Exploring the Complexities of the Serenitatis Basin: Breccia Clasts from Apollo 17

CLIVE R. NEAL
Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0767

AND LAWRENCE A. TAYLOR
Planetary Geosciences Institute, Department of Geological Sciences, University of Tennessee, Knoxville, Tennessee 37996-1410

Abstract

Thirteen new breccia clasts of highland lithologies are described from the Apollo 17 site. The clasts were extracted from three breccias: two from sample 73215 (aphanitic impact melt breccia), six from 73216 (impact melt breccia), and five from 77035 (micropoikilitic impact melt breccia). Breccias 73215 and 73216 were collected from the rim of a 10 m crater at Station 3 and breccia 77035 was collected at Station 7 at the base of the North Massif. The clasts are subdivided into melt-free and melt-rich groups. The melt-free clasts include pristine and brecciated lithologies, with one pristine gabbro-monzonitic anorthosite containing 15 ppb Ir. The melt-rich clasts have compositions that are similar to LKFM, rather than to Apollo 17 KREEP basalts described as clasts from breccia 72275 by Salpas et al. (1987). Three main conclusions are drawn from this study: (1) the presence of 15 ppb Ir in a pristine gabbro-monzonitic anorthosite further demonstrates the complexities associated with estimating the highly siderophile element content of the lunar crust and siderophile element abundances cannot be used in isolation to demonstrate pristine (or lack thereof); (2) the KREEP basalts from breccia 72275 probably are not indigenous to the Serenitatis Basin and were transported to the Apollo 17 site by impact processes. Apollo 17 KREEP is in reality LKFM in composition; and (3) the "cryptic" component required to define KREEPy LKFM impact compositions probably will never be defined mineralogically. This component was derived from the final liquid to crystallize from fractional crystallization of either an Mg-suite platon or the lunar magma ocean. Consequently, this component will easily melt when disrupted by large impacts and now is present as glass in breccia matrixes and/or as grain boundary films.

Introduction

In most models of lunar evolution, the highlands region represents ancient plagioclase-flotation cumulate crust from the lunar magma ocean (LMO), with complementary mafic cumulates forming the mantle (e.g., Smith et al., 1970; Taylor and Jakos, 1974; Warren, 1985). The lack of atmosphere and water on the Moon means chemical weathering of these ancient samples is nonexistent, but they have been exposed to meteorite bombardment that has mechanically mixed, brecciated, metamorphosed, and melted the highlands. Although this bombardment may have been most intense early in the history of the Moon (e.g., Ryder, 1990) and has since tailed off in magnitude since ~3.8 to 3.9 Ga, such meteorite impacts have at least partially obscured our view of the early lunar crust. However, within the returned sample collection, the study of highlands lithologies has revealed important information about impact processes as well as early crustal formation and processes (e.g., Warren et al., 1991).

The focus of this paper is on clasts extracted from three Apollo 17 breccias—samples 73215 (aphanitic impact melt breccia), 73216 (impact melt breccia), and 77035 (micropoikilitic impact melt breccia). It examines a suite of clasts extracted from Apollo 17 breccias to examine both monomict pristine and polymict clasts in order to further explore the geology of the Apollo 17 site. Breccias 73215 and 73216 were collected from the rim of a crater of 10 m diameter at Station 3, and both are impact-melt breccias with entrained lithic clasts. Breccia 77035 was collected at Station 7 at the base of the North Massif, and is a micropoikilitic impact-melt breccia that has partially dissolved the original clasts or welded them into a recrystallized matrix. This has
produced a very tough rock, from which the entrained clasts are difficult to extract. Previous work on Apollo 17 breccias demonstrated the importance of such studies in enhancing our knowledge of lunar rock types and processes. For example, consortium studies of breccias 73215 and 73255 noted the existence of felsites and high-alumina, VLT-type mare basalts at the Apollo 17 site (e.g., James et al., 1975; Ryder et al., 1975; James and Hammarstrom, 1977; Blanchard et al., 1977; Blanchard and Budahn, 1979; James and McGee, 1980). Although ferroan anorthosite (FAN) lithologies are present in the Apollo 17 highlands (Laul et al., 1989; Warren et al., 1991), the predominance of Mg-suite over ferroan lithologies around the Serenitatis Basin has been documented (e.g., Warren et al., 1987; Salpas et al., 1988).

Petrography and Mineral Chemistry

A total of 13 clasts were extracted from the three breccias—2 from 73215, 5 from 73216, and 6 from 77035. Petrographic observations of the 13 Apollo 17 highland clasts were made using standard techniques, and initial results of our study were reported by Neal et al. (1990b) and Eckert et al. (1991a, 1991b, 1991c). It should be noted that traditional metamorphic terminology often is used to describe these samples in order to convey a sense of texture, not paragenesis. In some cases, three sections are available for certain clasts: one was made at the University of Tennessee and is a thick section, one thin section was made at the Johnson Space Center (JSC) from material not used for instrumental neutron activation analysis (INAA), and another was also made at JSC from the INAA sample itself. The thin sections made from INAA samples are suffixed with the notation “700X.” Table 1 correlates these numbers in order to identify sections from individual samples when different facets of their petrology are discussed.

Chemical compositions of the individual minerals were determined with a Cameca SX-50 electron microprobe at the University of Tennessee. Operating conditions were 15 kV accelerating voltage, 100 μA filament current, and beam currents of 20 nA for feldspars using a slightly defocused beam, and 30 nA for other phases. Usually counting times were 20 seconds on peak and 20 seconds total on background.

Table 1. Subsample Numbers for Analyzed Clasts

<table>
<thead>
<tr>
<th>Breccia</th>
<th>Probe mount</th>
<th>Thin section</th>
<th>INAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>73215</td>
<td>.534</td>
<td>.562</td>
<td>.7001</td>
</tr>
<tr>
<td>73215</td>
<td>.539</td>
<td>.563</td>
<td>.7002</td>
</tr>
<tr>
<td>73216</td>
<td>.36</td>
<td>.61</td>
<td>.7001</td>
</tr>
<tr>
<td>73216</td>
<td>.38</td>
<td>.62</td>
<td>.7002</td>
</tr>
<tr>
<td>73216</td>
<td>.42</td>
<td>.63</td>
<td>.7003</td>
</tr>
<tr>
<td>73216</td>
<td>.49</td>
<td>.64</td>
<td>.7004</td>
</tr>
<tr>
<td>73216</td>
<td>.57</td>
<td>.65</td>
<td>.7005</td>
</tr>
<tr>
<td>77035</td>
<td>.172</td>
<td>.7001</td>
<td>.7001</td>
</tr>
<tr>
<td>77035</td>
<td>.185</td>
<td>.221</td>
<td>.7002</td>
</tr>
<tr>
<td>77035</td>
<td>.200</td>
<td>.7003</td>
<td>.7003</td>
</tr>
<tr>
<td>77035</td>
<td>.201</td>
<td>.7004</td>
<td>.7004</td>
</tr>
<tr>
<td>77035</td>
<td>.206</td>
<td>.7005</td>
<td>.7005</td>
</tr>
<tr>
<td>77035</td>
<td>.227</td>
<td>.7006</td>
<td>.7006</td>
</tr>
</tbody>
</table>

_Brevia 73215:

73215.534/.562/.7001. This subsample is composed of a granulite clast and dark breccia material. The lighter material represents the plagioclase-rich granulite clast, whereas the darker material is mainly very fine grained (<0.01 mm) breccia matrix. The dark breccia exhibits a general cataclastic texture with a bimodal size distribution. Larger subangular clasts of spinel (0.04–0.12 mm; Mg# = 76–85, 100*(Cr/(Cr+Al)) = 9–11), olivine (0.07–0.66 mm; Fo04–02), low-Ca pyroxene (~0.13 mm; it is enstatite in composition [Wo3,5]), but is relatively Fe rich [Mg# = 44–46]), and plagioclase (0.1–0.3 mm; An91–96) grains are set in a fine-grained, granoblastic groundmass (≤0.02 mm) of predominantly plagioclase with minor low-Ca pyroxene and minor glass, producing a porphyroblastic texture. The granulite clast is mineralogically a troctolitic anorthosite dominated by polygonized plagioclase, forming a granoblastic matrix (generally 0.05 mm); some plagioclase clasts reach 0.5 mm in diameter. Olivines “porphyroblasts” (up to 0.5 mm) appear to be reacting with the plagioclase-rich matrix, but smaller olivines (<0.02 mm) appear to..."
be in equilibrium with plagioclase. Homogeneous, Ca-rich pyroxene (Wo42-44; Mg# = 60–62) is present, but no orthopyroxene was found.

73215.539/563/7002. The thin section made from the INAA sample consists of a myriad of tiny (≤0.05 mm) grains, primarily forsterite-rich olivine (up to 0.25 mm, but generally ≤0.05 mm), which has a much more restricted range than in the previous two sections (Fo30–42), with significant pyroxene and plagioclase (An01–93). The modal mineralogy (see below) indicates that this material is transitional between a dunite and a troctolite. Unlike sections 539 and 563, both orthopyroxene (Wo17–35; Mg# = 92–93) and clinopyroxene (Wo40–47; Mg# = 94–95) are present as minor, discrete grains that display little core-to-rim zonation. Rare Fe-Ni metal also is present (≤0.005 mm). There is no texture, as the “clast” has disaggregated.

Breccia 73216

73216.36/61/7001. This is mineralogically a gabbronitrite anorthosite containing interlocking plagioclase (An37–93), and low- and high-Ca pyroxene (≤0.4 mm; for Wo41–5; Mg# = 73–78 and for Wo39–40; Mg# = 72–78, respectively) in an apparent cumulate texture, with some recrystallized zones evident by triple junctions. Necklaces of olivine (Fo91–92) and pyroxene inclusions (individual grains ≤0.005 mm) are present in some of the larger plagioclase grains. Disruption of some plagioclase twin lamellae suggests that this clast experienced mild deformation. In the section made from the INAA sample, chips of breccia matrix exhibiting a cataclastic to annealed texture are also present. These breccia chips have a bimodal grain size and an almost porphyroblastic texture, with larger clasts of plagioclase, olivine, and skeletal ilmenite reaching 0.2 mm.

73216.38/62/7002. This is a highly brecciated/recrystallized anorthositic gabbronitrite with a general annealed granulitic to granoblastic/porphyroblastic texture and a groundmass grain size of ≤0.02 mm. The granulite clast is composed primarily of plagioclase (up to 1.5 mm, but usually ≤0.3 mm with intergrain variation of An35–43), Mafic minerals are more abundant toward the edges of this clast. Olivine (Fo90–92), orthopyroxene (Wo41–5; Mg# = 74–79) and clinopyroxene (Wo29–39; Mg# = 75–79) rarely reach 0.25 mm and are usually ≤0.04 mm. Matrix material is predominantly plagioclase with subordinate olivine and pyroxene. Devitrified impact melt permeates the breccia matrix and corrodes the larger, predominantly plagioclase crystals.

73216.42/63/7003. This is a devitrified impact melt made up predominantly of acicular plagioclase crystals forming a variolitic texture. The radiating plagioclase masses reach 0.2 mm in diameter. Rare plagioclase grains exhibit slight core-to-rim zonation (An91 to An97), and the overall inter-grain variation is An95–94. Ilmenite reaches 0.5 mm in length, although smaller (0.04–0.1 mm) ilmenites are more abundant, and contain rutile and spinel exsolution features. The larger ilmenites tend to cut across the variolitic plagioclase, and armalcolite (≤0.18 mm) forms the cores to these grains. Ilmenite and armalcolite possess relatively high Mg#s (23–31 and 45–48, respectively). Pyroxene and olivine occur as discrete grains (up to 0.25 mm) or as necklaces up to 1.5 mm long composed of small (≤0.05 mm) grains. Both low- and high-Ca pyroxenes are present. Low-Ca pyroxene is enstatitic (Wo41–5) and high-Ca pyroxene is augite (Wo94–97; both have similar Mg#s (74–77 and 77–78, respectively) (Table 1). Olivine (Fo90–92) forms ≤0.005 mm cores to some of the larger pyroxenes, but also occurs as small (≤0.02 μm), round, discrete grains; a small inclusion in ilmenite has a slightly more forsteritic composition of Fo53–79.

73216.49/7004. This is a recrystallized norite with a cataclastic to granoblastic-annealed texture. The thin section made from the INAA sample contains nine chips ranging from polygonal plagioclase to granulitic and cataclastic breccia. Two chips are comprised entirely of polygonal plagioclase, with individual grains reaching 0.5 mm. Some of this material adheres to a breccia chip. Plagioclase exhibits discontinuous core-to-rim zonation (cores = An90–95; rims = An94–94), and strained extinction. The breccia has an overall granoblastic to granulitic texture with porphyroblasts of plagioclase, skeletal ilmenite, and low-Ca pyroxene (0.2–0.5 mm). Impact melt permeates the breccia matrix and clast. This melt has devitrified, yielding predominantly variolitic plagioclase with subordinate ilmenite (Mg# = 21–31) and armalcolite (Mg# = 46–59) (all are ≤0.01 mm). Semi-opaque glassy areas still are present, but never exceed 1 mm.

73216.57/65/7005. This is a gabbronitrite
anorthosite exhibiting a striking orthocumulate texture with intercumulus pyroxenes (up to 0.8 mm) set in cumulus plagioclase. Cumulus plagioclase ranges from subequant grains (1.06–1.55 mm) to laths (0.12–0.35 mm). It exhibits slight discontinuous core-to-rim zonation from cores of An$_{93}$ to rims of An$_{99}$. No olivine was observed. Both high-Ca (0.75 mm; Wo$_{92-94}$, Mg# = 78–79) and low-Ca pyroxene masses (~0.2–0.3 mm; Wo$_{4-5}$, Mg# = 75–76) are present. Euhedral lamellae are abundant in the pyroxenes, indicating a slow cooling formational environment. The texture indicates that the initial accumulation of plagioclase was followed by crystallization of intercumulus pyroxenes, late-stage metal, and ilmenite.

Breccia 77035

77035,1727,7001. This is a dunitic with the section made from the INAA sample containing six olivine grains of homogeneous composition (Fo$_{93-95}$), although discontinuous rims (~30–50 μm) of Fo$_{90}$ are present on two of the crystals. No adhering breccia matrix is present in this section, although there is in 1.72. The breccia matrix is cataclastic to granoblastic and is plagioclase and ilmenite rich; subordinate olivine and pyroxene also are present. With matrix grain sizes up to 0.05 mm. Porphyroblasts of plagioclase (up to 0.4 mm) are present. The olivine clast has small (~5 μm) spinel inclusions.

77035,1851,2217,7002. This clast is of an impact melt containing primarily opaque impact glass, which are grains of fractured and partially annealed, essentially homogeneous plagioclase (An$_{92-94}$) and orthopyroxene grains (Wo$_{4-5}$; Mg# = 78–79). The general texture is cataclastic, bordering upon vitrophyric. Plagioclase and orthopyroxene reach 0.5 mm. The larger plagioclase crystals are disintegrating and appear to be partly assimilated by the glass. The larger pyroxene grains exhibit a reaction rim.

77035,2002,7003. The thin section made from the INAA sample contains no adhering breccia matrix. This sample is a gabbroic anorthosite clast consisting of equigranular (0.4 mm) polygonal plagioclase (An$_{95-97}$) in a granoblastic texture. Grain boundaries are curved and meet at triple junctions. Minor olivine (up to 0.2 mm; Fo$_{90-78}$), clinopyroxene (0.6 mm; Wo$_{42-44}$; Mg# = 77–79), and orthopyroxene (0.2 mm; Wo$_{4-2}$; Mg# = 79–83) are present, but the section is dominated by plagioclase (>80%). Small (<0.01 mm) mafic mineral inclusions are present in plagioclase, and one, possibly two, fractured zircons (~0.05 mm in length) are present along the grain boundaries of plagioclase. Two areas within this clast exhibit melting and brecciation features.

77035,2017,7004. This clay is a heavily brecciated gabbronorite anorthosite that has been welded together by an opaque glass. The glass occurs in veins through the clast (~0.05 mm wide) and is ubiquitous along grain boundaries. The clast contains predominantly plagioclase (up to 0.8 mm; An$_{95-96}$), ilmenite (up to 0.2 mm; Mg# = 19–23), and pyroxene (up to 0.5 mm; zonations from pigeonite cores [Wo$_{13}$; Mg# = 74] to augite rims [Wo$_{43}$; Mg# = 79]). Olivine (Fo$_{90-70}$) forms a relatively minor phase and never exceeds 0.1 mm.

77035,206. An overall cataclastic to annealed texture is evident in this anorthositic gabbronorite, with porphyroblasts of plagioclase (An$_{92-94}$) grains (up to 0.9 mm) set in a recrystallized, granoblastic to granulitic matrix (<0.1 mm) dominated by plagioclase of the same composition. Several pyroxene porphyroblasts appear to contain minute whitlockite inclusions (<0.005 mm). Low-Ca pyroxene (<1.0 mm; Wo$_{4}$, Mg# = 76), high-Ca pyroxene (Wo$_{47-30}$; Mg# = 77–79), olivine (<0.05 mm; Fo$_{71-72}$), ilmenite (<0.05 mm; Mg# = 19–25; MgO = 5–6 wt%), and Fe-Ni metal (<0.05 mm) are also present within and distributed throughout the matrix.

77035,227. The general texture of this devitrified impact melt is equigranular to sub-variolitic. Relics xenocrysts of subrounded plagioclase (up to 0.45 mm) and low-Ca pyroxene (up to 0.14 mm) are present in a recrystallized matrix (<0.1 mm) of plagioclase (An$_{70-90}$), olivine (Fo$_{70-71}$), low-Ca pyroxene (Wo$_{3-4}$; Mg# = 70–81), ilmenite (Mg# = 18–20), Fe-Ni metal, and troilite.

Whole-Rock Chemistry

Whole-rock compositions were determined by instrumental neutron activation analysis at Oregon State University (see Hughes et al., 1983 for analytical details). The largest possible sample weights were used for INAA in order to obtain a representative analysis for each clast. Compositions are presented in Table 2 along with the relative uncertainties associated with the analyses. Chondrite-normalized profiles are used to repre-
<table>
<thead>
<tr>
<th>Clast no.</th>
<th>Olivine</th>
<th>Plag.</th>
<th>Low-Ca Px</th>
<th>High-Ca Px</th>
<th>Ilm.</th>
<th>Anomal.</th>
<th>Spinel</th>
<th>Metal Ni/Co</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mg#</td>
<td>Mg#</td>
<td></td>
<td></td>
<td></td>
<td>Ni/Co</td>
</tr>
<tr>
<td>534</td>
<td>89-92</td>
<td>91-96</td>
<td>3-5</td>
<td>42-44</td>
<td>44-46</td>
<td>40-42</td>
<td>34-35</td>
<td>56-59</td>
</tr>
<tr>
<td>73215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>74-92</td>
<td>90-97</td>
<td>1-8</td>
<td>68-88</td>
<td>71-93</td>
<td>40-47</td>
<td>53-55</td>
<td>93-95</td>
</tr>
<tr>
<td>73216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>91-92</td>
<td>87-95</td>
<td>4-5</td>
<td>70-72</td>
<td>73-78</td>
<td>39-39</td>
<td>47-48</td>
<td>72-78</td>
</tr>
<tr>
<td>77035</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>69-75</td>
<td>83-95</td>
<td>4-5</td>
<td>70-74</td>
<td>74-79</td>
<td>29-39</td>
<td>47-53</td>
<td>75-79</td>
</tr>
<tr>
<td>9-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>66-74</td>
<td>78-93</td>
<td>4-5</td>
<td>71-74</td>
<td>74-77</td>
<td>39-40</td>
<td>46-48</td>
<td>77-78</td>
</tr>
<tr>
<td>9-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>68-70</td>
<td>83-96</td>
<td>4-5</td>
<td>70-75</td>
<td>74-79</td>
<td>39-40</td>
<td>46-47</td>
<td>77-81</td>
</tr>
<tr>
<td>46-59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>93-98</td>
<td>4-5</td>
<td>71-73</td>
<td>75-76</td>
<td>78-79</td>
<td>39-41</td>
<td>46-47</td>
<td>78-79</td>
</tr>
<tr>
<td>12-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>89-89</td>
<td></td>
<td>3-5</td>
<td>74-76</td>
<td>78-79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>92-94</td>
<td>3-5</td>
<td>74-76</td>
<td>78-79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>69-73</td>
<td>85-91</td>
<td>3-5</td>
<td>65-76</td>
<td>68-78</td>
<td>27-36</td>
<td>49-58</td>
<td>77-82</td>
</tr>
<tr>
<td>19-23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>68-70</td>
<td>93-96</td>
<td>3-5</td>
<td>65-76</td>
<td>68-78</td>
<td>27-36</td>
<td>49-58</td>
<td>77-82</td>
</tr>
<tr>
<td>19-25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>71-74</td>
<td>93-96</td>
<td>4-5</td>
<td>73-76</td>
<td>76</td>
<td>37-39</td>
<td>47-49</td>
<td>77-79</td>
</tr>
<tr>
<td>18-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>70-74</td>
<td>76-96</td>
<td>3-6</td>
<td>67-78</td>
<td>70-81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sent the trace-element data of these clasts and to compare them to Apollo 17 KREEP (Salpas et al., 1987) and Apollo 17 highlands lithologies (72415/7 dunite [Laul and Schmit, 1975; Ryder, 1992], 77215 Mg-norite [Winzer et al., 1974, 1975], 76355 Mg-troctolite [Rhodes et al., 1974; Haskin et al., 1974; Weisemann and Hubbard, 1975]). Furthermore, the clasts studied here have been subdivided into two groups—those that contain or are impact melts, and those that essentially are melt free.

A word of caution is warranted regarding the Hf and Au abundances. Determinations for Hf by INAA are very precise (generally 2 to 10%). All analyzed clasts display positive Hf anomalies when normalized to chondritic meteorites, but this anomaly is not present in the data of other Apollo 17 samples used for comparison, suggesting that these data should be viewed as an upper limit for Hf concentrations. Gold has been detected in all clasts analyzed, whereas Ir has been found only in three. The sensitivity for Ir generally is the same as for Au when analyzed by INAA (see Table 3). Two possibilities exist for the occurrence of Au in these samples: (1) contamination, or (2) the correction on the 412 keV peak of Au was not made from the 411 keV peak of Eu. Although the “rough pickings” were performed at the University of Tennessee, every effort was made to ensure that contamination was averted. Picking was conducted using plastic tongs and spatulas in a clean area; analysts removed all jewelry and washed their hands prior to handling the samples. It is not known if the required correction was made to the INAA data. The conclusion that we will make is that the reported gold abundances probably are not indigenous to the samples.

Melt-free clasts

Seven of the 13 clasts studied are essentially free of injected melt although several have been brecciated; 77035,229,2009,7003) contains melt that appears to be derived from the clast itself. Major-element abundances are generally similar to those of the clasts containing impact melts, but they have generally lower K2O abundances (Figs. 1A and 1B: Table 3). Two of these clasts have high MgO contents—73215,580 (5.39/5,633,7002) at 40.8 wt% and 77035,226 (1.72,7001) at 49 wt%. These MgO-rich clasts have the lowest Na, K, Ca, and Al contents of the clasts analyzed (Ti was below detection limit) in each case. The remaining clasts are Al rich, containing 23 wt% Al2O3.

Trace-element chemistry of the melt-free clasts is variable, as expected from the petrography. The two “dunites” have higher abundances of incompatible trace elements (ITEs) and lower compatible-trace-element abundances than the Apollo dunite 72415 (Fig. 2A). Dunite 77035,226 generally follows the profile for the Mg-rich troctolite 76355 (Fig. 2A), but displays a large negative Eu anomaly [(Eu/Eu*)N = 0.05]. Positive anomalies at Ta and Hf (however, see above) are present in this sample and the heavy rare-earth elements are elevated relative to 76355. Dunite 73215,580 has a similar pattern to 77035,206, although the negative Eu anomaly is not as pronounced [(Eu/Eu*)N = 0.51].

Gabbroanoritic anorthosite 73216,66 (.36,61,7001) possesses a chondrite-normalized trace-element profile very similar to the Mg-rich norite 77215 (Fig. 2B), even though breccia matrix was seen in the thin section prepared from the INAA sample (73216,7001). Gabbroanoritic anorthosite 73216,70 (.57,65,7005), anorthositic gabbroanorite 77035,206 (.206), and gabbroic anorthosite 77035,229 (.2001,7003) have similar chondrite-normalized trace-element profiles that are parallel to .66 with overall lower abundances. The final clast in this group is that of granulitic clast 73215,579 (.34,562,7001), which has essentially the same trace-element abundances and chondrite-normalized trace-element profile as that of Mg-rich troctolite 76355 (Fig. 2B). Iridium was only detected in two samples—73216,70 (.57,65,7005) and 77035,206 (.206). The presence of 15 ppb Ir in 73216,70 is surprising, inasmuch as the clast exhibits a striking cumulate texture, and no adhering breccia matrix was observed in the thin section made from the INAA sample. 77036,206 contains 0.37 ppb Ir, but has an overall granoblastic to granulitic texture, indicative of disruption by meteorite impact.

Melt-rich clasts

Six of the 13 clasts studied are either impact melts (73216,68: 77035,227; 77035,228) or contain melt of presumed impact origin as crosscutting veins (73216,67: 73216,69; 77035,230). Five of these clasts contain the highest K2O abundances (0.24 to 0.39 wt%) of the clasts analyzed (Fig. 1E: Table 3), and four have the highest TiO2
<table>
<thead>
<tr>
<th>Brecchia</th>
<th>73215</th>
<th>77035</th>
<th>73215</th>
<th>77035</th>
<th>73216</th>
<th>73216</th>
<th>73216</th>
<th>73216</th>
<th>77035</th>
</tr>
</thead>
<tbody>
<tr>
<td>INAA no.:</td>
<td>.579</td>
<td>.206</td>
<td>.580</td>
<td>.226</td>
<td>.66</td>
<td>.70</td>
<td>.229</td>
<td>.230</td>
<td></td>
</tr>
<tr>
<td>Section no.:</td>
<td>.534,562</td>
<td>.206</td>
<td>.539,563</td>
<td>.172</td>
<td>.366,61</td>
<td>.577,65</td>
<td>.200</td>
<td>.201</td>
<td></td>
</tr>
<tr>
<td>Weight (mg):</td>
<td>30.0</td>
<td>68.4</td>
<td>43.4</td>
<td>27.2</td>
<td>27.5</td>
<td>72.9</td>
<td>19.3</td>
<td>13.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TiO_2</th>
<th>n.d.</th>
<th>0.22</th>
<th>n.d.</th>
<th>n.d.</th>
<th>0.66</th>
<th>0.23</th>
<th>0.69</th>
<th>0.68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_2O_3</td>
<td>28.1</td>
<td>23.9</td>
<td>6.12</td>
<td>0.28</td>
<td>28.2</td>
<td>27.7</td>
<td>27.1</td>
<td>32.1</td>
</tr>
<tr>
<td>FeO</td>
<td>2.13</td>
<td>3.80</td>
<td>8.70</td>
<td>11.0</td>
<td>3.40</td>
<td>2.67</td>
<td>3.9</td>
<td>2.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.03</td>
<td>0.07</td>
<td>0.09</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>MgO</td>
<td>9.40</td>
<td>7.90</td>
<td>40.8</td>
<td>49.0</td>
<td>3.3</td>
<td>4.2</td>
<td>5.9</td>
<td>4.8</td>
</tr>
<tr>
<td>CaO</td>
<td>14.2</td>
<td>14.6</td>
<td>3.4</td>
<td>n.d.</td>
<td>15.9</td>
<td>17.5</td>
<td>14.2</td>
<td>10.2</td>
</tr>
<tr>
<td>Na_2O</td>
<td>0.40</td>
<td>0.43</td>
<td>0.53</td>
<td>0.02</td>
<td>0.64</td>
<td>0.39</td>
<td>1.21</td>
<td>0.55</td>
</tr>
<tr>
<td>K_2O</td>
<td>0.05</td>
<td>0.08</td>
<td>0.03</td>
<td>n.d.</td>
<td>0.14</td>
<td>0.03</td>
<td>0.18</td>
<td>0.32</td>
</tr>
<tr>
<td>Mg#</td>
<td>89</td>
<td>71</td>
<td>34</td>
<td>89</td>
<td>63</td>
<td>74</td>
<td>73</td>
<td>81</td>
</tr>
</tbody>
</table>

Sc	2.9	9.4	3.4	3.6	5.6	8.9	5.3	3.0	5.0
V	28	29	27	25	25	25	15	17	19
Cr	2080	810	1010	510	660	390	440	300	
Co	13.1	41	55	62	20.1	5.8	5.8	4.3	
Ni	120	560	120	110	170	60	n.d.	35	
Sr	180	180	110	110	170	80	140	200	
Ba	28	110	52	n.d.	n.d.	40	130	240	
La	1.69	5.1	3.4	1.28	13.1	4.3	4.5	18.1	
Ce	3.9	14.1	9.8	3.5	35	11.1	11.3	47	
Nd	n.d.	7.5	4.9	3.4	19	6.8	6.7	29	
Sm	0.83	2.17	1.61	1.38	5.8	1.98	1.81	7.7	
Eu	0.7	0.96	0.28	0.026	1.49	1.18	3.19	1.58	
Th	0.19	0.59	0.32	0.3	1.22	0.45	0.38	1.6	
Dy	0.98	3.1	2.4	1.8	7.5	2.8	2.7	11	
Yb	0.5	2.12	1.18	1.18	4	1.55	1.09	4.8	
Lu	0.073	0.31	0.174	0.2	0.53	0.23	0.16	0.66	
Ho	0.35	1.72	1.39	0.44	3.4	1.02	0.9	5.2	
Er	n.d.	0.2	n.d.	1.7	0.55	0.13	0.19	0.76	
Tm	0.2	0.93	0.65	0.33	1.53	0.45	0.47	2.7	
U	n.d.	0.2	0.17	n.d.	0.42	n.d.	n.d.	0.8	

| Au | 4 | 11 | 8 | 6 | 8 | 11 | 6 | 15 | |

(La/Yb)_N 2.26 1.61 1.93 0.73 2.19 1.86 2.76 2.52 3.63

(EN/Eu)_N 2.38 1.15 0.51 0.05 0.74 1.69 5.10 0.60

(continued)

Table 3. Whole-Rock Compositions

BRECCIA CLASTS FROM APOLLO 17

The impact melt 77035,228 (185,221,7002) contains the lowest K_2O contents (0.11 wt%) of the analyzed melt rocks. The melt-rich clasts are generally moderate to low Mg (<12 wt% MgO; Fig. 1; Table 3). Apart from the generally elevated K_2O and TiO_2 contents, the melt-rich clasts have major-element compositions similar to those of the melt-free clasts (Fig. 1).

The chondrite-normalized trace-element profiles of the six melt-rich clasts are essentially sub-parallel to each other and the field for Apollo 17 KREEP basalts (Fig. 2C), although the negative Sr anomaly exhibited by the KREEP basalts is not
Table 3. (continued)

<table>
<thead>
<tr>
<th>Beccia:</th>
<th>73216</th>
<th>73216</th>
<th>77035</th>
<th>73216</th>
<th>77035</th>
<th>Uncertainty %</th>
</tr>
</thead>
<tbody>
<tr>
<td>INAA no.</td>
<td>.67</td>
<td>.68</td>
<td>.227</td>
<td>.69</td>
<td>.228</td>
<td></td>
</tr>
<tr>
<td>Section no.</td>
<td>.38/.62</td>
<td>.42/.63</td>
<td>.227</td>
<td>.49</td>
<td>.185/221</td>
<td></td>
</tr>
<tr>
<td>Rock type:</td>
<td>Impact</td>
<td>Impact</td>
<td>Impact</td>
<td>Norite</td>
<td>Norite</td>
<td></td>
</tr>
<tr>
<td>Weight (mg)</td>
<td>98.3</td>
<td>124.1</td>
<td>43.1</td>
<td>110.5</td>
<td>45.6</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.7</td>
<td>1.45</td>
<td>1.48</td>
<td>1.32</td>
<td>0.21</td>
<td>10-30</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.8</td>
<td>21.38</td>
<td>17.1</td>
<td>15.3</td>
<td>19.7</td>
<td><5</td>
</tr>
<tr>
<td>FeO</td>
<td>7.9</td>
<td>4.4</td>
<td>8.1</td>
<td>8.9</td>
<td>5.8</td>
<td><2</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
<td>0.06</td>
<td>0.11</td>
<td>0.13</td>
<td>0.09</td>
<td><2</td>
</tr>
<tr>
<td>MgO</td>
<td>10.2</td>
<td>7.0</td>
<td>11.7</td>
<td>13.3</td>
<td>11.9</td>
<td>5-15</td>
</tr>
<tr>
<td>CaO</td>
<td>11.9</td>
<td>14.7</td>
<td>9.7</td>
<td>9.7</td>
<td>12.2</td>
<td>5-10</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.71</td>
<td>0.75</td>
<td>0.65</td>
<td>0.57</td>
<td>0.46</td>
<td><2</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.36</td>
<td>0.39</td>
<td>0.30</td>
<td>0.24</td>
<td>0.11</td>
<td>10-30</td>
</tr>
<tr>
<td>Mg#</td>
<td>70</td>
<td>74</td>
<td>71</td>
<td>73</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>17.5</td>
<td>9.8</td>
<td>15.7</td>
<td>17.7</td>
<td>10.1</td>
<td><2</td>
</tr>
<tr>
<td>V</td>
<td>41</td>
<td>27</td>
<td>30</td>
<td>43</td>
<td>64</td>
<td>10-20</td>
</tr>
<tr>
<td>Cr</td>
<td>1260</td>
<td>700</td>
<td>1170</td>
<td>1500</td>
<td>1950</td>
<td><5</td>
</tr>
<tr>
<td>Co</td>
<td>20.8</td>
<td>8.2</td>
<td>38</td>
<td>18.6</td>
<td>21.4</td>
<td><5</td>
</tr>
<tr>
<td>Ni</td>
<td>190</td>
<td>80</td>
<td>300</td>
<td>160</td>
<td>26</td>
<td>5-23</td>
</tr>
<tr>
<td>Sr</td>
<td>230</td>
<td>270</td>
<td>240</td>
<td>140</td>
<td>160</td>
<td>10-20</td>
</tr>
<tr>
<td>Ba</td>
<td>390</td>
<td>420</td>
<td>350</td>
<td>320</td>
<td>100</td>
<td>10-25</td>
</tr>
<tr>
<td>Rb</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>8</td>
<td>4</td>
<td>10-30</td>
</tr>
<tr>
<td>Cs</td>
<td>0.43</td>
<td>0.42</td>
<td>0.34</td>
<td>0.26</td>
<td>0.40</td>
<td>10-25</td>
</tr>
<tr>
<td>La</td>
<td>34</td>
<td>35</td>
<td>33</td>
<td>29</td>
<td>7</td>
<td><5</td>
</tr>
<tr>
<td>Ce</td>
<td>89</td>
<td>89</td>
<td>81</td>
<td>73</td>
<td>17.8</td>
<td>2-15</td>
</tr>
<tr>
<td>Nd</td>
<td>50</td>
<td>49</td>
<td>48</td>
<td>40</td>
<td>11.3</td>
<td>5-15</td>
</tr>
<tr>
<td>Sm</td>
<td>15.2</td>
<td>14.1</td>
<td>14.3</td>
<td>12.6</td>
<td>2.89</td>
<td><5</td>
</tr>
<tr>
<td>Eu</td>
<td>1.96</td>
<td>2.42</td>
<td>1.78</td>
<td>1.68</td>
<td>1.10</td>
<td>2-10</td>
</tr>
<tr>
<td>Tb</td>
<td>3.3</td>
<td>2.6</td>
<td>3.3</td>
<td>2.6</td>
<td>0.65</td>
<td>5-15</td>
</tr>
<tr>
<td>Dy</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>17</td>
<td>4.1</td>
<td>5-10</td>
</tr>
<tr>
<td>Yb</td>
<td>10.7</td>
<td>8.3</td>
<td>10.3</td>
<td>9.7</td>
<td>2.5</td>
<td>2-10</td>
</tr>
<tr>
<td>Lu</td>
<td>1.45</td>
<td>1.08</td>
<td>1.19</td>
<td>1.35</td>
<td>0.37</td>
<td>2-10</td>
</tr>
<tr>
<td>Hf</td>
<td>12.4</td>
<td>10.0</td>
<td>12.8</td>
<td>9.6</td>
<td>1.71</td>
<td>2-10</td>
</tr>
<tr>
<td>Ta</td>
<td>1.92</td>
<td>1.49</td>
<td>1.44</td>
<td>1.32</td>
<td>0.24</td>
<td>5-10</td>
</tr>
<tr>
<td>Th</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>4.4</td>
<td>1.38</td>
<td>2-10</td>
</tr>
<tr>
<td>U</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.3</td>
<td>0.29</td>
<td>10-20</td>
</tr>
<tr>
<td>Ir</td>
<td>5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>5-25</td>
</tr>
<tr>
<td>Au</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>5-20</td>
</tr>
</tbody>
</table>

\[(La/Yb)_{\text{N}}\] | 2.12 | 2.32 | 2.14 | 2.00 | 1.87 |
\[(Eu/Eu^{*})_{\text{N}}\] | 0.37 | 0.51 | 0.34 | 0.39 | 1.08 |

Notes: n.d. = not detected; Sp. truct. = spinel troctolite; Amorth. = amorthosite; Impact = impact melt.

As exaggerated in these clasts. Furthermore, the compatible trace elements are more fractionated relative to the highly incompatible trace elements (ITEs) compared to Apollo 17 KREEP (Fig. 2C). Higher ITE abundances generally are positively correlated with higher K₂O contents (Table 3). Impact melt 77035.228 (.185/221/7002) contains the lowest abundances of ITEs of these melt-rich clasts, but has the highest compatible-element abundances and has a chondrite-
normalized trace-element profile quite similar to that of Mg-rich norite 77215 (Fig. 2C). Iridium was only detected in 73216,67 (5 ppb, Table 3).

Classification and modal mineralogy

These Apollo 17 highland samples have been classified as being derived primarily from the Mg-suite on the basis of An content and mafic mineral Mg#. Impact-melt clasts have not been classified in this way. Modal mineralogy of the seven melt-free clasts was determined using major- and minor-element whole-rock and average mineral data (Table 4). The mineral proportions were varied to produce a “best fit.” Where a good fit (i.e., <10% deviation for most elements) was observed, we concluded that the resulting mode represents the mineral proportions in the INAA whole-rock sample. This produces consistent results and is preferable to point counting on the thin section made from the INAA sample; the samples are small, and the point-counted mode may not represent the whole-rock sample analyzed because material is lost in the sectioning procedure. Modes were not calculated for the melt-rich clasts be-
cause of the presence of opaque glassy impact melt as well as devitrified impact melt. The variable composition of this melt yielded unacceptable results when we attempted to calculate the mode from mineral and whole-rock compositions.

Discussion

New clasts: Melt-free

The Al-rich clast 73215.534/.562/.7001 (.579) is composed of two components—light and dark breccia matrix. The light matrix is granulitic in texture and dominated by plagioclase, and is similar to the granulitic breccia reported by Warner et al. (1977) and Lindstrom and Lindstrom (1986). The dark matrix is cataclastic to porphyroblastic, containing clasts of spinel, olivine, low-Ca pyroxene, and plagioclase set in a matrix dominated by fine-grained (<30 μm) mineral fragments and opaque glass. Although undoubtedly representing a mixture of two lithologies, whole-rock and mineral chemistries are similar to the troctolite 76535 (Haskin et al., 1974; Rhodes et al., 1974; Weismann and Hubbard, 1975), although the spinel is more aluminous (Cr/Cr + Al = 0.10 vs. 0.68).

By simple comparison with the spinel cataclasite assemblage of Warner et al. (1978), Neal, Taylor et al. (1990b) suggested that 73215.534/.562/.7001 (.579) was of deep-seated (<60 km) origin. According to the classification of Steele and Smith (1975), this is supported by the low CaO contents (0.02 wt%) of the olivine. The CaO content of olivine in this sample were analyzed using extended count times (60 seconds) for both peak and background determinations. The CaO content of the olivine is consistent with an origin for 73215.534/.562/.7001 (.579) at least as great as those of previously reported spinel troctolites and cataclasites (2–3 kbar, or up to 60 km) (Bence et al., 1974; Herzberg, 1978). However, the low CaO contents of olivine could result from crystallization history (Steele and Smith, 1975). This would require early crystallization of Ca-poor olivine from a melt prior to enrichment of the magma in CaO. The high plagioclase content of 73215.579(,534/562) and its anorthite-rich character (An_{90.92}) argue against this. If low-Ca olivine and An-rich plagioclase were coprecipitated from a single magma, it would favor a high-pressure origin for the troctolitic anorthosites (Anderson, 1973; Bence et al., 1974).
The two "dunites" [73215, 580 (530/563, 7002) and 77035, 226 (172/7001)] contain 40.8 wt% and 49.0 wt% MgO, respectively, but exhibit different trace-element characteristics, and 77035, 226 (172/7001) contains minor plagioclase, clinopyroxene, and orthopyroxene. Furthermore, they are distinct from dunite 72415 in that the overall ITE abundances are enriched, and both display a negative Eu anomaly. Olivine in 77035, 226 (172/7001) exhibits core-to-rim variation (Fo_{92-72}), as presumably does 73215, 580 (539/563, 7002) (Fo_{74-92}), is similar to the zonation described by Ryder (1992) for 72415, and was interpreted as indicating relatively rapid cooling in a hyperbysal environment. However, calculation of equilibrium liquid REE profiles (using the Kds of McKay, 1986) yields highly REE-enriched compositions, with La abundances at 40,000 x chondrite levels. Either the Kds are not applicable, or the olivines co-crystallized with other minerals. The presence of deep negative Eu anomalies in these clasts suggests either derivation from a source with a negative Eu anomaly and/or crystallization with or after plagioclase. Generation of the negative Eu anomaly in 77035, 226 (172/7001) by melting alone would require plagioclase in the residue, which is unlikely. On the basis of these observations, it can be concluded that these clasts probably are unrepresentative samples from a hyperbysal troctolitic parent. This would require generation of a parental melt that would precipitate olivine of Fo_{92} composition, which requires the source to have a Mg# greater than the accepted bulk Moon values of 80 to 84 (Jones and Delano, 1989; O’Neill, 1991). Hess (1994) demonstrated the difficulty of generating magmas with the required Mg# for olivine and allow co-precipitation of plagioclase to form the lunar magma ocean. Magmas with high Mg# are inherently undersaturated with respect to plagioclase, which does not appear on the liquidus prior to substantial olivine fractionation, which in turn leads to a substantial decrease in the Mg# of the magma (Hess, 1994). The high Mg# could be generated after melting by reduction of FeO to metallic Fe, but the generation of high Mg# olivines remains under debate.

Two gabbronorite anorthosites exhibit apparent cumulate textures [73216, 66 (36/61, 7001) and 73216, 70 (37/65, 7005)], whereas gabbronite 77035, 229 (200/7003) and anorthositic gabbronorite 77035, 206 (206) have been heavily brecciated. 77035, 206 (206) contains 37 ppb Ir and 560 ppm Ni (Table 3), consistent with its brecciated texture, but 77035, 229 (200/7003) does not contain detectable Ni or Ir. The apparently pristine gabbronorite anorthosites also present a dichotomy in terms of siderophile elements in that 73216, 66 (36/61, 7001) does not have detectable Ir and contains 170 ppm Ni, whereas 73216, 70 (37/65, 7005) contains 15 ppb Ir, only 60 ppm Ni, and the INAA sample contained no adhering breccia matrix. The presence of significant Ir in pristine lunar rocks is not common, but neither is it unusual. For example, Warren et al. (1990) reported 19 ppb of Ir in magnesian harzburgite 12033, 503; Morgan and
Wandless (1988) analyzed dunite 72451 ten times, yielding an average Ir abundance of 0.62 ppb; and Warren et al. (1987) reported 1.3 ppb Ir in a pristine ferroan anorthosite 15363.1. The new data reported here provide further evidence supporting the contention of Warren et al. (1987, 1990) that large uncertainties are associated with estimating the highly siderophile element composition of the lunar crust.

Chondrite-normalized trace-element patterns of these anorthositic clasts are very similar to one another and to the Mg-rich norite 77215 (Winzer et al., 1974, 1977), although 73216.66 (36/61/7001) has elevated trace-element abundances relative to the other three clasts. Rare-earth-element profiles for equilibrium liquids have been calculated for the two pristine samples using calculated modes and partition coefficients for pigeonite (McKay et al., 1991), clinopyroxene (McKay et al., 1986), ilmenite (Nakamura et al., 1986), olivine (McKay, 1986), and plagioclase (Phinney and Morrison, 1990). The equilibrium REE profiles thus calculated for both 73216.66 (36/61/7001) and 73216.70 (57/65/7005) are elevated above LKFM [low-K Fra Mauro KREEP component first defined by Reid et al. (1972) from impact-generated glasses present at the Apollo 15 site] and Apollo 17 KREEP (Fig. 3); this is surprising considering the primitive nature of the major elements. Both calculated equilibrium liquids exhibit a marked negative Eu anomaly, indicating they were probably derived from a source with an inherent negative Eu anomaly. The primitive mineralogy argues against the contention that these equilibrium liquids were the result of large degrees of fractional crystallization.

At least four possible scenarios may explain the calculated equilibrium liquid REE profiles: (1) the partition coefficients used in this study are inappropriate—this is unlikely inasmuch as they were chosen specifically because of their applicability to lunar systems; (2) the primitive parental liquid assimilated a portion of urKREEP, which radically altered the incompatible trace elements, but the primitive mineralogy was maintained (cf. Warren, 1985); (3) after solidification at depth within the lunar crust, the monomict lithologies were patently metasomatized by a KREEPy fluid (Neal and Taylor, 1989, 1991); or (4) the calculation of equilibrium liquid compositions is inapplicable because the products of two liquids are encapsulated—the plagioclase primocrysts crystallized early and the inter-cumulus pyroxenes crystallized from a more evolved, late-stage melt. However, unless ion-microprobe or laser-ablation ICP-MS studies are carried out to determine the trace-element contents of individual phases, the interpretation of these proposed monomict clasts cannot be more specific.

Melt-rich clasts

These clasts cluster around KREEP on chondrite-normalized trace-element plots (Fig. 2C), although 77035.228 exhibits a profile similar to the Mg-norite 77215. As all these clasts contain relatively high K2O contents (relative to the melt-free clasts; see Fig. 1E), this suggests that the impact melt(s) pervading or comprising these clasts is KREEPy in composition. The presence of a unique KREEP signature at the Apollo 17 site was reported by Salpas et al. (1987), so it is logical to assume that these clasts (and other impact melts) at the Apollo 17 site could contain this KREEP component if they were locally derived. However, this is not the case (Fig. 4), because the new clasts and other Apollo 17 impact melts appear to be LKFM in composition. This supports the conclusion of Ryder and Wood (1977) that LKFM is dominant in the impact-melt breccias from Apollo 17. The similarity of the chondrite-normalized profiles to each other and to Mg-norite 77215 suggests that the LKFM component de-
fined by these clasts is dominated by noritic rather than basaltic components (Ryder and Wood, 1977), although Ryder et al. (1997) suggested that evolved gabbroic lithologies also were important.

The bigger picture

Studies of the Serenitatis Basin have suggested that the Apollo 17 impact melt breccias were formed by the Serenitatis impact from locally derived materials (e.g., Spudis and Ryder, 1981; Dalrymple and Ryder, 1996), although Rockow and Haskin (1996) suggested that the evidence for this conclusion could be stronger. Ryder et al. (1997) concluded that the stratigraphy of this area was built up by complex and serial magmatism. This was dominated by Mg-suite lithologies at shallow depths with the deepest crust, sampled by the Serenitatis impact-melt breccias, being aluminous basalt in composition but consisting of a mixture of lithologies (including KREEP and evolved gabbroic rocks). By including the results of our small study into the bigger picture of the Serenitatis Basin, several interesting observations can be made regarding the petrology of the Apollo 17 site.

For this study, we have combined our data with those from other Apollo 17 breccia clasts (Laul et al., 1989). Apollo 17 impact melts and melt breccias (data compiled in Ryder, 1993, and Meyer, 1994), granulites (Warner et al., 1977; Lindstrom and Lindstrom, 1986), Apollo 17 mare basalts (Brunfelt et al., 1974; Shih et al., 1975; Warner et al., 1975a, 1975b, 1979; Rhodes et al., 1976; Muraki et al., 1977; Neal, Paces et al., 1990; Neal, Taylor et al., 1990a; Ryder, 1990), and Apollo 17 soils (Korotev and Kresmer, 1992), LKFM, and IKFM (Vaniman and Papke, 1980). This approach compares monomict and polymict rock and regolith samples from the Apollo 17 site in order to evaluate the significance of LKFM and Apollo 17 KREEP basalts in the Serenitatis Ba-
sin, and to qualitatively identify the major components involved in soil formation. We have not gone into the detail expended by Korotev and Kresmer (1992) to determine the components in the Apollo 17 soils; instead we use simple correlation plots to highlight what we feel are more appropriate components that will simplify the interpretation of soil components. It is beyond the scope of this modest study to evaluate whether the impact-melt breccias and clasts were derived from the Serenitatis impact or from further afield, although suggestions will be made as to possible origins.

Basic element–element plots (Figs. 5A and 5B) highlight some important features of the samples returned by the Apollo 17 mission. The soils reported by Korotev and Kresmer (1992)—who also included soils studied by Rhodes et al. (1974)—were interpreted to contain the following components—high-Ti and very low Ti mare basalts, orange pyroclastic glass, noritic breccia, anorthositic norite, and a meteorite component. Apollo 17 KREEPy, defined by clasts from breccia 72275 (Salpas et al., 1987), was used only to describe soils from Station 2. The Apollo 17 soils span the gap between Apollo 17 mare basalts and highlands materials (Figs. 5A and 5B). However, it is evident from these simple element–element plots that the soils are not simple two-component mixtures between mare basalts and highlands. In Figures 5A and 5B, the trend defined by the soils leads from the mare basalt field (soils from Stations 1, 4, 5, and 9, which are all from the valley floor of the landing site) toward the region occupied by Apollo 17 highlands materials (soils from Stations 6, 7, and 8 at the base of the North Massif) before curving back toward a KREEPy component (soils from Stations 2 and 3 in the lighthouse area at the base of the South Massif).

However, this KREEPy component does not appear to be that defined by the KREEPy basalt clasts in 72275. Rather, it is the enigmatic LKFM component, as defined by Apollo 16 samples (Vaniman and Papale, 1980), the Apollo 17 melt breccias and impact melts (see Ryder, 1993; Meyer, 1994), and the melt-rich clasts described in this study. This is further reinforced when the Sc/Sm ratio is plotted against Sm (ppm); in such diagrams, Apollo 17 impact lithologies, including the melt-rich clasts, plot with LKFM, which forms a trend parallel to the KREEPy basalt clasts in breccia 72275 (Fig. 6). Apollo 17 KREEPy basalt is an inappropriate component for any of the Apollo 17 soils and impact lithologies. This is again emphasized by Figure 4(A–D), where Apollo 17 KREEPy basalts form a distinct population from the Apollo 17 soils and the LKFM field. Furthermore, assuming the Apollo 17 soils are derived primarily from local materials, compositions suggest that the South Massif of the Apollo 17 landing site contains a larger proportion of KREEPy (“LKFM” component and the KREEPy basalts) than does the North Massif. We suggest that “Apollo 17” KREEPy described by Salpas et al. (1987) from breccia 72275 is not derived from the Serenitatis Basin, but has been transported there by impact processes.

If 72275 KREEPy basalt clasts are in fact foreign to the Serenitatis Basin, the predominance of LKFM must be explained, especially as it is found
Fig. 6. Sc/Sm versus Sm (ppm) further demonstrates that the melt-rich clasts described in this study contain a KREEP component represented by LKFM, and are not related to 72275 KREEP basalts.

predominantly in impact-generated lithologies (Norman and Ryder, 1979; Norman et al., 1992). Reid et al. (1977) suggested that if the widespread occurrence of LKFM impact rocks could be related to a single major impact event, the likely candidate would be that which formed the Imbrium Basin. Alternatively, if the occurrence of LKFM rocks over large portions of the Moon was associated with several major impacts, it would argue for a significant portion of the lower lunar crust being composed of LKFM lithologies early in lunar history. Ryder and Wood (1977) argued that the anorthositic gabbro highlands are underlain by a layer of LKFM basalt up to 20 km thick.

It is evident from Figure 5B that LKFM impact lithologies are compositionally related to the lunar highlands. In this diagram, Apollo 17 LKFM impact melts and melt breccias, as well as the melt-rich clasts, have the same Hf/Ta ratio as highlands lithologies (here defined by the melt-free clasts). Hafnium-tantalum ratios will not be altered by fractional crystallization in a lunar environment, unless significant ilmenite is involved. This could mean that the Apollo 17 LKFM lithologies are composed of fractionated, Mg-suite highlands materials that were present at the top of Mg-suite plutons in the lunar crust (assuming simple, gravity-driven, fractional crystallization). These were ultimately mixed with more primitive cumulates lower in the pluton(s) materials by large impacts. The lack of ferroan anorthosite in the Apollo 17 LKFM lithologies has been reported previously (e.g., Norman et al., 1992; Ryder et al., 1997). Alternatively, the ubiquitous impact-generated LKFM compositions could be the result of large impacts exposing urKREEP (high-K) and mixing it with Mg-suite highlands lithologies at the Apollo 17 site. Exposure of KREEPy materials and mixing with more primitive components by large impacts explains the occurrence of LKFM as impact-generated glasses and breccias. However, one important conclusion for the Apollo 17 impact-generated LKFM lithologies is that their chemical composition cannot be supported from the lithic fragments they contain, requiring a "cryptic" component to be involved (Ryder, 1979). Ryder et al. (1997) concluded that a component akin to sodic ferrogabbro in breccia 67915 was present in the Serenitatis impact melts, and suggested that the LKFM component could be adequately described by a mixture of evolved gabbros and grabbonorites.

The cryptic components as defined in Ryder (1979) and Ryder et al. (1997), among others, are difficult to isolate. We suggest that this is because the KREEPy material, whether from the fractional crystallization of an Mg-suite pluton or the lunar magma ocean, represents material of the lowest melting point. This should represent the first material melted by any large impact, and thus will be present either as glass (e.g., Reid et al., 1972) or as microcrystalline breccia matrix. Therefore, definition of the mineralogy of this cryptic component will not be possible. Even if the KREEP component is not remobilized, it is probably present as a grain-boundary component between more primitive mineral grains. Inasmuch as it represents the last dregs of "Fenner-trend" fractional crystallization, it should be somewhat fluid in nature (Neal and Taylor, 1989) and subject to quenching as a glass, again making it difficult to define the cryptic component in LKFM lithologies.

Conclusions

This study has used mineralogy, petrography, and whole-rock chemistry to further explore the geology and evolution of the Serenitatis Basin. Integrating the 13 new clasts with previous studies of Apollo 17 samples, the following conclusions can be made.

1. Presence of 15 ppb Ir in 73216,70 (571,65,7005) further demonstrates that large
uncertainties are associated with estimating the highly siderophile element content of the lunar crust, and siderophile-element abundances cannot be used in isolation to demonstrate primitivity, or lack thereof.

2. KREEP basalts from breccia 72275 probably are not indigenous to the Serenitatis Basin, and were transported to the Apollo 17 site by impact processes. Apollo 17 KREEP is, in reality, LKFM in composition.

3. The "cryptic" component required to define KREEP LKFM impact compositions will probably never be defined mineralogically. This component is derived from the final liquid to crystallize from fractional crystallization of either an Mg-suite pluton or the lunar magma ocean. Consequently, this component will easily melt when disrupted by large impacts and is now present as glass in breccia matrices and/or as grain boundary films.

Further studies are required in order to explore the origin of 72275 KREEP basalt clasts and to define the highly siderophile element budget of the lunar crust.

Acknowledgments

This research was funded by NASA grant NAG 9-415 to L. A. T. and would not have been possible without the initiative of Larry Taylor. Roman Schmitt is gratefully acknowledged for the INAA analyses and Allan Patchen for the electron-microprobe mineral analyses. Thoughtful reviews by Greg Snyder and an anonymous reviewer are gratefully acknowledged.

REFERENCES

—. 1990a, A distinct variant of high-titanium mare basalt from the Van Tergo core. Apollo 17 landing site: Meteoritics, v. 25, p. 249–258.

Wiesmann, H., and Hubbard, N. J., 1975, A compilation of the lunar sample data generated by the GNS, Nyquist, and Hubbard lunar PI-ships: Unpubl. manuscript.
