothesis that conversations between developers and
customers contain role, function, and rationale information for
user stories, and 2) perform a quantitative study to determine
the degree to which an existing classification algorithm can be
trained to recognize this information in the conversations.

For the qualitative study (Section III), we recorded approx-
imately 24 hours of spoken conversation (27 conversations
total) between developers and customers over a period of three
weeks at a software development company in the United States
with between 30 and 50 employees. We then transcribed the
recorded conversations to text, and manually annotated sec-
tions of the conversations as containing role, function, and/or
rationale information pertaining to user stories. To ensure we
could compare our results with earlier work, we also annotated
“extractive summaries” for each conversation (see Section II-C
for details on these summaries). We found that about 5.5%
of the conversations included function information, 2.9% dis-
cussed rationale, but only 0.5% discussed role. About 10.2%



were part of the extractive summaries, which was slightly less
than the 13% and 19% reported by Murray and Carenini [5] for
the meeting and email corpora, respectively, and 28% reported
by Rastkar et al. [3] for the bug reports. It is important to
note that the Murray and Carenini meeting study, which is the
most similar to our study since it also used annotated meeting
transcripts, has the most similar extractive percentage. Put
briefly, we found that the conversations included significant
function and rationale information, but very limited data about
the roles.

In the quantitative study (Section VI), we trained a classifier
to recognize the function and rationale information, as well as
the extractive summaries for comparision. We made numerous
modifications from the technique described by Rastkar et al.
and Murray and Carenini to adapt the technique to detect
function and rationale data for user stories. We describe our
procedure in detail in Section V. We obtained approximately
54.5% precision 24.0% recall for detecting sections of conver-
sations containing function data, and 25.0% precision 26.9%
recall for rationale data. For comparison purposes, we obtained
about 70.8% precision 18.3% recall for extractive summaries.

Our long range vision for this research is to design an
algorithm that generates user stories by listening to the con-
versations between developers and customers. The algorithm
could, for example, be installed into teleconferencing software
to automatically create notes about user stories for developers
after a meeting. The technique we present in this paper is a
research prototype in that direction; to be usable, it would
need an automated transcriptionist and a natural language
generation system to create “abstractive” user stories from the
extractive data we currently can provide. Still, it is our view
that this paper is a vital early step.

To facilitate reproducibility and assist other researchers,
we have made our implementation available via an online
appendix 1, including a virtual machine image with all de-
pendencies installed. While we cannot release the recordings
of the meetings for ethical and privacy reasons, we do provide
our trained classifier so that it can be tested on other datasets.
To our knowledge, no public records of meetings with user
story information are available, but for comparision purposes,
we duplicate our quantitative experiments for extractive sum-
maries on the public AMI meeting corpus [6].

II. BACKGROUND AND RELATED WORK

This section describes supporting technologies for this re-
search, as well as related literature. Note that these technolo-
gies have been proposed and evaluated in previous work. We
include them here because our work is based on these earlier
techniques.

A. User Story Elicitation

User stories play a crucial role in Agile development,
where programming activities are centered around the needs
of customers. In a “textbook” Agile environment, developers

1http://www3.nd.edu/∼prodeghe/projects/userstories/

elicit user stories through contact with customers, prioritize
these stories, and schedule tasks in release cycles based on
the stories. One characteristic of Agile development is a
relatively short release cycle that is responsive to changing
requirements [7]. The result is that developers are in a constant
process of user story elicitation, as stories appear, mature, and
are removed.

This process of elicitation is often messy: customers may
have difficulty articulating their own needs, and developers
may miss opportunities to ask clarifying questions or high-
light important problems. Cohn [1] reinforces an opinion by
Robertson and Robertson [2] that elicitation is akin to trawling
for fish, as numerous passes are needed with different tools and
techniques in order to catch as many user stories as possible.
Nevertheless, Cohn [1] points out that a key component of
user story elicitation is careful analysis of the conversations
between programmers and customers. Developers are advised
to take notes during conversations and reread these notes
to write user stories by hand. Some researchers, such as
Berenbach et al. [8], are even trying to introduce unique
frameworks to better capture and analyze these elicitations.

B. Turn-based Conversation Analysis

In this paper, we use turns instead of sentences as the unit
of analysis. This section defines these terms and outlines our
motivation for using turns.

One important characteristic of the work by Rastkar et al.
is that it is based on the sentences in the bug reports. The
extractive summaries are a subset of the sentences in the bug
reports. Likewise, the work by Murray and Carenini creates
summaries from the sentences in emails and transcripts. For
written text and some types of spoken text, sentence-based
analysis is ideal because the boundaries between sentences
are clear, and written sentences tend to contain cohesive
information [9].

In contrast, the preferred unit of analysis for most types of
spoken language is the turn, as noted by numerous authors
in the field of conversation analysis in sociology [9], [10],
[11], [12], [13]. A turn is the unit of speech that occurs when
a person speaks in a conversation, between other speakers. In
ordinary conversation, people take turns speaking and listening
to others speak. Turns are different than sentences in that turns
are dependent on the context in which the speaker takes a
turn, and the speaker’s own immediate thoughts and reactions.
Human factors are present in spoken turns to a higher level
than written sentences; social rank, confusion, number of
listeners, etc., affect the length, order, and content of turns.

Transcriptionists are tasked with creating written sentences
from spoken language. They will typically divide each turn
into multiple sentences, marking punctuation including periods
and commas. But this is a highly subjective process, since
speakers may repeat or rephrase information, or fill gaps
while thinking with “hmms” and “uhhs.” The listeners in a
conversation will typically defer to a speaker to finish a turn,
even if the turn contains unfinished or run-on sentences.



Our view is that role, function, and rationale information
are much more likely to be detectable in turn-based analysis
than sentence-based. The reason is that in a conversation, a
customer may struggle to describe, for example, the function
that he or she needs. The customer may describe a situation
in many ways, splitting important information over several
sentences or partial sentences. The developers will listen
carefully during the customer’s turn, to allow the customer
to finish his or her thought. In these situations, it is far more
useful to have the entire turn, rather than try to detect a single
sentence which contains all the necessary information – such
a sentence may not exist.

C. Summarization and Knowledge Extraction

Summarization is the process of creating a short descrip-
tion of a longer artifact [14], [15]. There are two types of
summaries: extractive and abstractive. An extractive summary
is a summary created out of pieces of the larger artifact.
Sentence selection is a form of extractive summary generation,
because it picks one sentence out of a document that describes
the main points of the document [16]. A commonly-used
extractive technique in software engineering research is a
TF/IDF vector space model, in which the top n words are
selected from a software artifact to describe that artifact [17].
In contrast, abstractive summaries are synthesized from infor-
mation inside the artifact, without copying that information.
Abstractive summarization is typically what humans do, as
it often involves contextual information or “in your own
words” interpretation. Nevertheless, abstractive summarization
techniques do exist in the software engineering literature, such
as work by McBurney et al. [18], Sridhara et al. [19], [20],
[21], Moreno et al [22], [23], [24], and Buse and Weimer [25],
[26]. These techniques are related to our work in that they use
summarization techniques to extract knowledge from software
artifacts, but differ widely in their approach, the type of data
they are summarizing, and the type of artifacts they analyze.
To our knowledge, we describe the first technique to automat-
ically extract user story information from developer/customer
meeting transcripts.

In this paper, we treat summarization as a form of knowl-
edge extraction, in that a summarizer is attempting to extract
and highlight a specific type of information from the larger
artifact [27], [28]. We believe this is similar to, but unique
from, the work done in Requirements Engineering by Cleland-
Huang et al. [29] and others. In a nutshell, instead of sum-
marizing a whole document, we aim to extract the parts of
the document pertaining to the role, function, and rationale
behind user stories. We apply summarization to the problem
of knowledge extraction about user stories.

D. Summarizing Software Artifacts

Three key publications behind this research are by Mur-
ray and Carenini [5] in 2008, and a related advancement on
that work by Rastkar et al. [3], [4] published in ICSE 2010
and TSE in 2014.

Murray and Carenini describe a technique to produce ex-
tractive summaries of email threads and meeting transcripts.
The technique is essentially a machine learning classifica-
tion problem, in which one class of sentences includes the
sentences in the extractive summaries, and another class in-
cludes all other sentences. Generally speaking, their approach
occurs over three steps: 1) compute quantifiable attributes
for each sentence in the emails and meetings, 2) train a
logistic regression classifier to detect sentences that are in
manually-annotated extractive summaries, and 3) conduct a
cross-validation experiment and compute performance metrics.
The experiment they conducted was a “leave one conversation
out” format, in which they trained on all conversations except
one, and then tested on the remaining conversation. One major
research contribution of their work is that the attributes they
computed were generic in the sense that they did not depend on
domain-specific terminology. The attributes can be calculated
on multi-modal conversations instead of a specific type of
conversation.

Rastkar et al. demonstrated how to apply Murray and
Carenini’s multi-modal conversation summarization to soft-
ware artifacts. Using the same set of attributes, Rastkar au-
tomatically generated extractive summaries for bug reports.
They manually annotated 36 bug reports by marking sentences
in the bug reports that belonged to extractive summaries.
They recruited three programmers to annotate each bug report,
and then used a voting procedure to choose a “gold set”
of annotations for each bug report. The performance of the
classification was 57% precision and 35% recall. A user
study with human experts found that this performance level
was acceptable, with the experts rating 3.54/5.00 that the
summaries represented the important points of the bug report.

III. FIELD OBSERVATIONS

We conducted a series of field observations to create a
corpus of meeting records between developers and customers.
This section describes our methodology for collecting these
observations. This section also describes our qualitative anal-
ysis of the observations, including our research questions for
the qualitative study and our annotation procedure.

A. Research Questions

Our research objective in this qualitative evaluation is to
test the hypothesis that conversations between developers and
customers contain role, function, and rationale information.
This hypothesis stems from existing literature that emphasizes
the importance of customer-developer conversations in user
story elicitation [1], [2]. Specifically, it is important that we
know whether our dataset contains this information to prepare
for our quantitative analysis in Section VI. Therefore, we ask
the following Research Questions (RQs):
RQ1 What percent of the turns in the conversations contain

role information, function information, and rationale in-
formation related to user stories?

RQ2 What percent of the turns in the conversations belong
to extractive summaries of those conversations?



TABLE I: A comparison of the size of our corpus to related work.

Related Experiment Corpus Speech # of Conversations # of Turns # of Sentences
Murray and Carenini [5] Enron Emails [30] n/a 39 351 4600
Murray and Carenini [5] AMI Meetings [6] 100 hours 138 64419 89302**

Rastkar et al. [3], [4] Bug Reports n/a 36 457 2361
This Paper Devel/Customer Meetings 24 hours 27 3176 6303**

** Approximate. This is the count of sentences recorded by a transcriptionist. See Section II-B.

The purpose of RQ1 is twofold. First, while it is widely
accepted that the elicitation of user stories should result from
these conversations [1], it is possible that not all of the infor-
mation necessary to write a user story is contained in these
conversations. If the information is not in the conversations,
then it is not possible to automatically extract it, and there is no
reason to study it in our quantitative analysis in Section VI.
Second, that quantitative study depends on the turns being
annotated as having role, function, and/or rationale informa-
tion. Answering RQ1 provides the opportunity to complete
this annotation.

We ask RQ2 in order to provide a mechanism for comparing
the performance of our classifier (Section V) to previous work.
It is not possible for us to release the records of conversations
we collect, which means that we will need to use a public
dataset to compare our classifier to earlier ones. However,
our technique is designed for user story information, while
the available public datasets have only extractive summaries
annotated. Therefore, we annotate our dataset with extractive
summaries to maintain a consistent baseline.

B. Methodology

This section describes our methodology for answering our
research questions. We first describe how we created the
corpus of meeting records. Second, we describe how we
annotated that corpus with role, function, and rationale data,
as well as extractive summaries.

C. Data Collection

The data that we collect includes recordings of meetings be-
tween developers and customers. To collect this data, the first
author spent two months working as a software engineering
intern at a software development company in the United States
with between 30 and 50 employees (for privacy purposes, the
company is anonymous). During this time, she was invited
to regular stand up meetings and teleconferences with the
client. These meetings consisted of discussions about progress
on current tasks and plans for future tasks. After obtaining
appropriate permission, the author observed, took notes, and
recorded audio during each meeting. In total, nine meetings
between developers and customers were recorded. We then
hired a professional transcriptionist to create written transcripts
of the audio for each meeting.

The transcripts contained an entire meeting‘s dialogue.
However, each meeting contained several conversations, each
of which had a separate topic with separate people (for
instance, people joining or leaving a conference call as they

are needed for each topic). Therefore, we manually separated
each transcript into a set conversations. We understand that this
is a subjective process, so we used the following criteria to
minimize any bias during conversation separation: 1) a current
speaker(s) leaves the conversation, 2) a new speaker(s) joins
the conversation, or 3) a noticeable shift in topic, such as
switching to a new bug. After this process was complete, we
had 27 conversations total over the nine meetings. Our dataset
is comparable in size to datasets for related experiments, as
shown in Table I.

D. Annotation Process

All of the authors annotated the conversations. Each
conversation was manually annotated by at least 3 authors.
We restricted annotation to authors-only in order to maintain
privacy of the speakers. The assignment of conversations to
annotators was random, to ensure an unbiased assignment.
The authors then annotated each of their conversations, but
were careful not to discuss any annotations with each other to
avoid introducing a bias. Every annotation used the following
format:

File: the file name of the transcript
Conversation: an ID number for the conversation
Abstractive: an “in your own words” summary
Extractive: a list of turns summarizing the transcript
Role: a list of turns summarizing the role
Function: a list of turns summarizing the function
Rationale: a list of turns summarizing the rationale

Note that the annotations include an abstractive summary.
We included this summary as an exercise to help the annotators
understand the content of the conversation, but otherwise the
abstractive summary was not used in our experiments.

Once annotations were complete, we combined them using
a voting process to create a final goldset annotation for each
conversation. The voting process was a simple majority: we
selected turns for the goldset if those turns were selected by
at least two of the three annotators for that conversation.

E. Threats to Validity

One threat to the validity of these observations is that much
of the conversation was over the phone. This caused some of
the conversation to be slightly garbled, meaning the transcriber
to may have misheard some of the conversation. Although
possibly causing some turns to be slightly wrong, in our view
this threat is minimal, since we did not encounter evidence



that the errors would significantly change the meaning or
context of the conversation. To minimize this threat, we hired a
professional transcriptionist with experience handling difficult
audio.

Another threat with these observations is the subjective
nature of manual annotations. We attempt to mitigate this
threat with the voting process of a majority consensus among
the set of authors who annotated each conversation. With this
consensus check, the final combined annotation is less likely
to be biased. In addition, we compute the metric Pyramid Pre-
cision (see Section VI-C), which computes precision weighted
for the number of votes for each turn.

Finally, one threat to validity is the source of the data we
collected. It is possible that our dataset is not representative
of “typical” meetings between developers and customers. We
aim to mitigate this threat by recording actual meetings at
an active software development company (unlike the AMI
meeting corpus, which is simulated). Still, it is possible that
our partner company is different from other companies in a
way that would affect our results.

IV. FIELD OBSERVATIONS RESULTS

In this section, we present our answer to each research
question, as well as our rationale, and interpretation of the
answers. These answers are the basis for the quantitative study
discussed later in the paper.

A. RQ1: Turn Information

We found that out of the 3176 total turns, 5.5% of turns
contained function information, 2.9% of turns contained ra-
tionale information, and only 0.5% of turns contained role
information (see Figure 1). Our perception of why role infor-
mation was missing from conversations is that during these
regular meetings, the employees already had a understanding
of their roles within these projects. Therefore, there was no
need to identify each participant’s role during the meeting in
order for the speakers to complete their assigned tasks. In
contrast, function and rationale information is present since it
is usually unknown before the task is discussed in the meeting.
Therefore, we only used function and rationale information
during the quantitative study.

B. RQ2: Extractive Summaries

For extractive summaries produced from our annotations,
we found that 10.2% of turns belong to extractive summaries
of their respective conversations (see Figure 1). For com-
parison, Murray and Carenini found 13.0% of their turns
to be included within the extractive summaries for the AMI
meetings and 19.0% of their sentences included in the Enron
email summaries [5]. Also, Rastkar et al. found 28.3% of the
bug report turns were included in the extractive summaries [3],
[4]. In our view, our findings are consistent with the findings
from the AMI meeting conversations.

Fig. 1: Venn diagram of the percentages of turns that are
included in each category. The categories are function (F),
rationale (A), and extractive Summary (E). For example, 0.2%
of turns were marked as including function information only,
while 3.8% of turns had both function and extractive summary
information only.

V. OUR APPROACH

Our approach, is essentially a machine learning classifier,
in which we classify turns in speech as either having user
story information, or not. We build two classifiers for each
type of data that we extract: two for function information, and
two for rationale information. The two classifiers are based
on two different algorithms. We also build two classifiers to
create extractive summaries of the conversations, for purposes
of comparison to related work. Note that because of the
very small amount of role information in our dataset (see
Section IV-A), we do not attempt to extract that type of
information. Our approach is inspired by previous work (see
Section II-D), but has numerous differences that we describe
in this section.

A. Data Preparation

Any technique using supervised machine learning will de-
pend on prepared data in the form of labels for the items
to be classified. In our case, we labeled every turn in every
conversation as containing role, function, and/or rationale data,
as well as whether the turn belongs to an extractive summary.
We completed this annotation process as part of our Field
Observations in Section III. We use the same annotations in
this section. This annotation process is depicted in Figure 2:
we describe our process of obtaining the transcripts in area 1
in Section III-C, and the annotations in area 2 in Section III-D.

B. Attributes

We use a set of 25 attributes in each of classifier that we
build (Figure 2, area 3). Table II provides a brief description



of each attribute. These attributes are in general similar to the
attributes proposed by Murray and Carenini [5] and later used
by Rastkar et al. [3], [4], and due to space limitations we refer
readers to those publications for complete details. However, a
key distinction is that the unit of analysis in our work is a
turn, not a sentence, as described in Section II-B. A few of
the attributes are identical, such as spau, which is the time
between the current turn and the following turn. Also, a few
attributes, such as tloc (the position of a sentence in its turn)
are nonsensical when calculated on turns instead of sentences.
But most attributes could be modified slightly, for example
thisent. In Murray and Carenini’s paper, thisent is the
entropy of the current sentence. In our work, it is the entropy
of the current turn.

From [5], these classification attributes fall into four cat-
egories: length, structural, participants, and lexical. Our at-
tributes still fit into these categories. Slen and wc are in
the length category; cloc, ppau, spau, tpos1, and
tpos2 are in the structural category; and begauth and
dom are in the participant category. The remaining attributes,
which are based on probability and entropy of textual data,
are contained within the lexical category.

We have added two new attributes: pent_empt and
sent_empt. These are when two of the entropy-based at-
tributes, pent and sent, equal zero. This means that either
all previous turns or all subsequent turns, respectively, have

Fig. 2: Overview of our approach. We completed steps 1 and
2 while answering RQ1 and RQ2 ins Section III. Steps 3, 4,
5, and 6 are described in Section V.

TABLE II: List of attributes we calculate.

Attribute Description
begauth first participant in convo
cent1 cos. of turn and convo., w/ Sprob
cent2 cos. of turn and convo., w/ Tprob
cloc position in convo.
cos1 cos. of convo. splits, w/ Sprob
cos2 cos. of convo. splits, w/ Tprob
cws rough ClueWordScore
dom participiant dominance in words
mns mean Sprob score
mnt mean Tprob score
mxs max Sprob score
mxt max Tprob score
pent entropy of convo. before the turn
pent empt no entropy in convo. before the turn
ppau time btwn. current and prior turn
sent entropy of convo. after the turn
sent empt no entropy in convo. after the turn
slen word count in turn, globally normalized
sms sum of Sprob scores
smt sum of Tprob scores
spau time btwn. current and next turn
thisent entropy of current turn
tpos1 time from beg. of convo. to turn
tpos2 time from turn to end of convo.
wc word count in turn, not normalized

no entropy at all. These attributes are simpler descriptors of
the turns than their numeric counterparts, which may provide
better classifications for sparser data. These new attributes still
fall under the lexical category.

Prior to training with each algorithm, we scaled the attribute
values to ensure they would be between 0 and 1 to avoid some
attributes from dominating the others [31].

C. Adaption for Low Incidence Data

One challenge with our dataset is that the incidence of
function and rationale information is relatively low. In Sec-
tion IV-A, we found that function data was present in 5.5%
of turns and rationale data in 2.9% – the turns in the groups
labeled as having function and/or rationale data are a small
minority class. A common problem in supervised machine
learning of low incidence data is that the algorithm may predict
that everything is in the large class, while ignoring the minority
class [32].

We used the SMOTE [33] algorithm to address this
problem (Figure 2, area 4). SMOTE works by oversampling
the minority class by creating synthetic examples of the
minority class, and adding those examples to the dataset
until the minority class is equal in size to the larger
class. SMOTE has been shown to have generally good
performance, outperforming duplicative oversampling as well
as undersampling of the majority class for many datasets [33],
[32].

D. Creating the Prediction Models

We built two prediction models for each of the types of
information we extract: two for function data, two for rationale
data, and two for extractive summaries. One model is based
on the algorithm Support Vector Machines (with an RBF
kernel) [34], and the other model is based on the algorithm
Logistic Regression [35] (Figure 2, area 5). We used Logistic



Regression for two reasons: first, it is the algorithm that
Murray and Carenini [5] and Rastkar et al. [3], [4] used to
obtain reasonable performance. Second, Logistic Regression
is a probabilistic classifier, which means that it returns a
probability that each turn belongs to a class. The advantage
to these probabilities is that the size of the predicted class
can be set with a cutpoint; the top n turns can be selected.
As a contrast, we also used the SVM-RBF algorithm, which
is a prominent binary classifier. In Section VI, we compare
the performance of these algorithms on our dataset.

E. Reproducibility and Implementation

To facilitate reproducibility and to assist other researchers,
we release our prediction models as well as our complete
implementation via an online appendix 2. Our implementation
is built using Scikit-learn [36], as well as custom scripts to
parse the transcripts and calculate the attributes. These are all
available online, along with a virtual machine image with all
dependencies installed to demonstrate how it is used.

We also release the prediction models that we created as
part of the procedure depicted in Figure 2 (area 6). Note that
these are models trained on the entire corpus of conversations
in our dataset – they are not the models we use for testing in
the cross-validation experiments in the next section. We release
these models in lieu of the transcripts, since we cannot release
the transcripts for privacy reasons. Future researchers can use
these models on their own datasets, similar to how Rastkar et
al. tested a model on their own dataset that was created by
Murray and Carenini [3].

VI. CROSS-VALIDATION EXPERIMENT

This section describes our quantitative study, which is a
cross-validation experiment to evaluate our approach. We
cover our research questions, our methodology and metrics
for answering those questions, and threats to validity.

A. Research Questions

Our objective with this quantitative study is to determine
the degree to which the classifiers we train are able to extract
function and rationale information, as well as extractive sum-
maries. As in Section V, we do not include role information
because our dataset contains so little of it (see Section IV-A).
We pose the following two questions:
RQ3 What is the performance of the best-performing con-

figuration of our approach, in terms of the metrics in
Section VI-C?

RQ4 Which attributes are the most informative for the
classification task?

We ask RQ3 because there are several potential configu-
rations of our approach, and we seek the highest performing
configuration. The configuration is the algorithm (SVM-RBF
vs Logistic Regression) and the classification threshold for
Logistic Regression. We ask RQ4 for a similar reason. We

2http://www3.nd.edu/∼prodeghe/projects/userstories/

use 25 attributes in our approach, and several of these we
adapted for turn-based analysis instead of sentence-based.
Some attributes may be more useful for classification than
others. It is beneficial for us to report the usefulness of each
attribute because it may be possible for future researchers to
simplify the approach by removing some less useful attributes,
without significantly harming performance.

B. Methodology

The methodology we follow is depicted in Figure 3.
Generally speaking, we follow a “leave one conversation out”
procedure. The typical cross-validation process is either a
leave-one-out or an n-fold validation. Leave-one-out usually
means train all items in the dataset, then test on one. In
an n-fold validation, 1/n items are randomly selected as the
testing set. In our case, the items in the dataset are turns.
In our view, the typical leave-one-out and n-fold validation
do not reflect realistic scenarios, since the turns in one
conversation almost never have any direct affect on the
turns in another conversation. The realistic scenario is that
a researcher has m conversations, and trains a classifier on
those conversations. Then the researcher receives a “new”
conversation, and classifies that conversation.

Fig. 3: Outline of our cross-validation experiment procedure.
Note that the procedure is slightly different than the creation
of the prediction models shown in Figure 2. In the experiment,
we create a new model for each cross validation fold. In each
fold, we train on all conversations except one, and then test
on the one remaining conversation. With 27 conversations, our
experiment has 27 folds.



To emulate that realistic scenario, we use a leave one con-
versation out process in which we set aside one conversation
as the test set, and create a training set using the remaining
conversations (Figure 3, area 1). Note that we use the SMOTE
procedure (Section V-C) on the training set only (area 2) to
avoid biasing the experiment – SMOTE changes the dataset,
and a bias could occur if we modify testing data.

Next, we train both SVM-RBF and Logistic Regression
algorithms (area 3). We list them together in Figure 3 to em-
phasize that we train both, but the algorithms are independent.
They do not share data, and we do not attempt to combine the
models that they create (area 4). We use each model to test the
conversation that we left out of the training set, and compute
our performance metrics during that test (area 5). We repeat
this process for every conversation.

C. Metrics
For RQ3, we calculate the standard machine learning per-

formance metrics Precision, Recall, True Positive Rate (TPR),
and False Positive Rate (FPR) [37], [32]. We also compute
Pyramid Precision, which is similar to precision, except that it
considers the number of human annotators who marked each
turn. In Pyramid Precision, a prediction model is rewarded
for predicting turns that have been annotated by more people
as belonging to a class. Pyramid Precision is useful in cases
where a goldset is created by multiple people who may
disagree [38], and was used by Murray and Carenini [5] and
Rastkar et al. [3].

Note that Logistic Regression generates predictions based
on a probability threshold: turns with probabilities above
the threshold are predicted as part of the class. That is
in contrast to SVM-RBF, which provides binary predictions
(see Section V-D). Therefore, for SVM-RBF, we report the
average of the performance metrics over all folds of the cross
validation. But for Logistic Regression, we report the optimal
probability threshold.

For RQ4, we calculate the standard metric F-score [39] for
each attribute. F-score is commonly used in feature selection
to determine which attributes are the most informative for a
classification task. We report F-score for both SVM-RBF and
Logistic Regression.

D. Threats to Validity
One threat to validity to this study is our data source, as

mentioned in Section III-E. There is a possibility that the
data set we use is not representative of “typical” developer-
customer meetings. However, this threat was mitigated by
recording several real meetings taking place at an active
software development company.

Another threat to validity exists in the selection of attributes.
Although it is a relatively large set and most were used in
previous studies, they may not represent all usable attributes
for classification tasks. In addition, the conversion of certain
attributes from sentence-based to turn-based may have affected
the usefulness of those attributes. This is handled, however,
by the modeling itself and the analysis performed in Sec-
tion VII-B.

VII. CROSS-VALIDATION RESULTS

In this section, we present our answer to each research
question, as well as our rationale, and interpretation of the
answers.

A. RQ3: Best Configuration

We found the best configuration for classification is Lo-
gistic Regression (92% threshold) (see Table II), though the
performance of the algorithms is similar. Logistic Regression
outperforms SVM-RBF with the more traditional metrics of
Precision, Recall, True Positive Rate (TPR), and False Positive
Rate (FPR). The TPR and FPR are represented together as
the Receiver Operating Characteristic Area Under the Curve
(AUROC) score. However, with the Pyramid Precision (PP)
metric, which takes the number of annotators into account,
SVM-RBF performs better with two of the three types of
information.
TABLE III: Metric results using our corpus. Details shown
are Type, Classifier & Threshold where applicable (Class.),
Precision (Prec.), Recall(Rec.), Pyramid Precision (PP), and
AUROC score.

Type Class. Prec. Rec. PP AUROC
E LR(92%) 0.708 0.183 0.597 0.587
E SVM 0.684 0.140 0.649 0.566
F LR(94%) 0.545 0.240 0.472 0.614
F SVM 0.522 0.240 0.491 0.613
A LR(81%) 0.250 0.269 0.364 0.622
A SVM 0.182 0.154 0.204 0.566

With the extractive summary (E) information, the Logistic
Regression model performed the best using traditional metrics,
as mentioned above, with a Precision of 70.8%, a Recall of
18.3%, and a AUROC score of 0.587. In terms of Pyramid
Precision, the SVM model with RBF kernel outperformed
Logistic Regression with a PP of 64.9%. Although the PP was
higher for SVM-RBF, it still did not overcome the Logistic
Regression’s Precision, which we believe means that Logistic
Regression outperformed SVM-RBF overall.

We observe a similar pattern with function (F) information.
The Logistic Regression model performed the best using
traditional metrics with a Precision of 54.5%, a Recall of
24.0%, and a AUROC score of 0.614. In terms of Pyramid
Precision, the SVM model with RBF kernel outperformed
Logistic Regression with a PP of 49.1%, though the results
are extremely close. Logistic Regression outperforms SVM-
RBF overall, though the margin is not large enough to justify
a strong recommendation either way.

With the rationale (A) information as the type, the Logistic
Regression model outperforms the SVM model for all metrics.
This configuration had a Precision of 25.0%, a Recall of
26.9%, a PP of 36.4%, and a AUROC of 0.622. With this
configuration, there are a couple differences to note other than
Logistic Regression having a better PP than SVM-RBF. One
observation is that this is the only configuration where the
PP measures higher than the Precision. Another observation



(a) Logistic Regression (92% threshold) (b) SVM-RBF

Fig. 4: F-scores of the 25 attributes after running both models on our corpus. (a) includes the Logistic Regression model using
extractive summary (E), function (F), or rationale (A) information. (b) is the same for the SVM model using the RBF kernel.

is that the ROC score is highest with this A information
than with the E and F information. We believe all three of
these observations are due to the lower incidence of rationale
information compared to extractive summary and function
information. With less data to use, the traditional prediction
becomes more difficult, but the metrics that make use of other
data that balances them become more useful.

From all these configurations, the best overall configuration
for the classification task is the Logistic Regression model,
especially for the extractive summary information. As men-
tioned in Section VI-C, Logistic Regression uses a probability
threshold to determine classification. This configuration uses
a probability threshold of about 0.92, which produces a lower
FPR at the cost of a lower TPR.

In terms of the most-closely related work (Section II-D), we
caution that our data is different (transcripts vs. bug reports
and emails), and that our analysis is turn-based rather than
sentence-based. Still, the previous results provide a rough basis
for comparision (a “sanity check”). The Murray and Carenini
AMI meeting experiments produced a best case Pyramid
Precision of 23.0% and AUROC score of 0.850 [5]. The
Murray and Carenini Email experiments produced a best case
Pyramid Precision of 47.0% and AUROC score of 0.740 [5].
The Murray and Carenini studies did not report Precision
and Recall, but they did mention that they recorded high
Precision and low Recall values. The Rastkar Bug Report
experiments produced a best case Pyramid Precision of 63.0%,
an AUROC score of 0.722, a Precision of 57.0%, and a
Recall of 35.0% [3], [4]. While these numbers are not directly
comparable, we do note that high precision and low recall is
a common feature of the approaches, and that Rastkar et al.
reported that this was acceptable during a study with human
experts [4].

B. RQ4: Best Attributes

We found 7 of the 25 attributes to consistently be the most
informative for this classification task across both models and
all three types of turn information. As shown in Figure 4, these
attributes tended towards higher F-scores (see Section VI-C)
compared to other attributes. These attributes are cent1,
cent2, slen, sms, smt, spau, and wc and are
briefly described in Table II. As explained in Section V-B,
these attributes can be separated into four distinct categories:
length, structural, participants, and lexical. Of these 7 most
informative attributes, 2 are in length, 1 is in structural, 0 are
in participants, and 4 are in lexical. It is important to note
that attributes within the lexical category perform the best in
this classification task, which we believe is because they are
created using the most information. Another important obser-
vation is that the attributes representing participant specifics
have little to no effect on the classification with our data. We
believe that is because the speech in each conversation is so
broken between speakers that it is difficult for the algorithm
to use it effectively. We also found 4 somewhat informative
attributes: cloc (structural), cos1 (lexical), cos2 (lexical), and
cws (lexical). As can be seen in Figure 4, these 4 attributes
do not get as high F-scores as often as the other 7, but they
do occasionally score higher than the strictly non-informative
attributes.

Among all the configurations, the one containing the highest
F-scores for the informative attributes is the Logistic Regres-
sion model with the extractive summary information. This is
the same configuration shown in Section VII-A.

It is our view that our most informative set is comparable
to the sets produced by the previous studies mentioned in Sec-
tion II-D. All three experiments agree that cent1, cent2,
cws, slen, sms, and smt are informative for classifica-



tion. The Murray and Carenini AMI experiments and Email
experiments additionally have the mxs and mxt attributes
included. Also, the Murray and Carenini AMI experiments and
the Rastkar Bug Report experiments list the slen2 attribute
as informative. Compared to our set, almost everyting is in
agreement. We do not include cws, slen2, mxs, or mxt.
However, cws was somewhat informative with our approach,
and slen2 was not included in our usable attributes to begin
with because of our use of the turn/conversation system.

VIII. AMI EXPERIMENTS

As mentioned in Section I, we duplicated our quantitative
experiments (Section VI) for extractive summaries on the
public AMI meeting corpus [6]. Since we cannot ethically
release any of our meeting recordings from the active software
company, these experiments on the AMI corpus serve as a
reproducible example of our work. Although the AMI dataset
uses artificially created meetings and conversations, it is a
popular dataset due to its size and depth of information. For
these experiments, we followed the same approach as outlined
in Figure 3, except that there were many more folds since the
API corpus contains more conversations. However, since the
AMI dataset only includes extractive summaries, we do not
use function and rationale information for these experiments.
We have made our implementation and this example available
via an online appendix (see Section V-E).

Using the same metrics we used in our quantitative study
(see Section VI-C), we found the metric values to be more
split between the two models, as can be seen in Table IV. For
two of the metrics, Logistic Regression outperforms SVM-
RBF with a Recall of 24.9% and an AUROC score of 0.619.
The Receiver Operating Characteristic Area Under the Curve
(AUROC) score is a combined representation of the True
Positive Rate (TPR) and the False Positive Rate (FPR). For
the other two metrics, the SVM model with the RBF kernel
outperforms the Logistic Regression model with a Precision
of 78.2% and a Pyramid Precision of 82.6%. In general,
both algorithms had generally similar performance, so from
our view, future researchers may choose either algorithm
depending on other factors affecting their experiments. Also,
we observed that the same 7 attributes that were found to be
most informative in our study were most informative in terms
of F-score: cent1, cent2, slen, sms, smt, spau, and wc.

One may observe that our AMI experiments produced a best
case Pyramid Precision of 82.6% and AUROC score of 0.619,
and the Murray and Carenini AMI experiments produced a
best case Pyramid Precision of 23.0% and AUROC score of
0.850. As in Section VII, we caution that these numbers are

TABLE IV: Metric results using the AMI meetings corpus.
Details shown are Type, Classifier (Class.), Precision (Prec.),
Recall(Rec.), Pyramid Precision (PP), and AUROC score.

Type Class. Prec. Rec. PP AUROC
E LR(97%) 0.758 0.249 0.791 0.619
E SVM 0.782 0.158 0.826 0.576

not comparable since the unit of analysis is different (turns
vs. sentences). We reiterate that we include this section only
to observe trends and to provide a reproducible baseline for
our approach. Our intent is that future researchers in the area
of summarization and user story generation can build and test
their approach on this reproducible baseline of public data, to
verify that their approach functions similarly to ours.

IX. DISCUSSION AND CONCLUSION

In this paper, we advance the state of the art in two
key directions. First, we contribute the analysis of actual
user story conversations to the software engineering literature.
Although we cannot publish the conversations themselves due
to privacy concerns, previous work in user story analysis used
the AMI meeting corpus, which was artificially created. In
our qualitative study (Section IV), we found that about 5.5%
of the turns included function information, 2.9% discussed
rationale, but only 0.5% discussed role. About 10.2% were part
of the extractive summaries. From these results, we have two
key findings: 1) while function and rationale information are
available for analysis in real conversations, role information
is not; and 2) in terms of extractive summary information,
the artificial AMI dataset is a comparably useful source of
information as an active meeting dataset.

Second, we create a novel approach that extracts user story
information from transcripts of spoken conversations. In our
quantitative study (Section VII), we obtained approximately
54.5% precision and 24.0% recall for detecting sections of
conversations containing function data, and 25.0% precision
and 26.9% recall for rationale data. For comparison purposes,
we obtained about 70.8% precision and 18.3% recall for
extractive summaries. Compared to similar previous studies,
we found our results to be comparable in most cases and
better in others, most notably with the Pyramid Precision
metric. With these results, this new approach provides an
extra option for researchers if they feel their data is either
more appropriately broken into turns or simply cannot be
represented as full sentences.
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