
API Usage in Descriptions of
Source Code Functionality

Paige Rodeghero, Collin McMillan, and Abigail Shirey
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

{prodeghe, cmc, ashirey}@nd.edu

Abstract—In this paper, we present a study exploring the use of
API keywords within method summaries. We conducted a web-
based study where we asked participants to rank Java method
summaries based on five levels of detail, from low level to high
level. We found that programmers widely use API in both high
and low level summaries. Specifically, we found that 76.78% of
higher level summaries contain Java API keywords. Additionally,
we found that 93.75% of lower level summaries also contain them.
This also shows that, in general, as the detail level decreases, the
number of API keywords within the summary increases. It is our
hope that this line of research will spark a discussion about API
usage outside of source code. It is possible that method summaries
are not the only form of documentation that API usage plays an
important role. We believe these may be important results that
could lead to an improvement for API usability design.

I. INTRODUCTION

This paper explores the question of whether programmers
use APIs to describe functionality implemented in source code
that calls those APIs. The term “API usage” is usually reserved
for occurrences in source code of calls to functions in the API,
or reads and writes to data owned by an API. However, APIs
have been shown to be key anchors for understanding source
code [1], and it is plausible that programmers use APIs to
describe source code in addition to using the APIs to imple-
ment features in their code. Given the strong social aspect
to software development [2] and the productivity benefits of
good communication tools [3], it is helpful to know if API
usage extends beyond source code and into the dialog that
programmers use to communicate.

We found evidence that programmers use APIs to describe
code, even in short, high level summaries of code functionality.
The implication is that APIs play a role in programmer
communication beyond low level implementation details of
the code itself. A mismatch has long been recognized between
high level concepts used to describe software functionality, and
the low level implementation details [4]. And while precise
definitions of what constitutes “high” and “low” level in the
literature are scant, it can be said that, generally speaking,
a description at a high level includes information about the
rationale behind the implementation, or the purpose of the
software. In contrast, a description at a low level includes
specifics about how the implementation was achieved, such
as which methods occur in which class. Programmers use
both high and low level descriptions to explain and understand

source code, such as through documentation. Our hope for this
paper is to generate discussion at the workshop about the role
of APIs in communication.

To collect the evidence as a starting point for discussion,
we used a publicly-available dataset of English summaries of
functions in a program’s source code [5]. That dataset was
created by hiring professional programmers to read functions
and write an English summary of those functions, as though
their goal was to describe the function to another programmer.
In this paper, we analyzed those summaries in two ways. First,
we hired programmers to read the summaries and place them
subjectively on a scale from low to high level. 577 were rated
as high or leaning high level, while 496 were rated as low
or leaning low level. Second, we searched each summary for
function names from the standard Java API (after filtering out
names that are also common English words). We found that
76.78% of high and leaning high level summaries contained
references to the API, compared to 93.75% of low and leaning
low level summaries. We also found that as the detail level
lowers, the number of API increases. In short, we found
evidence that programmers referred to the API in both high
and low level summary descriptions. We have released all data
used in this paper in an online appendix to facilitate discussion
(see Section IV-E).

II. THE PROBLEM

The problem we target is that software engineering literature
does not explore whether “API usage” extends to program-
mer conversations and other artifacts such as documentation,
rather than solely usage in a program’s source code. Software
engineering efforts are spread across numerous artifacts, with
source code being only one of several important components.
APIs are generally considered to be critical to source code
development, but the degree to which they affect other artifacts
has not been explored deeply. Improved knowledge in this area
could lead to advancements in tool support for programmers
and API usability design. Possible workshop discussion points
include: 1) perceptions of the value of API usage for non-
source-code artifacts, 2) implications for existing tool support,
3) improved mechanisms to detect API usage in natural
language, and 4) improved detection of the level of natural
language summaries as pertaining to APIs.



III. BACKGROUND AND RELATED WORK

In this section, we cover background information on API
usage, method summaries, and our previous work that we
extend upon in this paper.

A. API Usage

API documentation contains much information for many
audiences [6]. Application developers, platform licensees, and
conformance test engineers all use the Java API specification
documentation. Developers might require elaborate descrip-
tions than concise documentation comments can provide.
However, including API specification in documentation com-
ments helps both writers of conforming implementations and
conformance tests maintain cross-platform functionality [7].
API directives tell developers how to implement the API by
providing guidelines and constraints. Monperrus et al. [6]
classified Java directives to find that method call directives
were the most abundant at 43%.

McBurney et al. [8] studied the similarity in source code to
summaries written by authors and readers. Reader summaries
contained more keywords from the code and were more low-
level summaries. Rastkar et al. [9] examined how to best
summarize bug reports. Rastkar focuses on reports written as
conversations, instead of reports containing mostly code and
stack traces, as developers usually do not read low-level bug
reports.

B. Method Summaries

Software engineers use many different strategies to un-
derstand source code [10]. Software documentation has long
been recommended to summarize source code in a readable
format [11]. Some believe that the most effective method
summaries contain both detailed source code information and
behavioral information, as well as its context [8]. Some others
believe that a concise summary of the code is best for saving
the user time and effort during comprehension. [12]. Ko et
al. [13] investigated how software developers comprehend
unfamiliar code without documentation. He found that on
average they spent 35% of their time determining where the
parts of the program were located and how they interacted.
He concluded that environments to help developers access
relevant information would help them work more efficiently
and effectively.

Forward et al. [14] surveyed 48 people in industry to find
documentation to be an important communication tool and
should ideally be up-to-date. Automatic method summaries
ensure that the documentation is consistent with its source
code. Sridhara et al. [15] developed a summary comment
generator that puts components of important code into natural-
language templates. Novick et al. [16] surveyed 25 general
computer users and discovered that the majority preferred
documentation that is easy to navigate, technically appropriate,
and had problem-oriented organization. Software engineers are
more technically skilled, so above all they need up-to-date
documentation to maintain systems with ease [17], or else they
must turn to the source code [18].

C. Our Previous Work

We conducted three separate previous studies where we
asked programmers to write method summaries based on Java
code. The first study was an eye tracking study where we
examined the keywords programmers fixated on, where the
eyes focused for an extended amount of time, while reading
Java methods [5]. The participants were asked to read, one
method at a time, and summarize the method. This required the
participant to comprehend the source code while we tracked
their eyes. The second study had users comparing manual
summaries against automatic summaries [19]. It wanted to see
if the user study could help create an improved technique for
summarization to include why the method exists in its context.
The third study we conducted had programmers reading Java
methods again, this time with obfuscated words first, and then
the same method with all of the terms included [20]. We
wanted to see if the programmers could comprehend the source
code without all of the terms being included. We asked the
participants to write a summary for the obfuscated words first,
and then they were able to update or change their summary
after seeing the entire method.

IV. QUANTITATIVE STUDY DESIGN

In this section, we describe our research questions, the
methodology of our study, and discuss the threats to validity.

A. Research Objective

The goal of this study is to find how much API keywords
are used in different levels of summaries. Here, API keywords
represent terms contained within the Java standard libraries,
excluding any common English terms. Towards this goal, we
propose two Research Questions (RQ):

RQ1 Do summaries of all detail levels contain API keywords?
RQ2 Do low level summaries contain more API keywords

than high level summaries?

The rationale for RQ1 is to determine if API usage plays an
important role in method summaries. The rationale for RQ2

is that we believe programmers may need various detail levels
of auto-generated summaries. The results of this study could
improve our knowledge of method summaries and API usage
within them. Also, we could discover a potential factor that
determines the difference between high level and low level
summaries.

B. Methodology

Our methodology was to conduct a web-based study where
we asked participants to rank Java method summaries based
on the level of detail. We used data from a previous eye
tracking study and previous method summary studies (see
Section III-C). We randomized and selected from the 481
method summaries written by professional programmers from
various companies such as IBM and Uber from the previous
studies. We designed the web-based study to last ten minutes in
length. The participants were shown one method summary at a
time and asked to rank the summary displayed as High Level



(concise), Leaning High Level, Neither High nor Low Level
(neutral), Leaning Low Level, or Low Level (exhaustive).
Note: since the summaries were randomly selected to be
shown to each participant, we cannot guarantee how many
duplicates of each summary were ranked.

The following are examples of a High Level and Low Level
summary, respectively. Both of the below summaries are about
the same Java method.

High Level: Returns the passed object as JSON.

Low Level: This method takes an object and wraps it, re-
turning the JSON the object has become. If the object
is already a JSON, it casts the object as a JSON and
returns it.

After the web-based study concluded, we took the partici-
pants’ detail level rankings and checked to see how many Java
API keywords were included in each ranking. We filtered out
common English words from this search such as “append” and
“remove”. We specifically filtered for all the words included
in the New General Service List (NGSL) [21]. The NGSL is
a corpus of 2800 high frequency English words composed for
the purpose of learning English.

C. Participants
The participants were students from the University of Notre

Dame’s Department of Computer Science and Engineering.
There were a total of 27 participants. Of the 27 students, 9 of
the of the participants were undergraduate students and 18 of
the participants were graduate students. 7 of the students who
participated were female. The participants’ overall software
experience ranged from 2.5 to 20 years. The participants had
experience in many programming languages, including Java.

D. Threats to Validity
This quantitative study has four main threats to validity. The

first threat is that the participants’ selection of the levels of
detail could be a bit subjective. We attempted to mitigate this
threat by having a wide variety of programmers participate.
The second threat is that the programmers who wrote the
summaries may have not necessarily written helpful or correct
descriptions of the Java methods. However, we believe this
was reduced by using professional programmers to write
the summaries. The third threat is that each participant had
only ten minutes to complete the study. However, we believe
plenty of rankings were collected during that time. Also, some
participants were able to complete more ratings than others.
Finally, the fourth threat is the varying level of experience
throughout the participants. This was also mitigated by using a
large enough number of participants to reduce outlying results.

E. Reproducibility
All our input data, raw and processed results, and

processing scripts are available via our online appendix 1 for
use by other researchers.

1http://www3.nd.edu/∼prodeghe/projects/highlow/

V. QUANTITATIVE STUDY RESULTS

From the analysis of the summaries, we found that refer-
ences to Java API were widely found in all detail levels of
summaries. We also found that lower levels of detail tended
to have a higher rate of API usage than higher levels.

A. RQ1: API Usage

1) High Level: Participants labeled 324 summaries as high
level. Of those ranked high, 226 contained Java API usage,
meaning API appeared in about 69.75% of all high level
summaries.

2) Leaning High Level: Participants labeled 253 summaries
as leaning high level. Of those ranked leaning high, 217
contained Java API usage, meaning API appeared in about
85.77% of all leaning high level summaries.

3) Neutral Level: Participants labeled 184 summaries as
neither high or low level. Of those ranked neutral, 151
contained Java API usage, meaning API appeared in about
82.07% of all neutral level summaries.

4) Leaning Low Level: Participants labeled 285 summaries
as leaning low level. Of those ranked leaning low, 272 con-
tained Java API usage, meaning API appeared in about 95.44%
of all leaning low level summaries.

5) Low Level: Participants labeled 211 summaries as low
level. Of those ranked low, 193 contained Java API usage,
meaning API appeared in about 91.47% of all low level
summaries.

These results show that API usage can be seen throughout
all summary levels.

B. RQ2: High vs Low Level

Looking at the combined results of the two high detail
levels, 577 summaries were rated as either high or leaning high
level. Of these, 76.78% of them contained API. On the other
hand, 496 summaries were rated as either low or leaning low
level. These summaries included 93.75% of API. This more
clearly shows the increased use of Java API in lower level
summaries over higher level ones.

VI. DISCUSSION

Our paper contributes to research on API documentation
in two ways. First, we believe that our results show how
APIs are mentioned in method summaries and how the use
of them can provide more detailed summaries. Second, we
also believe that if one wants to explicitly create a lower level
summary, it should include more API usage. APIs are gener-
ally considered to be important for source code development,
but how much they affect other artifacts has not been explored
deeply. Increased knowledge in this area could lead to many
useful improvements in tools for programmers. Our goal for
the workshop is to receive community feedback on this line of
research which could include broad implications for existing
tool support, improved detection of API usage, and improved
auto-generation for method summaries.



VII. CONCLUSION

We have presented a quantitative study about the amount of
API usage in and difference between high level and low level
manually written Java method summaries. We explore two
research question aimed at understanding this existence of API
keywords in these summaries. Through an web-based human
study we were able to collect data on what programmers
perceived as five different detail levels of method summaries.
We showed that all detail levels contain API usage and that the
lowest detail level of summaries do have more API keywords
than higher level summaries. Our findings lead us to believe
that a key distinction between a high level and low level
method summary is the number of API keywords that are
present.

VIII. ACKNOWLEDGMENTS

We thank the undergraduate and graduate students from
the University of Notre Dame’s Department of Computer Sci-
ence and Engineering for their participation in the study. This
work was partially supported by the NSF grants CC-1452959
and DGE-1313583. Any opinions, findings, and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors.

REFERENCES

[1] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 2012, pp. 364–374.

[2] W. Scacchi, “Managing software engineering projects: A social analy-
sis,” IEEE Transactions on Software Engineering, pp. 49–59, 1984.

[3] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact
of social media on software engineering practices and tools,” in Pro-
ceedings of the FSE/SDP workshop on Future of software engineering
research. ACM, 2010, pp. 359–364.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, “Program
understanding and the concept assignment problem,” Communications
of the ACM, vol. 37, no. 5, pp. 72–82, 1994.

[5] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-
tracking study of java programmers and application to source code
summarization,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1038–1054, Nov 2015.

[6] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? an empirical study on the directives of
api documentation,” Empirical Softw. Engg., vol. 17, no. 6, pp.
703–737, Dec. 2012. [Online]. Available: http://dx.doi.org/10.1007/
s10664-011-9186-4

[7] D. Kramer, “Api documentation from source code comments: A case
study of javadoc,” in Proceedings of the 17th Annual International
Conference on Computer Documentation, ser. SIGDOC ’99. New
York, NY, USA: ACM, 1999, pp. 147–153. [Online]. Available:
http://doi.acm.org/10.1145/318372.318577

[8] P. W. McBurney and C. McMillan, “Automatic source code summariza-
tion of context for java methods,” in IEEE Transactions on Software
Engineering, vol. 42, Feb 2016, pp. 103–119.

[9] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software
artifacts: A case study of bug reports,” in Proceedings of the 32Nd
ACM/IEEE International Conference on Software Engineering - Volume
1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 505–514.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806872

[10] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in Proceedings of the 34th Interna-
tional Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 255–265.

[11] J. Greenberg and R. A. Baron, Behavior in organizations: Understanding
and managing the human side of work. Pearson College Division, 2003.

[12] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of
the 33rd International Conference on Software Engineering, ser. ICSE
’11, New York, NY, USA, 2011, pp. 101–110. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985808

[13] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, Dec 2006.

[14] A. Forward and T. C. Lethbridge, “The relevance of software
documentation, tools and technologies: A survey,” in Proceedings of
the 2002 ACM Symposium on Document Engineering, ser. DocEng ’02.
New York, NY, USA: ACM, 2002, pp. 26–33. [Online]. Available:
http://doi.acm.org/10.1145/585058.585065

[15] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments for
java methods,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010, pp. 43–52. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859006

[16] D. G. Novick and K. Ward, “What users say they want in
documentation,” in Proceedings of the 24th Annual ACM International
Conference on Design of Communication, ser. SIGDOC ’06. New
York, NY, USA: ACM, 2006, pp. 84–91. [Online]. Available:
http://doi.acm.org/10.1145/1166324.1166346

[17] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of the
23rd Annual International Conference on Design of Communication:
Documenting &Amp; Designing for Pervasive Information, ser.
SIGDOC ’05. New York, NY, USA: ACM, 2005, pp. 68–75. [Online].
Available: http://doi.acm.org/10.1145/1085313.1085331

[18] B. Thomas and S. Tilley, “Documentation for software engineers:
What is needed to aid system understanding?” in Proceedings of the
19th Annual International Conference on Computer Documentation,
ser. SIGDOC ’01. New York, NY, USA: ACM, 2001, pp. 235–236.
[Online]. Available: http://doi.acm.org/10.1145/501516.501570

[19] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings
of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[20] P. Rodeghero, “Discovering important source code terms,” in
Proceedings of the 38th International Conference on Software
Engineering Companion, ser. ICSE ’16. New York, NY, USA: ACM,
2016, pp. 671–673. [Online]. Available: http://doi.acm.org/10.1145/
2889160.2891037

[21] C. Browne, “New General Service List,” http://www.
newgeneralservicelist.org, accessed: 01-23-2017.


