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A data reduction method is described for
determining platinum-group element (PGE)
abundances by inductively coupled plasma-mass
spectrometry (ICP-MS) using external calibration

or the method of standard addition. Gravimetric
measurement of volumes, the analysis of reference
materials and the use of procedural blanks were
all used to minimise systematic errors. Internal
standards were used to correct for instrument drift.
A linear least squares regression model was used
to calculate concentrations from drift-corrected
counts per second (cps). Furthermore, mathematical
manipulations also contribute to the uncertainty
estimates of a procedure. Typical uncertainty
estimate calculations for ICP-MS data manipulations
involve: (1) Carrying standard deviations from

the raw cps through the data reduction or (2)
caleulating a standard deviation from multiple final
concentration calculations. It is demonstrated that
method 2 may underestimate the uncertainty
estimate of the calculated data. Methods 1 and 2
do not typically include an uncertainty estimate
component from a regression model. As such
models contribute to the uncertainty estimates
affecting the calculated data, an uncertainty
estimate component from the regression must be
included in any final error calculations. Confidence
intervals are used to account for uncertainty
estimates from the regression model. These
confidence intervals are simpler to calculate than
uncertainty estimates from method 1, for example.
The data reduction and uncertainty estimation
method described here addresses problems

of reporting PGE data from an article in the
literature and addresses both precision and
accuracy. The method can be applied to any
analytical technique where drift corrections

or regression models are used.
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Cet article présente une méthode de traitement des
données permettant de déterminer les concentrations
des Eléments de la Mine du Platine (PGE) analysés
par ICP-MS avec calibration externe et addition de
standard inteme. La mesure des volumes par gravimétrie,
I'analyse de matériaux de référence et de blancs de
procédure ont été utilisées pour minimiser les erreurs
systématiques. Les standards internes ont été utilisés
pour corriger les signaux mesurés (coups par second,
¢cps) de la dérive instrumentale. De plus, les calculs
mathématiques eux-mémes peuvent coniribuer &
Iestimation de Vincertitude sur une procédure.
Typiquement, un calcul des incertitudes estimées
lies & I'analyse par ICP-MS repose: (1) Sur la
propagation d’erreur lors de la transformation des
nombres de coups bruts par seconde au résultat
final; (2) Sur le calcul d'une déviation standard
pour plusieurs calculs de concentrations finales. Il a
été démontré que dans cette phase, on peut sous-
estimer l'incertitude sur les valeurs calculées. Les
méthodes (1) et (2) ne prennent généralement pas
en compte un coefficient d’erreur estimée donné par
un modéle de régression. Etant donné que de tels
modeéles participent aux estimations des incertitudes
affectant les données calculées, un coefficient d'erreur
estimée provenant de la régression doit éire inclus
dans tout calcul d'erreur finale. Les intervalles de
confiance sont utilisés pour prendre en compte les
incertitudes estimées du modéle de régression. Ces
intervalles de confiance sont plus simples & calculer
que les incertitudes estimées avec la méthode 1, par
exemple. le traitement des données et la méthode
d’estimation des incertitudes décrite ici posent le
probléme de l'utilisation de données de la littérature
sur les PGE et celui de leur précision et de leur
justesse. La méthode peut étre appliquée & toute
analytique technique ou des corrections de dérive
et des modéles de régression sont utilisés.
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Calculation of uncertainty of measurement is a
critical component of any analytical procedure.
Uncertainty of measurement is the result of the evalua-
tion aimed at characterizing the range within which
the true value is estimated to lie, generally with a
given confidence (Potts 1997 and references therein).
This generally takes the form of a confidence interval
and has implications for both the precision (the close-
ness of agreement between independent test results)
and the accuracy (the closeness of the measured value
to the true value) of the data. Uncertainty of measure-
ment calculations should incorporate all significant
random error components, both from the procedure
and subsequent mathematical manipulation, in order
to allow the reader the opportunity to readily assess
the quality of the data. Random error is the result of a
measurement minus the mean that would result from
an infinite number of measurements carried out under
the same conditions (Potts 1997 and references therein).
In practice, random errors are those errors that result
from small changes in variables such as temperature
or mass of reagent; these errors vary unpredictably
between measurements of different aliquots. Systematic
error is equal to the error minus the random error (Potts
1997). In practice, systematic errors are attributable to
instrumentation or the method used; these errors do
not vary between repeated measurements and cannot
be fully known. Systematic errors can be minimised
through gravimetric measurement of volumes, procedural
blanks and the use of reference materials of well-
constrained composition.

McDonald (1998) pointed out that much of the
ever-increasing platinum-group element (PGE: Ru, Rh,
Pd, Os, Ir and Pt} data now available in the literature
lack adequate uncerfainty estimates. Such uncertainty
estimates are crucial since the PGE data, often in the
form of PGE element/element ratios or normalized
pattemns, are being used to interpret fundamental geo-
chemical/geological processes. Without adequate
uncertainty estimates, it is impossible for the reader to
determine the validity of such interpretations. This
paper cddresses the following points made by
McDonald (1998): (1) Inadequate sampling protocols
addressing the heterogeneous distribution of PGEs in
geological samples (ie, the “nugget effect’); (2) Lack
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of uncertainty estimates for PGE element/element
ratios or PGE-normalized patterns and the necessity for
these uncertainty esfimates to be reported in order to
validate geochemical interpretations from ratio or nor-
malized data; (3) Reproducibility of results and the
problems with using indirect methods to estimate
uncertainty. A method for calculating uncertainty esti-
mates for PGE data obtained using ICP-MS is propo-
sed and demonstrated. All formulae are based on sta-
tistical concepts presented in Strobel and Heineman
(1989), Neter et al (1990) and Skoog et al. (1996).

Previous work

Sampling protocols

It has been well documented that PGEs occur hete-
rogeneously in most geological samples (Cabri 1976,
1981, Allegré and Luck 1980, Mitchell and Keays
1981, Hall and Bonham-Carter 1988, Hall and Pelchat
1994). Therefore, great care has to be taken in the
sampling protocol, so that obtained PGE abundances
are representative of the whole rock composition. In
the past, the problem of representative analyses has
been solved commonly by taking large amounts of test
portion (10-100 g) for analysis in order to average out
the PGE heterogeneities of the sample (Hall and
Bonham-Carter 1988, Jarvis ef al. 1992). However,
with the ever-increasing sophistication of analytical
instrumentation, the point has been reached where the
amount of sample must be reduced in order to reduce
the quantity of reagents involved in sample prepara-
tion, thus lowering blank levels, so that advantage can
be taken of lower instrument detection limits. Therefore,
a sampling protocol that uses small sample sizes
(s 250 mg), but still accounts for potential heteroge-
neities in the sample is necessary. Such a sampling
protocol for PGE analyses of geological samples (with
subsequent lower blank levels) has been developed
and described by Ely et al. (1999). This protocol
involves rolling the sample powder on a rock tumbler
for 24 hours to rehomogenise the powder, since the
PGEs have a tendency to setile out of the sample powder
over flime. A 1-20 g aliquot of this rolled sample powder
is then further rehomogenised in an alumina ball mill
for 15-30 minutes. A 250 mg aliquot (or less) is taken



from this rehomogenised sample powder and is analy-
sed. Several authors have correctly pointed out that
some samples are naturally more heterogeneous than
others, based on PGE grain size and type of rock
(McDonald 1998, Plessen and Erzinger 1998, Pearson
and Woodland 2000). However, our rehomogeni-
sation protocol minimises the effects of this inherent
heterogeneity on analytical reproducibility as much as
is possible. This is demonstrated by looking at coefti-
cients of variation [=100*(standard deviation/mean)]
for various types of samples. For the reference material
UMT-1, which is produced from Ni-Cu ultramafic ore
mine tailings composed of mostly silicates with minor
ore minerals, twenty two analyses of 250 mg test
portions produced coefficients of variation from 2-3%
for the PGE concentration range of 8-129 ng g
However, sixteen analyses of roadside soils from nor-
thern Indiana, which are much more heterogeneous in
nature than UMT-1 (Ely et ol. 2001), produced coeffi-
cients of variation in the range 10-26% using the reho-
mogenisation protocol with 250 mg test portions with
a lower PGE concentration range of 0.09-73 ng g!.
The increased coefficients of variation for the soils are
due to both the larger original heterogeneity of the
samples and the lower concentration range. It is
evident that the concentration range of the samples,
and its proximity to the detection limits, is as large a
factor in the quality of the uncertainty estimate as the
heterogeneity of the sample for the same sample size,
instrumentation and methodology.

Ratios, reproducibility
and estimates of precision

Calculating PGE element/element ratios magnifies
the uncertainty estimate on the given elemental abun-
dances. Therefore, having a firm understanding of the
individual elemental uncertainty estimates allows simple
assessment of calculated ratios used in petrogenetic
modelling, and thus, on the validity of geochemical
interpretations based on these ratios or patterns.

McDonald (1998) noted that the analysis of a
single test porfion does not measure all possible sources
of error involved, especially sample heterogeneity.
Ideally, analysis of replicate test portions is needed lo
characterise sample heferogeneity and to give an esti-
mate of precision. McDonald (1998) concluded that
estimaling precision using indirect methods has serious
limitations. He demonstrated, for example, that coun-
ting statistics for INAA data grossly underestimate
errors for Rh, Ir and Au. Analyses of reference materials
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can only be used as an indirect estimate of precision
for sample (i.e., unknown) PGE abundances if both the
reference material and the sample are matched in
terms of rock type and matrix, and exhibit similar
heterogeneities and PGE concentrations. As many well-
characterized PGE reference materials are derived
from PGE ores, it is difficult to use this method to esti-
mate precision realistically in the majority of geological
analyses. Therefore, a direct method that addresses
precision and is applicable to a wide variety of samples
is necessary.

An important point not mentioned by McDonald
(1998) is that uncertainty is also produced by the
mathematical manipulation of the raw data to compute
final concentrations. This uncertainty is not included in
the final concentrations when using indirect methods,
such as counting statistics (INAA) or relative standard
deviations (RSD'’s), but must be included to give the
reader the most comprehensive uncertainly estimate
for the final concentrations. Estimation of uncertainty
produced by the mathematical manipulation of raw
data can be calculated by three methods. Method 1
moves the standard deviation of the raw cps (counts
per second from multiple powder replicates) through
the data reduction using appropriate mathematical
formulae (e.g. taking the square root of the sum of
squares of the standard deviations when adding two
values together to obtain the new standard deviation,
elc). For a complete discussion of these formulae, see
Skoog et al. (1996). Method 1 is illustrated in Figure
la for external calibration and in Figure 1d for stan-
dard addition. Method 2 calculates the concentration
of each powder replicate separately and simply
determines a standard deviation from these multiple
concentrations. This is illustrated in Figure 1b for
external calibration and in Figure le for standard
addition. Method 3 calculates uncertainty estimates
from the regression model, which is illustrated in
Figure 1¢ for external calibration and in Figure 1f for
standard addition.

Method

The method is described using a procedure to
determine PGE concentrations of a basalt, but can be
applied to any PGE-bearing sample. Data reduction
can be performed relatively easily using spreadsheet
software. All solutions were measured gravimetrically
into a test tube to eliminate systematic errors associo-
ted with pipetting. Actual test tube concentrations of
elements in the calibration standards (for external
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Figure 1. Graphical representation of uncertainty estimation methods. (a) | calibration data using the uncertainty

estimation method of carrying the standard deviations of the raw data through the calculations; (b) external calibration
data using the uncertainty estimation method of calculating each powder replicate concentration separately and
determining a standard deviation from the final concentrations; () external calibration data using the uncertainty

n 5, thad lewld,

of calc ing uncertainty estimates from a regression model; (d) standard addition data using the

uncertainty estimation method of carrying the standard deviations of the raw data through the calculations; (e)
standard addition data using the uncertainty estimation method of calculating each powder replicate concentration

separately and determining a standard deviation from the final concentrations; (f) standard addition data using the

uncertainty estimation method of calculating uncertainty estimates from a regression model.
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calibration) and spike concentrations (for standard
addition) were calculated by equation (1):

_ stock concenfration x weight stock added

m

actual conc

total weight

As the stock solutions and internal standards were
pipetted info the analyte solution test tube, the weight
of added solution was slightly different for each tube.
Correction factors (weight of internal standard
added/total weight) for this infemal standard variabi-
lity were calculated and the cps were normalized to
those of the first solution in the run. The raw cps of the
internal standards in each sample, calibration solution
and blank were multiplied by these correction factors
to produce internal standards of uniform concentration
throughout the analytical run.

The raw cps produced for each sample were the
mean of six duplicate analyses on the same solution;
this method can be adapted to four duplicate analyses
and sfill calculate valid statistical variables. Blank sub-
traction for the internal standards was not required in
this example, because the PGEs had very low back-
ground cps (ie, not statistically different from zero) and
because the intemnal standards were normalized to the
first sample in the run. If blank subiraciion were necessary,
it should be the first function performed on the raw data.

Normalisation of internal standard cps to the first
aliquot analysed produced ratios that were used to
correct for instrument drift. For drift comrection, the ato-
mic masses of the internal standards must encompass
the mass range of the “unknown” elements to be
quantified and must have drift ratios that change toge-
ther (i.e. all increase or all decrease from aliquot to
aliquot). These ratios were used to correct the raw cps
of the elements of inferest between each set of internal
standards using equation (2):

CGi,-i)

rbw-i) i, -w)

C= 2)

where C, = corrected counts of element of interest; C,
= raw counts of element of interest; w = measured
isotopic mass of element of interest; i, = measured iso-
topic mass of upper internal standard; i = measured
isofopic mass of lower internal standard; r, = drift ratio
of upper internal standard; r, = drift ratio of lower
internal standard; and where drift ratio

infemal standard cps in somple

intemal standard cps in first aliquot analysed
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By bracketing the elements of interest with internal
standards that had similar physiochemical properties,
mass dependent drift could be corrected by the linear
interpolation given by equation (2). Barwick et al.
(1999) showed that in ICP-MS procedures, the two
factors that coniributed the most to the uncertainty
estimate budget were method precision and instru-
ment drift. The method of drift correction using internal
standards effectively minimised uncertainty due to
instrument drift.

After correcting for driff, the actual concentrations
(calculated gravimetrically) of the elements of interest
in the calibration samples (external calibration) or the
actual spike concentrations (standard addition) were
used with the corrected cps of those elements to define
a calibration curve using a linear least squares regres-
sion model given by equation (3):

Yh = Bo + B1 Xn (3)

where Y, is the concentration of element h; X, is the
corrected cps of element h, and B, and B, are calcu-
lated parameters. B, and B, are calculated using
equations (4) and (5):

sxy . EXEY,
B, = ——"— = =Xy, -EX 2Y) —L— (4)
o EX nEK-X)
B, = Y-BX (5)

where , X, Y are the means of the X, and Y, data,
respectively; n is the number of data points used in the
regression.

To calculate By, the equation on the right hand
side in (4) should be used. In order to minimise roun-
ding errors, either a large number of significant figures
(e.g. » 10) should be used or the division operation
should be performed last.

Once the regression line was fitted to the calibra-
tion sample data, for external calibration the regres-
sion model was used to find the concentration Y, of
the sample solution based on the corrected cps X, in
the sample, using equation (3).

For standard addition, the y intercept of the regression
line (where the line crosses the y-axis, B,) is the negative of
the unspiked sample concentration for the element of interest.

The Joumal of Geostandards and
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After unknown sample concentrations were deter-
mined using the regression, the concentrations were
corrected for the dilution factor (weight of solution/
weight of sample) used during sample preparation.
That is, the dilution factor multiplied by the sample solu-
tion concentration (Y}) gave the actual (rock) concentra-
tions of the element in the original sample.

Comparison of errors

Every regression model has an uncertainty estimate
component that is a function of how well the regres-
sion line fits the data. If the regression line were a poor
fit, it would result in @ large uncertainty estimate com-
ponent. Methods 1 and 2 make the assumption that
there is a negligible uncertainty estimate component
associated with the regression model; whether the
regression line is a good or a poor fit to the data is
not taken into account in the final uncertainty estimate
reported. Therefore, the reader has incomplete infor-
mation and cannot judge the true magnitude of the
uncertainty estimates presented with the final data
produced by these methods.

While the assumption that the uncertainty estimate
component caused by the regression model is negli-
gible may be valid for higher concentrations (ie, ng g-!
rock concentrations), it is not valid for lower concentra-
tions that approach the detection limits (ie, low- to
sub-ng g rock concentrations). At these lower concen-
trations the uncertainty estimate component of the
regression model is as large a factor as the uncertainty
estimate component of the raw data. Therefore, it is
imperative to include this in the uncertainty estimate
reported on the final concentrations, since it allows the
reader a more complete evaluation of the total error
associated with the data.

Calculating the uncertainty estimate from a
regression model involves just two equations (6 and 7,
below) that use information already calculated in
determining the regression through the calibration
data. Method 3 is the most simple, yet the most
complete of the three methods, for the uncertainty
estimate calculation for the mathematical manipulation
of the raw data.

The uncertainty estimate on each value of Y, (the
calculated sample solution concentration) is determi-
ned by method 3 from the regression and is usually
expressed in the form of a 1-a confidence interval
using equation (6):
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Yhxet(1-%n-2)s(Yy) (6)
2

where
t(1-%n-2)
2

is the t value from a Student's t distribution with n-2
degrees of freedom and s(Y) is the calculated stan-
dard deviation for the value Y|, which is calculated
using equation (7):

%X |

Mse| L+ 7)

2
s (Yi) = 4 —
z{xi-x)J

where MSE (the mean square error)

_IY - Bo Y- B EXY,
n-2

For example, o 95% confidence interval would
give an a. = 0.05 so

t(1-%n-2)
2

would require a t value from the t table of t (0.975;
n-2). Also, n-2 degrees of freedom are used because
the sample concentration Y, and the standard
deviation s(Y,) have been estimated, thus reducing
n degrees of freedom to n-2.

As the Student's t distribution is dependent on the
degree of freedom, increasing the number of calibra-
tion samples (external calibration) or the number of
aliquots (standard oddition) will, in general, decrease
(i.e, improve) the size of the confidence interval.
Conversely, the size of the confidence interval will
increase with increasing distance from the mean of the
regression line (ie, concentrations on the ends of the
regression line will have larger uncertainty estimates
than concentrations from the middle of the regression
line - see Figures 1c and 1f). Therefore, the greatest
number of calibration samples that is feasible and that
spans the concentration range of interest, should be
run to minimise the confidence interval size.

Errors calculated by methods 1, 2, and 3 for a
basalt sample (SGB-25 from the Ontong Java Plateau)
are presented in Table 1 for external calibration and
in Table 2 for standard addition. The concentration
data were averaged from multiple analyses (six for
external calibration and twenty one for standard addi-
tion), but the uncertainty estimates were calculated for



Table 1.
External calibration data for Ontong Java
Plateau basalt SGB-25 from the southwest Pacific
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Element Concentration Method 1 error Method 2 error Method 3 error
102Ry 0.33 0.35 0.04 072
103Rh bdl 0.37 0.03 078
105pd 3.88 0.29 0.05 0.44
193)r 3.88* 0.26 0.14 0.14
195py 12.3* 0.62 0.55 0.27

Six analyses were used to the

ation data. Errors are calculated for a single representative

analysis by data reduction methods: (1) Carrying standard deviations of raw data through the data reduction;

(2) Calculating each powder replicate conc
and (3) Error from regression model. All units are ng g-'.

ddis

ltad

1 ! t of the standard
for a full discussion.

in the de techniq

Table 2.
Standard addition data for Ontong Java
Plateau basalt SGB-25 from the southwest Pacific

bdl
Mote: These concentrations are due to oxide polyatomic interferences of Hf on these elements, which
for these samples. See Ely et al. (1999)

P ly and determini

al_l_l_l-n

below detection limit.

Element Concentration Method 1 error Method 2 error Method 3 error
102Ry 0.75 0.83 0.08 012

103Rh 0.22 0.72 0.05 0.16

105pd 6.44 0.67 0.66 1.22

191y 0.22 0.14 0.06 on

198py 586 1.86 0.58 0.98

Twenty one analyses were used to caleulate the values. Errars are calculated for a single

representative analysis by data reduction methods: (1) Carrying slundurd dev!uﬁanl of raw data through the

data reduction; (2) Caleulating each p plicate ¢

deviation; and (3) Error from regr\ession model. All units are ng g-\.

a single representative analysis to demonstrate the dif-
ferences between the methods. The standard addition
concentration data more accurately reflect the true
concentrations of SGB-25, because standard addition
is less subject to interferences, is overall more precise
and has o greater number of analyses relative to
external calibration (i.e, better statistics). As seen in
both Tables 1 and 2, method 2 generally gives the
smallest uncertainty estimates. This is not surprising
because this method does not include any uncertainty
estimate component from the regression model and
only accounts for the variation in the final concentra-
fions. The calculated uncertainty is, therefore, not a true
reflection of the total uncertainty.

Method 1 produces smaller uncertainty estimates
for Ru, Rh, and Pd in Table 1 (external calibration), but
this shows that the regression model in method 3 used
to calculate uncertainty estimates was a worse fit,
resulting in larger uncertainty estimates than for the
regression model used for Ir and Pt. Method 1 does
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not give the reader any indication of the poor fit of the
regression model used to calculate Ru, Rh and Pd.

The fit of the regression model for the standard
addition samples in Table 2 is critical since the
concentration value is given by the y intercept. For
standard addition, the uncertainty estimate component
of the regression model is crucial for the magnitude of
the uncertainty estimates on the final data. Uncertainty
estimates from method 1 are larger than those for
method 3 in Table 2 for Ru, Rh, Ir and Pt. This indicates
that method 1 would give a false sense of larger
uncertainty in the final data than is truly there, since
method 3 demonstrates that the regression fits for
these elements were good. Only Pd gives an uncer-
tainty estimate in method 3 larger than using method
1. Therefore, method 3 includes the uncerfainty estimate
component from the regression model and, as such,
gives a more complete representation of the uncertainty
estimates of the final concentrations, which is critical for
standard addition data.

The Joumal of Geostandards and Geoanalysis



10
k
a
o "-_
:_g %
o
4
5
£
£ 04
E
£ kY _1" B SGB-25 (External Callbration)
.3 ‘,-’ ~~~~~ Method 1 Error
1 4 == Method 2 Error
\'\ ,o"' ===+ Method 3 Error
10 W x
B SGB-25 (Standard Addition)
-------- Method 1 Error
<=~ Method 2 Error
o «=== Method 3 Error
8
e 1
g
$
5
E
$ 0.4
E
T
0.01
Rh

The Joumal of Geostandards and Geoanalysis

Pt Pd

Ir Ru

Figure 2. Primitive mantle-normalized PGE patterns for SGB-25,
comparing uncertainty estimates from methods 1, 2 and 3.

(a) External calibration PGE data with methods 1, 2 and 3
uncertainty estimates shown as fields. Note the exceedingly small
(and incomplete) uncertainty estimates produced by method 2.

(b) Standard addition PGE data with methods 1, 2 and 3
uncertainty estimates shown as fields. Primitive mantle PGE
abundances are from McDonough and Sun (1995).

Summary and conclusions

McDonald (1998) demonstrated the problems
inherent in uncertainty estimation in current PGE litera-
ture data. Random errors and non-representative ana-
lyses due to heterogeneous distribution of PGEs in the
sample (i.e, the “nugget effect’) can be minimised
using the sampling protocol of Ely et al. (1999).
Existing indirect methods of precision estimation are
difficult to apply due fo problems in determining how
accurately they represent the uncertainty of the data.
Direct methods via duplicate analyses provide the best
method to estimate uncertainty. However, mathematical
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manipulation of the raw data te final concentrations
introduces an additional uncertainty component to the
data that is often ignored. This uncertainty component
becomes more significant at lower concentrations (low-
to sub-ng g} that approach instrument detection limits.

The data reduction method described here provides
a simple way to apply internal standards for drift cor-
rection and to use a linear least squares regression
model fo calculate concentration data produced by the
ICP-MS. Ideally, all possible sources of uncertainty
should be included in any analysis of raw data, inclu-
ding uncertainty from the data reduction method itself;
methods 1 and 2, described above, do not account for
this uncerfainty. Method 3, which calculates 95% confi-
dence intervals from the regression model, does include
uncertainty caused by the regression model itself and is
the method used to reduce PGE data from the
University of Notre Dame ICP-MS laboratory. The
method is illustrated in Figure 1c (for external calibra-
tion) and Figure 1f (for standard addition) and alse in
Figure 2. Method 3 gives the reader a more compre-
hensive assessment of the uncertainty estimates of the
calculoted concentrations. Furthermore, these uncertainty
estimates are relatively simple fo calculate. This data
reduction method provides a coherent, reproducible
way to reduce and interpret ICP-MS data and can be
applied to other analytical techniques (e.g., atomic
absorption spectroscopy), where drift corrections and
regression models are used to calculate concentration data,
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